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The cross-resonance (CR) gate is an entangling gate for fixed frequency superconducting qubits.
While being simple and extensible, it is comparatively slow, at 160 ns and thus of limited fidelity
due to on-going incoherent processes. Using two different optimal control algorithms, we estimate
the quantum speed limit for a CNOT gate in this system to be 10 ns, indicating a potential for
great improvements. We show that the ability to approach this limit depends strongly on the
choice of ansatz used to describe optimized control pulses and limitations placed their complexity.
Using a piecewise constant ansatz, with a single carrier and bandwidth constraints, we identify an
experimentally feasible 70 ns pulse shape. Further, an ansatz based on the two dominant frequencies
involved in the optimal control problem allows for an optimal solution more than twice as fast again,
at under 30 ns, with smooth features and limited complexity. This is twice as fast as gate realizations
using tunable-frequency, resonantly-coupled qubits. Compared to current CR-gate implementations,
we project our new scheme will provide a 6-fold speed-up, and thus 6-fold reduction in fidelity loss
due to incoherent effects.

I. INTRODUCTION

Circuit-QED is a promising technology for quantum
computing. An important requirement for scalability of
the architecture is high-accuracy implementation of two-
qubit gates. A leading candidate for resonator-mediated
interaction between a pair of superconducting qubits is
the so-called cross-resonance (CR) gate [1–4] which has
been implemented experimentally with over 99% aver-
age gate fidelity [5]. The CR gate functions by driving
one qubit at the resonant frequency of the other qubit,
inducing dynamics in the latter across the connecting
resonator, i.e. “cross-resonantly”. The design avoids the
complexity and noise sources that are present in low-
frequency magnetic (flux) tuning of the qubit-qubit in-
teraction [6, 7]. It also aims to improve on methods for
high-speed addressing of specific two-qubit transitions,
by utilizing the spatial addressability that comes from
per-qubit control circuitry.
The primary impediments to high-fidelity operation

currently come from two sources: incoherent errors such
as T1 and T2 processes, and coherent unitary errors such
as crosstalk [8] and frequency crowding [9]. The main
method to counteract the former is to shorten gate times
as much as possible, but the increased spectral width can
drastically increase unitary errors, especially from higher
order corrections to the perturbative model of the gate
mechanism.
In this work we systematically optimize CR gate con-

trol pulses for best fidelity, by shortening gate times
as much as possible to reduce incoherent errors, while
avoiding the adverse effects of increased coherent errors.
We employ a full Tavis-Cummings model [10, 11] which
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eliminates many of the analytic simplifications that set
bounds on analysis of the gate in the deeply non adiabatic
regime. Moreover, it is known that a careful analysis
with regard to parameterization of the control sequence
is required to efficiently tailor the control pulses to the
constraints of the experimental apparatus [12, 13], and
to ensure simple pulse shapes which permit experimental
calibration of the pulse. By lifting constraints on pulse
complexity, we numerically estimate the quantum speed
limit (QSL) [14–16] for the gate. However, the QSL is
still dependent on other constraints imposed in the op-
timization problem, and thus may also depend on the
chosen parameterization of the control pulse. Therefore,
we probe the relationship between the QSL and differ-
ent physically meaningful parameterizations, which leads
to a new understanding of the limitations of the original
cross-resonant control scheme, and ultimately to new and
improved control strategies.
This manuscript is organized as follows: Section II

presents the theoretical model of the system; Section III
introduces numerical methods; in Section IV we show
that the unconstrained quantum speed limit is much
shorter than the currently prevailing strategy; Section V
describes the first optimization results and point out the
role of higher frequency components; Section VI stud-
ies the QSL with the Fourier parameterization of the
drive shape; Section VII explains the influence of the
bandwidth constraint and proposes two highly-practical
solutions; Finally, in Section VIII we make concluding
remarks.

