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We present a theoretical investigation of charge migration following strong-field ionization in a
multi-electron system. We study a model homo-nuclear molecule with two electrons, each restricted
to one dimension (1+1D), interacting with a strong, static electric field. We show that in this system
charge migration results from the interplay between multiple ionization channels that overlap in
space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case,
charge migration following the first ionization manifests as a modulation of the subsequent double
ionization signal. We derive a parametrized semiclassical model from the full multi-electron system
and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of
the semiclassical representation. We use the ab-initio solution of the full 1+1D system as a reference
for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the
extension of our model to long wavelength time-dependent fields with full dimension, many-electron
targets.

PACS numbers: 03.65.Sq, 31.15.xg, 33.80.Rv, 33.80.Wz, 03.65.Xp

I. INTRODUCTION

With the progress in ultrafast laser technology, strong-
field physics is now able to probe the structure and dy-
namics of matter at the space- and time-scale of the
electron [1–7]. For time-resolved analyses, the tempo-
ral coherence of the laser electric field defines an intrinsic
clock, with a period of a few femtoseconds in the near- to
mid-infrared (IR) regime [8–15]. For instance, in a lin-
early polarized laser field, the recollision events [16, 17]
– where a previously ionized electron revisits its parent
cation – define a sub-cycle reference associated with the
different recollision trajectories [18, 19], therefore with
sub-femtosecond resolution in the IR. Bringing together
high temporal and spatial resolution for a “real time”
observation of electron dynamics has long been a goal of
ultrafast physics. In this context, the observation and
analysis of the phenomena of charge migration have at-
tracted a lot of attention recently [20–27]. Charge migra-
tion is the coherent, correlation-driven, purely electronic
dynamic immediately following excitation or ionization of
a molecule, before the nuclei have had time to move. It
has been widely speculated that the attosecond electron
dynamics can play a crucial role in the longer time-scale
phenomena like charge transfer or bond rearrangement,
which implies that the control of attosecond dynamics
can determine such chemical processes [21, 28].

Coherence and correlation are at the core of strong-
field physics, especially given that the initial systems are
usually atoms or molecules in their ground state. For in-
stance, nonsequential double ionization (NSDI) [29–32] –
and its “knee” signature that exceeds simple sequential
ionization predictions by orders of magnitudes – spot-
lights the central role of electron correlation in strong-
field processes [33–35]. Further analyses of the dynam-
ics have revealed a rich variety in the pathways lead-

ing to NSDI [36–38]. Laser-induced electron diffraction
(LIED) [39] – exploiting the in situ coherent probe of
a pre-ionized electron scattering on its parent ion – has
been used to retrieve the nuclear geometric structure of
molecular compounds [40, 41]. Alternatively, still using
the intrinsic coherence of strong-field laser-matter inter-
action, direct imaging of the electronic structure has been
performed with tomographic reconstruction of molecular
orbitals [42–44]. Even without recollision, strong-field
ionization studies have proven a powerful probe of the
electronic structure and properties of matter [9, 45, 46].

In this Article, we present a theoretical and numerical
investigation of charge migration following strong-field
multichannel ionization. We consider a model homo-
nuclear molecule with two electrons, each restricted to
one dimension (1+1D), interacting with a strong, static
electric field. Somewhat counter-intuitively we find the
dynamics in such a static field physically enlightening,
despite the absence of any explicit time dependence. In-
deed, the removal of a first electron by the field starts a
molecular clock in the cation which can be later probed,
e.g., with the ionization of a second electron. We show
that the charge migration results from the interplay be-
tween multiple ionization channels that overlap in space,
i.e., a coherent electron-hole wave packet in the cation.
In our 1+1D system, we identify a signature of the cation
charge migration dynamics, a modulation of the sub-
sequent double ionization signal. From the full multi-
electron system, we derive a parametrized semiclassical
model where the hypotheses and approximations leading
to the analytical prediction are identified. Of all the ion-
ization and molecular parameters in the model, we high-
light the importance of the cation electronic-structure
basis for the efficacy of the semiclassical representation.
We validate the model, qualitatively and quantitatively,
against reference ab-initio solutions of the full 1+1D sys-
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tem. We discuss the extension of our parametrized semi-
classical model to long wavelength oscillating laser fields
with full dimension, many-electron targets.