II. SYSTEM

Let us consider two transmon qubits coupled by a bus
resonator. Each transmon is described as an anharmonic
oscillator and the coupling to the resonator by an appro-
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priately extended Jaynes-Cummings model [17–19]. The
qubits consist in the first two levels of these two anhar-
monic oscillators. As in [5], we assume that σx, σy type
controls are available. We further assume that the qubit
frequencies can be calibrated by a quasi-static flux line.
The aim of the latter is not to provide another time de-
pendent control function, but to statically shift the qubit
frequencies to a value more favorable to the optimization
process. With the notations of [18], the Hamiltonian in
the limit of low non-linearity α [20] takes the form

H (t) =

2
∑

k=1

(

ωkb
†
kbk + αkb

†
kb

†
kbkbk + gk(ab

†
k + a†bk)

+

L
∑

l=1

Ωk,l(t) cos
(

ωd
k,lt+ φk,l

)

(bk + b†k)

)

+ ωra
†a

(1)

where a†, b†1 and b†2 are the creation operators for the
cavity and the two transmons respectively; gk are the
couplings between the resonator and the qubits; ωr, ω1

and ω2 are the respective frequencies of the cavity and the
two transmons; Ωk,l are the low-frequency envelopes of
the microwave drive and ωd

k,l are the carrier frequencies of
the L control drives with phase offset φk,l. After moving
to the rotating frame close to the frequency of the first
qubit, and applying a rotating wave approximation, the
Hamiltonian takes the form

HRWA (t) =

2
∑

k=1

(

δkb
†
kbk + αb†kb

†
kbkbk + gk(ab

†
k + a†bk)

+ Ωx
k(t)(bk + b†k) + iΩy

k(t)(b
†
k − bk) + fkb

†
kbk

)

+∆a†a , (2)

where ∆ is the detuning of the cavity from the princi-
ple (carrier) drive frequency of the controls, and δk are
the detunings of the transmons. fk are introduced in the
optimization as a mechanism for setting the transmon de-
tunings and/or shifting of the principle drive frequency.
The numerical simulations and optimizations presented
below include the three first levels of the resonator and
the three first levels of each transmon. System parame-
ters are detailed in Table I.

III. NUMERICAL METHODS

The field of Quantum Optimal Control (QOC) pro-
vides methodologies by which a quantum system may be
driven to a desired state, or undergo a desired evolution,
in a fast and efficient manner. With the emergence of
quantum technologies [21] the significance and impact of
these techniques has grown. Specifically, the requirement
of very high fidelity gates for quantum computation, and
the complexity of the systems involved, imply that ap-
proximate analytical solutions will not suffice, and nu-
meric optimization theory must be applied to attain the

TABLE I. Values of the parameters of the RWA-ed Hamilto-
nian in eq. 2. These correspond to typical parameters for the
dispersive regime of circuit QED.

Parameter Value in GHz

∆/(2π) 0.4
g1/(2π) 0.1
g2/(2π) 0.1
α1,2/(2π) −0.32
δ1/(2π) 0.0
δ2/(2π) −0.67

desired process fidelities. Extensive research has gone
into the problem of finding optimal driving of quantum
systems. The field emerged in the mid-to-late 80s of the
previous century with the first applications of QOC to
chemical reactions and MRI [22–25], with experimental
work continuing to this day [26, 27]. Since, the scope of
QOC has widened considerably, with applications to at-
tosecond physics [28] and high harmonic generation [29],
energy flow in biomolecules [30], and quantum computing
[31, 32], amongst others. QOC can be applied to both
coherent and Markovian dynamics, for state generation
and other variants, see [33, 34].

QOC methods can be roughly divided into two cat-
egories, gradient-free and gradient-based optimization,
where the terms refer to the availability of the gradi-
ent of the goal measure to be minimize, with respect to
the control parameters. With gradient-free methods, one
samples the goal function at one or more points in the
control-parameter space, deduce one or more new points
for sampling, where the expectation is of an improved
goal measure, and the process repeats. This approach
is simple and flexible, and the only possible procedure
for closed-loop calibration. However, such methods con-
verges very slowly compared to gradient-driven optimiza-
tion, particularly when optimizing high-dimensional pa-
rameter spaces. The most well-known member of this
class of optimizers is the Nelder-Mead algorithm [35], on
which the quantum CRAB and dCRAB methods [36, 37]
are based. Other gradient-free algorithms include CMA-
ES [38], Simultaneous Perturbation Stochastic Approxi-
mation (SPSA) [39] and genetic algorithms, among oth-
ers. And while approaches are often better at handling
large parameter spaces and the presence of noise, they
are still slow to converge compared to gradient-driven
methods.

When the gradient of the goal measure with respect
to the control variables can be computed quickly (when
compared to finite-differences), gradient-based methods
are preferred. These includes the Krotov family of algo-
rithms [40–42] and the GRAPE [43] method. Both are
derived from the variational formulation of the QOC task
[44], where the Scrödinger equation is imposed via a La-
grange multiplier, which turns out to be a conjugate state
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evolving back in time. The method by which the control
fields are updated in both the Krotov and GRAPE meth-
ods are defined using time-local expressions, implying a
piecewise constant (PWC) control ansatz, which may be
detrimental in cases of bounded bandwidth. Combin-
ing Floque theory with the variational approach also of-
fers some advantages [45]. A new QOC method, GOAT
(see [13] and detailed below), utilizes modified Scrödinger
equations to compute the gradient, and does not resort
to variational calculous. We make use of GOAT below
due to its simplicity and its flexibility of enforcing control
constraints, such as bandwidth or power. For a compre-

hensive review of QOC see [46] and [47].

Given a system whose dynamics is described by the
drift Hamiltonian H0 and is subject to a set of control
Hamiltonians Hk, the time-dependent Hamiltonian is

H (ᾱ, t) = H0 +

C
∑

k=1

ck (ᾱ, t)Hk , (3)

where ck are the control functions (ansatz), with details
prescribed by the set of parameters ᾱ. One is free to chose
any control parameterization, e.g. the Fourier basis,

ck (ᾱ, t) =

m
∑

j=1

Ak,j cos (ωk,jt+ φk,j) , (4)

with

ᾱ = {Ak,j , ωk,j , φk,j}k=1...C,j=1...m
. (5)

In the systems investigated in this work we have found
the Fourier and Erf parameterizations to produce pulse
shapes with low parameter counts. The goal function
to minimize is defined as the infidelity (projective SU
distance) between the desired gate, Ugoal, and the imple-
mented gate, U (T ),

g (ᾱ) := 1−
1

dim (U)

∣

∣

∣
Tr
(

U †
goalU (T )

)∣

∣

∣
, (6)

where U (t) is the time ordered (T) evolution operator

U (ᾱ, T ) = T exp

(

∫ T

0

−
i

~
H (ᾱ, t) dt

)

. (7)

QOC methods can be roughly divided into two cate-
gories: gradient-free and gradient-driven methods. The
latter require the gradient of the goal function with re-
spect to the control parameters, ∂ᾱg (ᾱ), and are much
faster provided this gradient can be computed efficiently.
Gradient-free methods are appropriate for closed-loop
calibration and when the gradient cannot be determined
with ease. Gradient-driven QOC methods require a
gradient-driven search method over the parameter space,
ᾱ. Both GRAPE and GOAT (discussed below) utilize a
standard algorithm for that purpose, L-BFGS [48].

GRAPE. When H (ᾱ, t) is taken to be a piecewise con-
stant (PWC) function, the method of choice for QOC
is GRAPE [33, 43]. We note that when PWC is used
as an approximation of a smooth control field, it intro-
duces non-negligible inaccuracies, which are discussed in
[13]. Let us enumerate the time slices j ∈ {1, . . . ,M},
each of duration ∆tj , Uj = exp

(

− i
~
∆tjHj

)

Uj−1 where

Hj := H0 +
∑C

k=1 cj,kHk and U0 := I, U (T ) := UM .
Here ᾱ = {cj,k}. The gradient of the goal function
(eq. 6), ∂ᾱg (ᾱ), can be computed using the chain
rule and ∂ᾱU (ᾱ). Noting the j, k component of ᾱ ap-
pears only in Uj , the gradient of U (T ) is computed

by ∂ᾱj,k
U (T ) =

(

Πj+1
b=MUb

)

(

∂ᾱj,k
Uj

) (

Π1
a=j−1Ua

)

. The

expression to compute ∂ᾱj,k
Uj = ∂cj,kexp

(

− i
~
∆tjHj

)

= ∂cj,kexp
(

− i
~
∆tj

(

H0 +
∑C

k=1 cj,kHk

))

is rather cum-

bersome, and requires a full eigendecomposition of Hj

(see [33] for details). While computationally expensive,
the eigendecomposition can be leveraged to perform ex-
ponentiation, propagation and propagator gradients with
little additional numerical effort. Therefore, GRAPE sat-
isfies one of the conditions for a good gradient-based
QOC method—the gradient of the propagator can be
computed efficiently. The gradient of the propagator is
then used to compute the gradient of the goal function,
feeding into the L-BFGS search algorithm, which seeks to
minimize the goal function over the ᾱ parameter space.
GOAT. Consider the gradient of the goal function 6

with respect to ᾱ,

∂ᾱg (ᾱ) = −Re

(

g∗

|g|

1

dim (U)
Tr
(

U †
goal∂ᾱU (ᾱ, T )

)

)

.