For realistic polyatomic molecules, brute-force ab-
initio solutions of the full time-dependent Schrödinger
equation (TDSE) are out of analytical and computational
reach. As an alternative, one could turn to quantum-
chemical techniques like time-dependent density func-
tional theory (TDDFT) [47–52]. Such an approach, how-
ever, faces two fundamental difficulties: (1) The validity
of chosen exchange-correlation functional in the nonlin-
ear regime; (2) The interpretation of correlation-driven
charge-migration dynamics in a framework that treats
electrons as virtually independent particles. As a second
alternative, one could stick to the TDSE framework and
break the problem into smaller components, correspond-
ing to the key elements of the charge migration, and piece
them together with relevant system parameters [53, 54].
Such approaches are built to facilitate the analysis and
interpretation of the process, but they also suffer from
fundamental difficulties of their own: (1) The determina-
tion of the model parameters and (2) even assuming these
are perfectly known, the intrinsic precision of the semi-
classical approximation. Here we take advantage of the
simplicity of our 1+1D model to address the second dif-
ficulty as one can perform brute-force integration of the
full TDSE, for reference, and all ionization and molecular
parameters can be computed with high precision.

The Paper is organized as follows: Section II intro-
duces some key concepts of our analysis of charge mi-
gration, and its signature in the modulation of double
ionization, in a static field from the point of view of
classical mechanics. Section III introduces our quantum
model and theoretical treatment of multichannel ioniza-
tion. Section IV details the derivation of the correspond-
ing semiclassical model. Section V applies it to the anal-
ysis of our 1+1D model and the signature of charge mi-
gration in double ionization. Finally, in section VI we
conclude the paper, summarizing the key findings and
discussing perspectives for real systems and real laser
fields. Unless otherwise specified, we use atomic units
(a.u.) throughout the paper.

II. MODULATION OF DOUBLE IONIZATION
AS A SIGNATURE OF CHARGE MIGRATION

Although we are ultimately interested in the full quan-
tum ionization dynamics, it is useful to first look at the
classical limit, where the Coulomb interaction with the
core and other electrons is negligible (strong-field approx-
imation – SFA). Following ionization, the dynamics of an
electron in a static electric field of amplitude E can be
solved for analytically

r (τcl) = −E
2
τ2
cl ⇔ τcl =

√∣∣∣∣2rE
∣∣∣∣, (1)

assuming the electron is initially at the origin and with
zero velocity. Here we are most interested in the recipro-
cal part of the equation: Static fields spatially separate
electrons based on the delay since ionization τcl, and the
ionization distance r can be seen as a time axis. The use
of static DC fields elides two types of interferences that
would be present in their AC counterparts: (1) The cycle-
to-cycle interference responsible for individual peaks in
the above-threshold ionization (ATI) and high-harmonic
generation (HHG) spectra, and (2) the sub-cycle inter-
ference of quantum paths leading to the same observ-
able [19], e.g., direct and back-scattered photoelectrons
in ATI, and short and long trajectories in HHG.

Now consider (sequential) double ionization in the
same static field. The arguments of Eq. (1) can be ap-
plied to each electron coordinate r1 and r2 individually.
This means that the analysis of the spatially correlated
two-electron density gives us information about the dy-
namics following the first ionization event, and eventu-
ally leading to the second ionization. An illustration of
that analysis is displayed in the upper panel of Fig. 1,
where the density has been obtained from our 1+1D
model wave function |ψ (r1, r2)|2 (to be defined later). In
the lower part of the panel we observe diagonal “stripes”
in the density (highlighted with dashed arrows), which we
therefore identify as a modulation of the double ioniza-
tion signal with respect to τcl. Interestingly, in the upper
part of the panel, we notice that this modulation is syn-
chronized with another type of density motion, between
the two centers of the molecule (solid diagonal arrows).
Later we will show that this corresponds to a migration
of the charge in the cation following multichannel ioniza-
tion, and that the modulation of the double ionization
signal is a signature of that charge migration dynamics.

III. MODEL

We consider the quantum-mechanical dynamics of a
N -active electron system, as described by the time-
dependent Schrödinger equation (TDSE)

i∂tψ
(
rN ; t

)
= ĤN

(
rN
)
ψ
(
rN ; t

)
, (2)

in the presence of a static electric field of amplitude E .
Here ĤN and |ψ〉 are the Hamiltonian operator and total
N -electron wave function, respectively. For simplicity we
use rN as a short-hand notation for the multi-electron
coordinates r1, . . . , rN .