(8)
Generally, U (ᾱ, T ) does not have a closed form (see eq.
7), and therefore ∂ᾱU (ᾱ, T ) cannot be computed di-
rectly. As U evolves by the equation of motion (EOM)
∂tU (ᾱ, t) = − i

~
H (ᾱ, t)U (ᾱ, t), we may take the deriva-

tive of the U EOMwith respect to ᾱ, swapping derivation
order, resulting in a system of coupled EOMs,

∂t

(

U
∂ᾱU

)

= −
i

~

(

H 0
∂ᾱH H

)(

U
∂ᾱU

)

. (9)

∂ᾱH is computed using the chain rule and eqs. (3), (4).
The coupled time evolution of the propagator (a single
equation of motion) and its gradients (C×m equations—
as per the dimension of ~α) may be performed by any
mechanism for ODE integration that is accurate and effi-
cient for time-dependent Hamiltonians, such as adaptive
Runge-Kutta. A gradient-driven search over the param-
eter space is performed using L-BFGS.

IV. UNCONSTRAINED QUANTUM SPEED

LIMIT

We first look for the QSL for the system described by
Eq. 2 and Table I, by using the least constrained param-
eterization, i. e. PWC, with no amplitude bounds and
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FIG. 1. We observe a 5 to 10 ns Quantum Speed Limit (QSL)
for the system described by Eq. 2 and Table I, using arbitrary
amplitude piecewise constant controls with high sampling rate
(≤ 0.1ns) and no filter. Unitary error (infidelity; 1 − Φgoal)
of the optimized CNOT gates is plotted as a function of gate
duration, with each point representing the average error for
multiple optimizations starting at random initial pulses. See
Section IV for a complete discussion.

high resolution—500 time slices for each gate duration
tg. Assuming the parameterization is sufficiently flexi-
ble, the QSL observed results from the physics of the
system. One standard method to probe the QSL numer-
ically is to plot a measure of the gate fidelity as function
of the gate duration [19, 49]. For different gates dura-
tions we perform multiple GRAPE optimizations, start-
ing each with a different random initial guess pulse. The
average final gate error, defined as g = 1 − Φgoal are
shown in Fig. 1. We observe a clear jump between 5 ns
and 10ns gate times, which indicates the presence of a
QSL. Interestingly, the speed limit is more than an or-
der of magnitude shorter than the gate time presented
in [2], suggesting a potential for reduction of incoherent
errors by an order of magnitude. As no constraints are
imposed at this stage, these optimal control shapes are
beyond the capabilities of most existing experimental se-
tups. However, this is likely to change in the near future,
with adoption of AWGs with bandwidths above 10GHz,
such as demonstrated in the circuit QED setup of [50],
and FPGA control logic. Even without such hardware,
by taking into account the constraints of the experiment
implementation allows us to implement gates in times
which, while higher than the unconstrained QSL, are sig-
nificantly shorter than the original cross-resonance gate,
as discussed in the following sections.

V. SMOOTH CONTROL IN THE TIME

DOMAIN

To reduce the complexity of the generated pulse se-
quence, allowing effective calibration, we optimize control
pulses in the PWC time domain, smoothed by a Gaussian
filter. Based on the analytical methods presented in [1],
and further refined and experimentally verified in [2], a
cross-resonance gate is generated in a two transmon sys-

tem by applying driving on one qubit at the frequency
which is resonant with the second qubit. Let us con-
sider the effective coupling Jeff between the two qubits
that quantifies the effective interaction mediated by the
resonator. In the case where Jeff is small compared to
the detuning between the qubits, δ2, a drive at frequency
ω̃2 = ω2 − (Jeff)

2/δ2 generates dynamics that can be de-
scribed by an effective Hamiltonian of the form

Heff = ueff
1 σz

1 ⊗ σx
2 + ueff

2 σx
1 ⊗ 1 , (10)

where σi are the Pauli operators and ueff
i denote the rel-

ative scaling of the effective interaction. The ZX inter-
action present in this effective Hamiltonian can generate
a CNOT gate directly, up to local rotations [51].
The performance of the initial guess is further im-

proved by limiting the effect of the second term in Eq. 10.
Here we assume this spectral constraint (i.e. suppressing
the spectral weight of the second term) can be satisfied
by using a second off-phase quadrature Ωy of the control
envelope set proportional to the derivative of Ωx and in-
versely proportional to the qubit frequency separation δ2,
as in the Derivative Removal by Adiabatic Gate (DRAG)
method [8, 52].
These analytical techniques would not be sufficient to

obtain high fidelity gates at very short times for the
model at hand due to the complexity of the levels struc-
ture. However, the initial guess is found to be relevant
enough to be located in the basin of attraction of a higher
fidelity solution, which allows the GRAPE algorithm to
converge on a solution with suitably smooth features.
Thus, we choose the following initial control functions:

Ωx
1(t) = 0 Ωy

1(t) = 0

Ωx
2(t) = 0.4 exp

(

−
(t− µ)2

2σ2

)

µ =
tg
2
, σ =

tg
4

Ωy
2(t) =

1

δ2
Ω̇x

1(t) , f1 = 0 , f2 = 0.1 ,

(11)

where the amplitudes are given in GHz, and f1, f2 are
constant, but tunable, frequency offsets relative to the
drive frequency of qubit 1 and 2, respectively. Control
amplitudes have been bounded, and the sampling rate
has been lowered to 0.2 ns. When the optimization is run
with the parameters in Table I, and a slightly increased
gate time of tg = 27 ns is set, we achieve gate infidelity
of 10−4, assuming no incoherent processes. The pre- and
post-optimization drive shapes are shown in Fig. 2. We
observe that the strong cross-resonant drive remains af-
ter the optimization, which indicates that the CR scheme
is still the main physical mechanism in play. The pulse
induces complicated dynamics to obtain high-fidelity in a
very short time, suggesting it may be possible to reduce
gate times further, achieving an order of magnitude accel-
eration compared to [5], thus reducing the decoherence by
a similar fraction, and outperforming gates with tunable
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qubit frequency architectures [53]. The pulse is simplified
compared to those used to identify the gate QSL, and the
sampling rate is well within the current technological ca-
pacities of next generation microwave generators [50]. In
Section VI we will further simplify the parametrization
of the pulse, which will allow for experimental implemen-
tation with a minimal amount of overhead.
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FIG. 2. High-fidelity CR control pulse sequence found with a
sampling rate of 5Gs/sec. Top: initial control guess pulse con-
forming to the analytical ansatz 11. Bottom: optimized con-
trols giving Φgoal = 0.9999. The pulses are relatively smooth
and short (27ns) but contain a large degree of complexity. See
Sec. V for full details.

VI. QUANTUM SPEED LIMIT WITH THE

FOURIER ANSATZ

It is extremely beneficial to arrive at quantum control
sequences that are parameterized by a small number of
parameters. This simplicity can greatly aid in analyti-
cal, numerical, and experimental reproducibility of the
solution, by allowing easy closed-up in-situ calibration
(or tune-up) of the control sequences. To gauge how the
complexity of the pulses increases as we get close to the
QSL, we use a parameterization based on the number of
Fourier components of the pulse, though any other set of
parameters more appropriate for the given control task
could have been substituted. Each control is parameter-
ized by a truncated Fourier series that is fed to a product
of two sigmoids to enforce the global bound and a smooth
start and finish. The amplitude coefficients, frequencies

and phases are optimized using the GOAT algorithm [13],
a recent gradient base algorithm that is capable of han-
dling any analytic ansatz and can easily accommodate
multiple and varied constraint.
We begin with a large number of Fourier components