A. Molecular model for numerical simulations

For numerical simulations we consider the simplest sys-
tem that fulfills the requirements for charge migration
following ionization discussed in the introduction. It is
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FIG. 1. Upper panel: Two-electron density |ψ (r1, r2)|2 for
our full 1+1D TDSE simulations. In the molecular model
we set the internuclear distance R = 3.5 a.u., the electron-
nucleus/-electron softening parameter aen/aee = 0.5/1, the
effective charge Z = 1 and static electric field amplitude
E = 0.13 a.u.. Solid line arrows label the charge migration
between the two molecular centers, following the first multi-
channel ionization event. Dashed arrows represent the sub-
sequent double ionization bursts, as signatures of the charge
migration in the cation. Lower panel: Comparison of the
electron density in the cation (15) for selected r1 sections (la-
beled with small arrows in the upper panel) of the TDSE and
semiclassical models (13). The ionization delay τ used here
is defined in Eq. (14). For a qualitative understanding, its
classical limit introduced in Eq. (1) can be used instead.

given by the 1+1D soft-Coulomb potential [55]

V̂ (r1, r2) = − Z√(
r1 ± R

2

)2
+ a2

en

− Z√(
r2 ± R

2

)2
+ a2

en

+
1√

(r1 − r2)
2

+ a2
ee

, (3)

where aen and aee are the electron-nucleus and electron-
electron softening parameters, respectively. This model
is simple enough to allow for full ab-initio TDSE com-
putations, to serve as a reference in quantitative analy-
sis and yet, it is complex enough to exhibit multichan-
nel ionization and subsequent charge migration in the
cation. For all figures shown here, we take the inter-
nuclear distance R = 3.5 a.u. (1.9 Å), effective charge
Z = 1, aen/aee = 0.5/1 and a static field amplitude
E = 0.13 a.u. (the same amplitude as an AC field with
an intensity of 6×1014 W/cm2). For reference, with these
parameters the energy difference between the (dressed)
ionization channels is about 12 eV, which gives the pe-
riod of about 14.5 a.u. (about 350 as) for the charge mi-
gration observed in the cation. We note that full di-
mensional molecular systems with closely spaced energy

states generally can be dipole coupled with much lower
field amplitudes than considered here.

In order to discriminate between the channels, we con-
sider a system with two spatially different orbitals and so
use the lowest-energy triplet state as the initial condition.
In the dipole approximation the 1+1D Hamiltonian op-
erator H2 in Eq. (2) preserves the (anti)symmetry of the
initial condition, which prevents any leakage to a lower-
lying symmetric state. From the practical point of view,
it also means that one needs only to record the ioniza-
tion wave function in one of the two electron coordinates.
We choose r2 as this coordinate and absorb the outgoing
wave function along the other electronic coordinate.

In numerical simulations we first smoothly ramp up
the field from the (field-free) triplet initial state to reach
the desired static-field amplitude. All numerical anal-
yses are performed after sufficient static-field duration
such that all transient effects associated with the ramp-
up have moved outside of the simulation box. We have
checked the robustness of our results with the ramp-up
and static field durations, field strength, molecular and
discretization parameters. Later we will use the result
of these ab-initio full TDSE simulations as a reference
against which parametrized semiclassical models can be
quantitatively tested.

B. Single-ionization effective model

In the physical picture of the TDSE (2), single ioniza-
tion corresponds to portions of the wave function extend-
ing in exactly one electronic coordinate, e.g., rN , while
the other (rN−1) remain localized. In such regions, the
dynamics between the ionized and the cation electrons
becomes decoupled and the total Hamiltonian operator
splits into two effective ones [13, 54]

ĤN

(
rN
)
≈ ĤN−1

(
rN−1

)
+ Ĥ1 (rN ) . (4)

In this formulation, we identify three different compo-
nents to the total wave function, which should be clearly
distinguished. First is the neutral component – later la-
beled with “n” superscript – with all N electron coor-
dinates close to the core region, and from which orig-
inates ionization. Next are the cation and ionized elec-
tron components, respectively with N−1 and 1 electrons
and described with the effective operators ĤN−1 and Ĥ1.
Although they are decoupled, it is important to keep in
mind that the dynamics of the cation and ionized electron
components are still correlated (entangled), through the
ionization condition: Dynamically, they are both born
out of the same neutral component at the time of ioniza-
tion.

The decomposition (4) is most interesting in that it
naturally defines orthonormal representation bases for
each subspace: The cation component can be expanded
in a basis ofN−1 electron states, which we generically de-

note
∣∣∣ψ̃k

〉
(here the tilde is used to discriminate the neu-
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tral, with N electrons, and the cation, with N − 1, com-
ponents). Throughout the paper, these correspond to our
ionization channels. The most intuitive basis corresponds
to the ionic field-free eigenstates, labeled with “0” super-
script in what follows. In a single Slater determinant
approximation, such states can be labeled by the orbital
of the electron-hole. As we shall see, other “smarter”
choices of basis are also possible. On the other hand,
the ionized electron component is described with a one-
electron continuum, which we generically label with |v〉.
Depending on the degree of precision required, one can
use, e.g., plane waves/Volkov states, Coulomb waves [56],
exact one-electron continuum states [57].