and probe the QSL. The number of components is cho-
sen to offer roughly the same number of parameters to
describe the drive shape as we had in the piecewise con-
stant case of Fig. 1. We observe in Fig. 3 that the QSL
is less sharp than what was observed with the piecewise
constant description, which illustrates the clear influence
of the choice of the control representation on the control
landscape. Then, we iteratively remove the Fourier com-
ponent with the smallest amplitude, and reoptimize. The
process terminates when simpler controls are unable to
reach the minimum gradient threshold. In this case, com-
ponent count was lowered down to only 9 components.
However, this reduction is at the cost of an increased
gate time of 70 ns, and the appearance of some very high
frequencies. This offers a hint to explain why the uncon-
strained piecewise optimization manages to converge to
a gate error of 10−10, whereas the spectral optimization
with a smaller frequency range converges only to 10−3. It
seems that high frequency components are necessary for
the fine tuning needed to achieve a high accuracy. More-
over, this could also be a sign that the Fourier ansatz is
not the most efficient for this system, and one may wish
to try a few other analytic ansatzes. The GOAT package
would be well suited for such study.
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FIG. 3. Determination of the QSL using 167 Fourier com-
ponents per control. Error (1 − Φgoal) averaged over opti-
mized pulses found for different random initial conditions is
plotted for different gate durations. Errors are larger and
decay more slowly when compared to a time-domain parame-
terization containing roughly 800 (piecewise-constant) control
points, depicted in Fig. 1

Nonetheless, limiting the number of Fourier compo-
nents to 167 we find that the minimum time is around
15 ns to obtain 10−3 infidelity, which is consistent with
the piecewise-constant case, and thus indicates this is
likely the QSL for such a regime of control parameters,
regardless of the chosen control parameterization. The
dependence of QSL on the number of control parameters
(15 ns for 167 components vs. 70 ns for 9 components)
demonstrates that the quantum speed limit is not only
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a function of time, but also a function of pulse complex-
ity. Thus, the Fourier basis is a good choice to minimize
pulse complexity, as might be suited to in-situ tuning of
pulse parameters. This representation is also natural for
enforcing bandwidth constraints. Lastly, it lends itself
to generation of highly simplified pulses by an iterative
process of reducing the number of Fourier components.
We do have to keep in mind, however, that microwave
pulse shaping technology is typically in the time domain.

VII. BANDWIDTH-CONSTRAINED PULSES

The piecewise constant parameterization, with high
resolution controls, provides a theoretic lower bound to
gate times. In practice, time resolved optimizations are
limited by the AWG’s bandwidth, as well as other filter-
ing induced by system components. We therefore opti-
mize the pulses for an AWG with finite time resolution of
1 ns, fine steps of 0.2 ns, buffers of 4 ns duration at the be-
ginning and the end, and filtering of the signal, consistent
with earlier work [12]. Filtering is applied via a Gaus-
sian window function with standard deviation σ = 0.4 ns,
i.e., a bandwidth of 331MHz. We consider two control
ansatzes: one in which the controls utilize a single carrier
frequency (the standard CR scheme), and one in which
two carrier frequencies are employed.
When a single carrier frequency is used, a minimum

gate time of 70 ns is achieved, with a fidelity of 0.999.
GRAPE optimization generates the controls and spec-
trum shown in Fig. 4. Clearly visible is the reduced
bandwidth, effected by the control filtering. As a result,
the pulse requires significantly more time than the QSL.
However, it is still less than half the time required by cur-
rent implementations of the CR gate [5], implying only
half as much fidelity will be lost to incoherent processes.
Moving to two carrier frequencies and retaining the

bandwidth limitations on the AWGs, we see a drastic re-
duction in the gate time. The intuition to this scheme
stems from Sec. V, were one can identify two principle
components in the frequency spectrum of the controls ap-
pearing in Fig. 2. As can be expected, the two principle
frequencies are proximate to the resonance frequencies
of the two qubits. More precisely, the qubit frequency at
0.67GHz is shifted by f2 to 0.57GHz, which is then bifur-
cated by the Rabi splitting 2g to 0.47GHz and 0.67GHz.
Our control pulses take the form

Ωx
1(t) = Ωx′

1 (t) + cos((δ + g)t)Ωx′′

1 (t)

Ωy
1(t) = Ωy′

1 (t) + cos((δ + g)t)Ωy′′

1 (t)

Ωx
2(t) = Ωx′

2 (t) + cos((δ − g)t)Ωx′′

2 (t)

Ωy
2(t) = Ωy′

2 (t) + cos((δ − g)t)Ωy′′

2 (t) (12)

where the quotes symbols ( ′′) denote the new (AWG)
control functions, and δ = δ2 + f2 is the qubit separa-
tion. This doubles the number of functions to optimize.
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FIG. 4. Pulse shapes and spectrum of the optimal drive shape
for filtered PWC ansatz with gate time of 70 ns and a single
carrier frequency. A fidelity of 0.999 fidelity gate is achieved
using a 331MHz bandwidth Gaussian filter.