In the product basis, the total N -electron wave func-
tion, with ionization along the electronic coordinate rN ,
therefore reads [22, 58, 59]

|ψ〉 = eiI
n
p t |ψn〉+

Ñ∑
k=1

eiIpk t

∫
βk (v, t)

∣∣∣ψ̃k

〉
⊗ |v〉 dv.

(5)
Analytically, finding the coefficients βk is equivalent to
solving the problem. Here |ψn〉 is the neutral compo-
nent, from which the single ionization originates, with
total ionization potential Inp . Although it vanishes in the
region of interest, this term is kept as a reminder of the
correlation (entanglement) between the cation and ion-
ized electron components, through the initial ionization
condition. Ip

k
is the total ionization potential of the

corresponding cation basis set component
∣∣∣ψ̃k

〉
. In this

representation Inp − Ipk
is the vertical ionization energy

to the channel k. Ñ is the truncation order in the cation
basis expansion. Its actual value is largely system specific
and depends, e.g., on the number of ionization channels,
the cation component basis, if excited states are involved
in the process of interest, etc.

C. Retrieving channel populations

To obtain the population in a given ionization channel
k we project the total wave function onto the correspond-
ing cation state with

ρk (rN ) = N
∣∣∣〈 ψ̃k

∣∣∣⊗ 〈rN ∣∣∣ ψ〉∣∣∣2
= N

∣∣∣∣∫ βk (v) 〈rN |v〉 dv
∣∣∣∣2 , (6)

from Eq. (5). In practice, this corresponds to taking a
slice of the total N -electron wave function at a given ion-
ization coordinate rN , or equivalently a given ionization
delay τ , and projecting the result onto the cation basis
state element. Here the prefactor N is introduced to cast
the problem in a form similar to TDDFT, where all prop-
erties are functionals of the single-particle density [49]

ρ (rN ) = N

∫ ∣∣ψ (rN−1, rN
)∣∣2 drN−1. (7)

FIG. 2. Charge-migration dynamics and modeling following
multichannel ionization by a strong static laser field. Panels
(a) and (c) show the relative population ρk/ρ, as defined in
Eqs. (6) and (7), extracted from full TDSE simulations for
field-free and exact dressed state cation bases, respectively.
The ionization delay τ is defined with Eq. (14). For a quali-
tative understanding, its classical limit introduced in Eq. (1)
can be used instead. Panels (b) and (d) illustrate the differ-
ences between the two representation bases.

In figure 2 (a) we display the relative populations,
ρk (rN ) /ρ (rN ), in the first two field-free states of the
cation for our 1+1D molecular model of potential (3).
Results are shown as a function of the ionization coordi-
nate, or equivalently the delay since the first ionization
(see section II). Because of the dipole coupling between
the cation states [see panel (b)] we observe population
transfer between them, which manifests through the os-
cillations in the curves. Alternatively, panels (c) and (d)
display the populations in a “smart” exact dressed states
cation basis set [60–62]. In the dressed basis, the coupling
between channels is effectively removed and the popula-
tion in each of them is conserved over time.

The cation component basis closure, together with
Eqs. (6) and (7), imposes the charge conservation con-
dition

ρ =
∑
k≥1

ρk.

Alternatively, one can use the charge conservation condi-
tion to determine the number of cation states to include
in the expansion (5), i.e., Ñ , by tracking the residual

population proportion 1−
∑Ñ

k=1 ρk/ρ.

IV. SEMICLASSICAL MODEL

With static field and truncation of the cation compo-
nent basis to order Ñ in Eq. (5), ĤN−1 takes the form
of a constant finite-dimensional Hermitian matrix, which
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we denote H̃N−1. We first diagonalize the matrix

H̃N−1

∣∣∣ψ̃d
k

〉
= −Idp

k

∣∣∣ψ̃d
k

〉
and rewrite the problem in an orthonormal basis of eigen-

states. Immediately, we see that the Idp
k

and
∣∣∣ψ̃d

k

〉
cor-

respond to the dressed ionization potential and cation
component state. Effectively, this decouples the dynam-
ics of the dressed channels, which can be treated as vir-
tually independent systems – with population conserved
in time – while fully retaining the dipole couplings with
the external field. Here as well, it is important to keep
in mind that, although decoupled, the dressed ionization
channels remain correlated (entangled), through the mul-
tichannel ionization condition. In what follows, dressed
states and associated parameters/quantities are labeled
with “d” superscript.

A. Approximate solution

With each dressed state behaving as an indepen-
dent channel we follow the procedure of the Lewenstein
model [18] and combine the wave function decomposi-
tion (5) with the TDSE (2) and effective Hamiltonian (4).
For illustration and similarly to Ref. [18], we consider a
plane wave and SFA description of the continuum elec-
tron such that, in the length gauge, the dynamics is de-
scribed by

iβ̇d
k − v̇rNβd

k = e
i
(
In
p−I

d
p
k

)
t
ddk (v) +

v2

2
βd
k + ErNβd

k ,

for each dressed channel. Here ddk is the (complex) tran-
sition element describing ionization from the neutral to

the dressed ionization channel k, |ψn〉 →
∣∣∣ψ̃d

k

〉
⊗|v〉. The

SFA imposes v̇ = −E , and we solve the differential equa-
tion analytically [18]

e
iId

p
k
t
∫
βd
k (v, t)

∣∣∣ψ̃d
k

〉
⊗ |v〉 dv =

−i
∫ ∫ t

ddk (v (t0)) eiS
d
k [t0,t,rN ,v] dt0dv

∣∣∣ψ̃d
k

〉
⊗ |Id〉 ,(8)

where |Id〉 is the identity – the contribution from the con-
tinuum (plane-wave) |v〉 is included in the global phase
term – and Sd

k is given by

Sd
k = Idp

k
t+
(
Inp − Idp

k

)
t0 −

∫ t

t0

v (s)
2

2
ds+ vrN , (9)

with v (s) = v + E (t0 − s). Beyond the present case of
DC ionization, we notice the similarity in the analyt-
ical solution above with other semiclassical treatments
of multichannel/active electron systems in strong-field
physics [7, 23, 25, 54].

Physically, Eqs. (8-9) can be interpreted as the ioniza-
tion time t0 and initial velocity v required for a classical

electron to reach the coordinate rN at time t. Similarly,

Idp
k

(t− t0) and −
∫ t

t0

v(s)2

2 ds are the phases accumulated

by the dressed cation component k and ionized electron,
respectively, following ionization. The term Inp t0 ensures
the synchronization of phases between the neutral and
ionization channel, at the instant of ionization, and the
term vrN is due to the spatial dependence of the contin-
uum state.

More interestingly, in Eq. (8) we recognize the tem-
poral factorization of the wave function in terms of the
two steps of the ionization process – ionization, with

ddk (v (t0)), and propagation, with eiS
d
k [t0,t,rN ,v]. Here,

for each dressed channel k, the result reads as a sin-
gle active electron (SAE) system would. Assuming one
can generalize the notion of such dressed states to oscil-
lating fields (see section VI), it opens a clear perspec-
tive for extending quantitative rescattering (QRS) re-
sults [65] and similar HHG spectrum factorization [66] to
multichannel processes. This would be done by perform-
ing the temporal to frequency factorization [57] for each
dressed channel independently, and coherently summing
all contributions. We stress that this is possible only
because the dressed channels are virtually independent
systems. Indeed, QRS factorization relies on the gener-
ality of the propagation component of the factorization,
which is found to be very similar across targets. This
property breaks down when population transfer (charge
migration) happens between the different cationic states,
e.g., as it does in the field-free cation state basis.

B. Stationary phase approximation

With its multidimensional integrals, Eq. (8) is rather
cumbersome for analyses of the charge migration dynam-
ics. To simplify its expression we consider the familiar
stationary phase approximation (SPA). Without loss of
generality we assume the static field is fully on at time
t = 0 and select a position rN along the ionization direc-
tion and time t &

√
|2rN/E| (1), to avoid transient effects

of the laser ramp-up. For each dressed channel, the SPA
condition ∇Sd

k = 0 is defined by the two equations

Inp − Idp
k

+
v2

2
= 0 and

∫ t

t0

v + E (t0 − s) ds− rN = 0.

(10)
By definition, the neutral ionization potential is larger
than that of any of the cations, such that the SPA veloc-
ity is a purely imaginary number

v = −i
√

2
(
Inp − Idp

k

)
,

which is sometimes interpreted as a generalized energy
conservation condition for ionization, extended to the
complex plane. Then, the second equation defines the
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corresponding SPA ionization time

t0 = t−
v +

√
2
(
−ErN − Inp + Idp

k

)
E

.

This equation defines the classically forbidden region

rN > −
(
Inp − Idp

k

)
/E , assuming E > 0, and corresponds

to the picture of tunnel ionization through a barrier cor-
responding to the vertical ionization energy to channel
k.