A Gaussian filter with a bandwith of 331MHz is added to
account for the distortion of the piecewise-constant con-
trol functions by waveform generators [12]. The smooth
controls, in addition to being a constraint of the system,
improves optimization convergence speed and may help
with experimental imperfections and unforeseen low-pass
filters in the system. The pulse complexity is reduced
not only by reducing sampling rate and bandwidth of
the pulses, but the very short gate time of 27 ns indi-
cates that the total number of control points needed is
reasonably small, on the order of 100.
The optimization is carried out with coarse pixels of

1 ns and a fine time step of 0.05 ns and reaches a final
fidelity of 0.9999. The control functions optimized Ωi′

j ,

Ωi′′

j and fj are shown in Fig. 5. The constant value of
the frequency detuning is also optimized but its value
appears to be stuck in a local minimum and does not
evolve significantly during the optimizations, suggesting
additional improvement may be achieved by fine-tuning
the choice of drive frequencies nearby the qubit transi-
tions.
In Fig. 6, fidelity dependence on f1±ǫ1, f2±ǫ2, is plot-

ted. We notice qubit-drive detuning errors ǫi on the order
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FIG. 5. Optimization results for control pulses using two
carrier frequencies and a bandwidth filter, achieving 0.9999
fidelity when incoherent processes are ignored. Top: controls
at qubit 1 frequency. Bottom: controls at qubit 2 frequency
(δ ± g).

of up to about 2MHz lead to a drop of fidelity by two
orders of magnitude. Experimentally, miscalibrations are
expected to be much smaller than this amount.
In Fig. 7, we examine the fidelity’s dependence on de-

phasing time, with dephasing and relaxation T1 = T2,
and cavity decay rate set to TP = 100 µs. The full evo-
lution is then given by the master equation

ρ̇ = −i[H, ρ]+ γj
∑

j

AjρA
†
j −

1

2
A†

jAjρ−
1

2
ρA†

jAj . (13)

The Lindblad operators are bi for relaxation,
√

b†ibi for

pure dephasing and a for the cavity decay. We see
that for typical values of experimental dissipation losses
(> 100µs), the error is limited only by the precision
of our unitary optimization and not by additional non-
unitary losses, validating our estimates for the CR quan-
tum speed limit.
Finally, we test the validity of the truncation of the

Hilbert space. The optimized control functions were ap-
plied to a larger Hilbert space utilizing 6 levels for res-
onator and each transmon. The maximum population

Infidelity
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FIG. 6. Infidelity of the CR gate as a function of the miscal-
ibration of qubit 1 and qubit 2 frequencies, with other model
parameters specified by Table I. The control pulses are as
depicted in Fig. 5.
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FIG. 7. Infidelity of the CR gate as a function of equal dephas-
ing and decoherence rates. Model parameters follow Table I,
and control pulses follow Fig. 5.

reached during the dynamics is noted in Fig. 8. For
the transmons, we take the maximum over both qubits
Mr = maxt(pr(t)) and MTransmons = maxt;i∈1,2(pri(t)).
The population of the resonator’s third level, as well as
the qubits’ fifth level, remain below 10−3. Unsurpris-
ingly, the transmon is leakier than the resonator by just
about an order of magnitude: Leakage to level three is
approximately 10−3 for the resonator and 10−2 for the
qubits.