After additional calculations and simplifications, we
find that the real part of the stationary phase is given
by

Ss
k (rN , t) = Inp t+

[
2
(
−ErN − Inp + Idp

k

)] 3
2

3E
. (11)

Alternatively, similar results can be obtained in parabolic
coordinates, where the Coulomb potential plus static-
field problem is separable [63, 64]. Finally, following
QRS-type arguments [65], we assume the spatial profile
along the ionization channel is generic and further fac-
torize the wave-function

|ψ〉 =

√
ρ (rN )

N

Ñ∑
k=1

γdkei(S
s
k(rN ,t)+Φd

k)
∣∣∣ψ̃d

k

〉
, (12)

where γdk is the proportion of ionization to, and Φd
k is the

absolute ionization phase out of, the dressed channel k.
Interestingly, we notice that Eq. (12) corresponds to

a fully parametrized semiclassical (ionization) model,
where the parameters are related to the physi-
cal/chemical ionization properties to each cation chan-
nel. Quantum-chemical methods such as TDDFT or
Hartree-Fock theory provide means to obtain such pa-
rameters [23]. A detailed discussion about how these
should be computed goes beyond the scope of the present
paper.

V. NUMERICAL SIMULATIONS

We now turn to the 1+1D molecular system intro-
duced in section III A for a quantitative analysis of the
parametrized semiclassical model of Eq. (12). In our
1+1D model, in Fig. 2 (c) we see that most of the popu-
lation is captured by the first two field-free cation states.
For reference, in the exact dressed-state basis, the resid-
ual population is about three orders of magnitude smaller
than the populations in the first two dressed states. We
therefore take Ñ = 2 in the parametrized semiclassical
model (12), which leads to the two-electron density

||ψ〉|2 =
ρ (r2)

2

∣∣∣γd1 ψ̃d
1 (r1) + γd2ei(S

s
12(r2)+Φd

12)ψ̃d
2 (r1)

∣∣∣2 ,
(13)

with Ss
12 and Φd

12 = Φd
2−Φd

1 the stationary and ionization
phase differences between the two (dressed) channels.

A. Ionization delay

From the expression of the stationary phase (11), we
notice that the phase difference between the two ioniza-
tion channels

Ss
12 (r2) =

[
2
(
−ErN−In

p +Id
p
2

)] 3
2−
[
2
(
−ErN−In

p +Id
p
1

)] 3
2

3E ,

is independent of the absolute time t. We have confirmed
numerically that once the static-field-ionized wave-packet
has reached a given ionization coordinate r2, the two-
electron density remains constant for all later times. This
ensures that we can reconstruct the ionization delay out
of the coordinate r2, by providing a consistent reference
from full TDSE computations: The charge migration dy-
namics in the cation, and its signature in the modula-
tion of subsequent ionization, only depends on the time
since the first ionization, i.e., how far the ionized electron
has traveled. Throughout the remainder of the paper we
therefore omit the absolute time variable t in most equa-
tions.

At the leading order expansion, the phase difference
between the two channels becomes

Ss
12 (r2) ≈|r2|�1

(
Idp2
− Idp1

)
τcl.

This factorizes as the energy difference between the two
dressed states multiplied by the classical ionization de-
lay (1). It corresponds to the fully classical picture for
the ionized electron, where the two ionization channels
have the same continuum dynamics and therefore the
same accumulated phase. These cancel and the phase
modulation is fully determined by the energy difference
between the two ionization channels.

For higher-order results, we keep the full semiclassical
expression and define the ionization delay as

τ (r2) =
Ss

2 (r2)− Ss
1 (r2)

Idp
2
− Idp

1

. (14)

In all figures, Eq. (14) is used to perform the conver-
sion from the ionization coordinate r2 to delay τ in the
analysis of our TDSE simulations. Physically, compared
to the fully classical limit (1), higher-order terms can be
interpreted as accounting for channel-specific ionization
condition due to the different ionization barriers Inp −Idp

1,2

(see section IV B).
We now have all the ingredients necessary to study

charge migration following multichannel ionization in our
1+1D molecular model. More specifically, as a function
of the ionization delay τ (14), the electron density in the
cation is given by∣∣∣ψ̃ (r1, τ)

∣∣∣2 =
|ψ (r1, r2 (τ))|2

ρ (r2 (τ)) /2
. (15)

We display the result for various delays in Fig. 3 (thick
black curves – each panel corresponds to a section 1©- 3©
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FIG. 3. Comparison between the electron density in the
cation 2 |ψ|2 /ρ from the TDSE and our semiclassical model,
with field-free and exact dressed ion states (see legend), for
the section labeled in Figs 1 and 2. The associated movie can
be found in the supplemental material [67].