VIII. DISCUSSION

In this work we have demonstrated the very significant
benefits which can be derived from applying quantum op-
timal control to the problem of quantum gate generation,
and more specifically to superconducting gates. We have
chosen to focus on CR gates as one of the leading archi-
tectures for superconducting gates, which benefits from
not requiring the overhead or noise sources present in
tunable-frequency qubits.
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Current state of the art for the CR CNOT gate is an
infidelity of 0.009±0.002 [5]. One of the primary reasons
for the imperfect fidelity is the 160 ns duration of the
gate, allowing incoherent processes to induce infidelity of
0.004 (T1 ≅ 40 µs and T2 ≅ 5 µs). Therefore, to improve
fidelity significantly, one must shorten the gates (in par-
allel with efforts to increase coherence times and reduce
coherent errors).
We note that the model used for the CR circuit is not

perfect, as with any experiment: some aspects of the
model are unknown (e.g. random defects in the substrate
coupling to the circuit), and some characterization gaps
and parameter drifts are unavoidable. Therefore, every
proposed pulse sequence will have to be calibrated in a
closed-loop tune-up process—a gradient-free search over
the space of pulse parameters with the goal of minimizing
infidelity. Such calibrations are practical only when the
pulses are described by a small number of parameters.
Therefore, practical pulses must have a simple descrip-
tion.
It is critical to to determine the limits of achievable

performance with any given circuit design, CR gates in-
cluded, as this affect the decision of whether new cir-
cuits need to be developed to achieve fidelity goals. We
have therefore employed several quantum optimal con-
trol techniques (GRAPE and GOAT) to determine the
quantum speed limit and to design simple bandwidth-
constrained control pulses which implement significantly
faster CR gates.
Specifically, we have shown that the speed limit of the

system is between 5 ns and 10ns, implying an incoherence
limit of below 5× 10−4. Unfortunately, the pulse shapes
required to reach such speeds are too complex to reliably
implement in the experiment, and far too complex to

calibrate.
We therefore explored alternate routes: The first fol-

lows the standard control scheme, where only the control
qubit is driven, and the second requires contemporaneous
driving with two carrier frequencies. Both approaches
yielded significant improvement over state of the art.
With a single carrier, we have achieved a CNOT gate

in only 70 ns. A further dramatic acceleration can be
achieved when a second carrier is introduced: We have
identified a pulse sequences which implement a CNOT
gate in only 27 ns. For such short durations, incoher-
ent effects induce less than 10−3 infidelity. We note the
control fields used are low-pass filtered to the current
circuit’s control bandwidth, and are therefore directly
implementable. Moreover, both pulses are described by
less than 100 parameters, and are therefore calibratable.
To reduce parameter count further, one may employ the
GOAT optimal control method, to allow additional con-
trol ansatz to be explored.
Our exploration of the quantum speed limit further

shows that, unlike the case where there are no direct
qubit drives and the natural (perfect) entangler to use
is the iSWAP [54, 55], a CNOT gate is instead a good
fit for architectures where such drive lines do in fact ex-
ist. Moreover, in comparison to the exhaustive parameter
search for a global QSL without direct line, [55], in our
limited local search with direct line we are able to cut
in half the global QSL with our bandwidth-constrained
pulses. Nonetheless, one may still be able to use the
insights from the former to find an even faster operat-
ing regime for the transmons in the latter case, notably
by moving the transmon frequencies towards the quasi-
dispersive straddling qutrits (QuaDiSQ) regime [55].
This work also motivates further use of this already

prominent gate, being in fact even faster than the en-
tangling gates used in the tunable-frequency implemen-
tations, which suffer from extra noises originating at the
additional flux-tuning circuitry.
To conclude, we have shown that the application of

quantum optimal control to the cross-resonance super-
conducting CNOT gate can reduce pulse duration from
160ns to 27 ns, using control sequences which are well
within experimental capabilities, are described by a small
number of parameters, and are therefore calibratable.
Thus, we demonstrate the potential of reducing incoher-
ent effects five-fold, significantly improving gate fidelity.
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[13] S. Machnes, E. Assémat, D. Tannor, and F. K. Wilhelm,
Phys. Rev. Lett. 120, 150401 (2018).

[14] L. B. Levitin and T. Toffoli,
Phys. Rev. Lett. 103, 160502 (2009).

[15] M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and
D. Sugny, Phys. Rev. Lett. 104, 083001 (2010).

[16] T. Caneva, M. Murphy, T. Calarco, R. Fazio,
S. Montangero, V. Giovannetti, and G. E. Santoro,
Phys. Rev. Lett. 103, 240501 (2009).

[17] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde,
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