in other figures); a movie of the charge migration is also
available in the supplementary material [67]. It confirms
the observations of section II: Following multichannel
ionization a migration of the charge is observed between
the two molecular centers (vertical stripes in the pan-
els). Looking closely at the double ionization dynamics
(r1 � −1) we see that a burst of ionization is gener-
ated following the full localization of the electron density
on the down-field center (panel 1©), and the double ion-
ization channel is suppressed when the electron is delo-
calized over the two centers (panel 3©). This is a clear
signature of the charge migration dynamics in the dou-
ble ionization oscillations, through the control it exercises
on the release of the second electron (localization on the
down-field molecular center).

B. Cation component representation basis

One could fit the results of the TDSE calculation as
a means of extracting the parameters of the semiclassi-
cal model (13). This all-at-once-fit strategy is unreliable,
yielding unstable and sometimes unphysical results. Al-
ternatively, and similarly to what would be done for sys-
tems where brute-force TDSE is not feasible, we have de-
termined these parameters independently through phys-
ically reduced models, e.g., corresponding to the elec-
tronic structure of the cation for the different ionization

energies Idp
k
. This method has proven successful, leading

to well-defined (stable) parameters. We have checked the
robustness of our ability to get these with changing elec-
tric field and molecular parameters.

As discussed above, the most natural representation
basis for the cation component is built from field-free
eigenstates, as they are unambiguously defined by the
cation component effective Hamiltonian ĤN−1. The cor-
responding semiclassical electron density, with trunca-
tion order Ñ = 2, is displayed with light blue curves on
Fig. 3. Compared with the TDSE reference (thick black),
we see that this model reproduces very well the charge
migration dynamics in the core region, around the molec-
ular centers (vertical stripes). Away from the core, how-
ever, the model fails to describe the (double) ionization
dynamics. These observations are confirmed on the bot-
tom panel of Fig. 1, where the semiclassical density (light
blue) reproduces very well the TDSE reference (thick
black) at the up-field center (r1 = R/2 set of curves) but
completely fails to capture the modulation in the den-
sity away from the core, in the double ionization region
(r1 = −8 a.u.). The failure to account for subsequent
double ionization is hardly a surprise given the chosen
basis of field-free states, which represent bound electrons.
In order to capture double ionization one would probably
have to expand drastically the representation basis with
Ñ � 2 and include, e.g., many Rydberg states.

The aforementioned failure to reproduce all of the full
1+1D TDSE dynamics is not to be put on the semiclas-
sical model (13), but solely on the choice for the cation
component basis representation. Indeed, for comparison,
we have performed a precise computation of the DC field
dressed states, including the distant – double ionization
– region from the core. We refer to these as the “ex-
act” dressed states throughout the paper. The resulting
semiclassical prediction is displayed with thin red curves
on the bottom panel of Fig. 1 and in Fig. 3. The re-
sults fall almost perfectly on top of the TDSE reference
(thick black curves), and captures both the charge migra-
tion dynamics, following multichannel ionization, and the
modulations it induces in subsequent (sequential) double
ionization. Compared to the “natural” field-free state
representation, the exact dressed states can be heuris-
tically interpreted as follows: First one builds the effec-
tive cation Hamiltonian operator matrix H̃N−1 including
many (Rydberg) states, such as to span distant regions
from the core, to include subsequent ionization routes.
Then one performs the diagonalization of the extended
matrix to find the dressed states (as described in the in-
troduction of section IV). Finally, one performs the trun-

cation to order Ñ = 2, e.g., noticing that the first two
exact dressed states capture virtually almost all of the
electron population in the cation [see panel (d) of Fig. 2].
Compared to the field-free model described above, the in-
version of the “Hamiltonian matrix diagonalization” and
“truncation” steps has two main advantages: First it of-
fers a much more precise modeling – it quantitatively
reproduces the full TDSE results, including the modula-
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tion in double ionization. Second it keeps the number of
dressed states involved in the model minimal, with only
two effective channels here.

VI. CONCLUSION – BEYOND STATIC FIELDS

In conclusion we have shown that even in the simplest
case of a static (DC) field, ionization to more than one
channel can lead to subsequent charge migration in the
cation. A signature of this charge migration can be found
in the modulation of subsequent double ionization, even
though it happens through a sequential process – with
a static field, recollision is not possible. Mathematically,
the charge migration can be linked to the different rates
at which each ionization channel accumulates phase and
the resulting constructive and destructive interferences
in the coherent superposition of involved cation states.
Physically, the modulation can be understood in terms
of the ionization delay-dependent localization of the elec-
tron density on the cation. In our case only the full local-
ization of the electron on the down-field molecular center
can lead to double ionization, while the double ionization
channel is suppressed when the electron is delocalized
over the two centers.

By varying the internuclear distance R in our poten-
tial model of Eq. (3) (not shown) – this amounts to tun-
ing the molecular properties of the target – we identify
the two necessary ingredients for charge migration in the
cation: (i) Ionization to more than one dressed chan-
nel, and (ii) spatial overlap between the dressed cation
states, i.e., a coherent electron-hole wave packet in the
cation. For small internuclear distances, dressed states
strongly overlap spatially but ionization occurs to only
one channel. On the other hand, with large internuclear
distances significant ionization to both dressed channels
is observed but they do not overlap spatially. In both
cases, it leads to the disappearance of the charge mi-
gration dynamics described above. Here, it is important
to note that charge migration is a coherent evolution of
charge from one region of space to another. Charge mi-
gration can be distinguished from typical excitations due
to longer timescales needed for the larger body of charge
to move. In a larger molecule, for example, charge migra-
tion would describe the motion of charge from one end
to the other, whereas excitations would be dominated by
transitions between nearby atoms.

Our analysis also provides a quantitative validation of
semiclassical models for multichannel ionization and sub-
sequent charge migration dynamics. This is particularly
relevant given that such approaches have flourished in the
past few years with the attempt to model, analyze and
identify charge migration in complex multi-active elec-
tron systems [7, 11, 22–25, 43, 54], where full ab-initio
TDSE computations are out of reach. We stress that
the key to the success of the semiclassical model deriva-
tion was to rewrite the problem in a basis of dressed
states that effectively decouples the different ionization

channels. Each can then be treated independently, sim-
ilarly to well-known single-active-electron systems, and
the overall coherence is only located in the ionization con-
dition (as an initial-condition entanglement). Another
byproduct of the dressed-state formulation is that, after
diagonalization of the matrix H̃N−1, the complexity of
computations grows linearly with the number of dressed
states. On the other hand, the complexity scales quadrat-
ically if one stays, e.g., in the field-free basis (the time
propagator is a full matrix).

The comparison between models using reduced field-
free states and exact dressed states with the 1+1D TDSE
reference in Figs. 1 and 3 is also instructive for semiclas-
sical models and analyses. For processes involving only
a single ionized electron we see in our simulations that
a reduced basis of field-free cation states is sufficient to
describe the charge migration dynamics in the core re-
gion, with very good accuracy. On the other hand, if
subsequent ionization or the dynamics in regions distant
from the core are of interest, more care/refined states
should be considered in order to account for them in the
semiclassical approach.

Our main motivation for considering a static (DC) field
is that it spatially separates ionization delays, and a sin-
gle semiclassical trajectory is associated with each ionized
electron coordinate (see also section II). We used this
property to reconstruct the ionization delay and, from
there, the charge-migration dynamics in the cation fol-
lowing multichannel ionization from full ab-initio TDSE
computations. This allowed us to quantitatively validate
our semiclassical model (13) and interpret the signature
of charge migration in modulation of the double ioniza-
tion. Almost all experiments of strong-field physics and
attosecond science, however, use oscillating (AC) laser
fields. Looking back at Fig. 1, we notice that the charge
migration period is about 14.5 a.u. (about 350 as). At
this time scale, mid-infrared lasers can be seen as a slowly
varying electric field – in our example the period of the
dynamics is about 1/20 of that of a 2 µm laser. In the se-
quential regime, i.e., neglecting recollision-induced dou-
ble ionization, the wave function expansion (5) is not spe-
cific to DC fields and can equally well be applied to AC
ones. From there, the main difference is that the cation
component effective Hamiltonian operator ĤN−1 now has
an explicit time-dependence. As a result the associated
matrix H̃N−1 is finite dimensional with periodic time-
dependent coefficients. For such systems, the Floquet
framework extends the notion of dressed eigenstates [68],
and can decouple them. For the ionized electron compo-
nent, the dynamics of a continuum electron in an oscil-
lating field has been repeatedly shown to be very well de-
scribed by semiclassical models. This means that work-
ing in the Floquet basis offers the possibility to describe
the system as a coherent superposition of decoupled –
effectively single-active-ionized electron – channels. For
such single active electron processes, QRS [65] has been
shown to produce qualitatively and quantitatively more
accurate results than their semiclassical counterparts. It
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therefore opens avenues to extending the technique to
multichannel processes with oscillating fields.
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