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Quantifying entanglement in a quantum system generally requires a complete quantum tomog-
raphy followed by the NP-hard computation of an entanglement monotone— requirements that
rapidly become intractable at higher dimensions. Observing entanglement in large quantum sys-
tems has consequently been relegated to witnesses that only verify its existence. In this article, we
show that the violation of recent entropic witnesses of the Einstein-Podolsky-Rosen paradox also
provides tight lower bounds to multiple entanglement measures, such as the entanglement of forma-
tion and the distillable entanglement, among others. Our approach only requires the measurement
of correlations between two pairs of complementary observables—not a tomography—so it scales
efficiently at high dimension. Despite this, our technique captures almost all the entanglement in
common high-dimensional quantum systems, such as spatially or temporally entangled photons from
parametric down-conversion.

Large-dimensional quantum systems shared by two dis-
tant parties are a key element of quantum protocols for
secure communication and distributed or modular com-
puting. Two individuals, Alice and Bob, might share
remotely entangled qubit ensembles, or they may each
possess a particle from a bipartite system entangled in
high-dimensional degrees of freedom. Examples of the
former include arrays of trapped ions [1] or supercon-
ducting circuits [2], while latter examples include photon
pairs entangled in their spatial or temporal variables [3–
5]. Because real-world systems are not ideal, it is neces-
sary to characterize and quantify entanglement before it
can be used as a quantum resource.

Unfortunately, standard techniques for quantifying en-
tanglement scale intractably at large dimensions, with
optimum algorithms still being usable only for low-
dimensional systems [6, 7]. One must first perform a com-
plete quantum tomography of the joint quantum system,
followed by an NP-hard calculation of an entanglement
monotone [8]— a function of a quantum state that de-
creases with entanglement-consuming operations, serving
to measure entanglement. Two of the most popular en-
tanglement monotones are the entanglement of formation
EF and the distillable entanglement ED. While the for-
mer indicates the number of two-qubit Bell states (known
as ebits) required on average to synthesize a copy of an
entangled quantum state, the latter indicates the number
of ebits that can be distilled on average out of a given
quantum state. While both are entanglement monotones,
it is straightforward to understand that EF ≥ ED [9].

To mitigate the difficulty of calculating entanglement
monotones, there are tight lower bounds to entangle-
ment monotones using quantum entropy [10–12], but
these bounds still require complete knowledge of the joint
quantum state, which is still limited by the experimen-
tal difficulty of quantum state tomography. Even partial
tomography of the joint density matrix allows one to cer-
tify entanglements of formation as high as 4.1 ebits in the
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temporal degree of freedom of photon pairs — a world
record set just last year [13], though similar approaches
have been proposed and tested elsewhere [14, 15]. Alter-
native approaches using optimizations of entanglement
witness observables over their respective Hilbert spaces
achieve even tighter lower bounds to entanglement mono-
tones, but they become similarly difficult to apply to
high-dimensional systems [16–18].

Because of the infeasibility of high-dimensional to-
mography, and the difficulty of evaluating entanglement
monotones, researchers interested in large-scale entan-
gled systems have developed entanglement witnesses.
These only certify the presence of entanglement, but re-
quire dramatically fewer experimental and computational
resources. Among these witnesses, there has been sig-
nificant interest in entropic entanglement witnesses of
the Einstein-Podolsky-Rosen paradox [19], because they
are directly applicable in quantum information protocols
(where Shannon entropy characterizes both information
and uncertainty), and because of their utility in one-
sided device-independent secure communication. These
witnesses, known as EPR-steering inequalities [20, 21],
are powerful because they make no assumptions about
the state to be measured, whether pure or mixed, and
whether Gaussian or wholly arbitrary; they only require
the measurement of joint probability distributions of two
pairs of complementary observables, and the calculation
of conditional Shannon entropies from those distribu-
tions.

In this article, we show how the violation of these en-
tropic EPR-steering inequalities [22] also provides large
lower bounds to multiple entanglement monotones, di-
rectly connecting the extent of EPR-steering to the
amount of entanglement. In particular, the negative
quantum conditional entropy, −S(A|B) between two par-
ties A and B forms a lower bound to the entanglement
of formation EF , and the violation of these EPR-steering
inequalities allows us to place lower bounds on the nega-
tive quantum conditional entropy, enabling us to readily
quantify entanglement. For discrete observables, we show
how Berta et al ’s uncertainty principle in the presence
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of quantum memory [23] simplified for classical measure-
ments can accomplish this. The more general uncertainty
principle in the presence of quantum memory would re-
quire full tomography to employ, and would be less ef-
ficient than the methods previously discussed to quan-
tify entanglement. For continuous observables related
by a Fourier transform (e.g., position x̂ and momentum

k̂ = p̂/~; energy ω = E/~ and time t, etc.) we develop
the new relation:

h(xA|xB) + h(kA|kB)− log(2π) ≥ S(A|B) ≥ −EF , (1)

where h(xA|xB) is the continuous Shannon entropy of
xA conditioned on xB , determined by the joint probabil-
ity density ρ(xA, xB), and S(A|B) is the conditional von
Neumann (quantum) entropy of system A conditioned
on B, determined by joint density operator ρ̂AB . Here,
and throughout this article, we measure entropy in bits,
so that all logarithms are base 2. While demonstrat-
ing the EPR paradox has fundamental applications in
one-sided device-independent quantum secure communi-
cation, these same correlations will now also be of great
utility across all disciplines of quantum physics, wherever
entanglement is utilized. Moreover, most sources of en-
tangled pairs of particles have correlations well-captured
by this variety of quantitative witness due to a common
place of origin producing position (alt. time) correla-
tions and conservation laws producing momentum (alt.
energy) anti-correletions.

Our entanglement quantification scheme relies on two
elements. First, the uncertainty principle in the presence
of quantum memory [23] allows us to relate the strength
of correlations of complementary observables to the quan-
tum conditional entropy. Given two N -dimensional ob-
servables Q̂ and R̂, and two parties A and B, the un-
certainty principle in the presence of quantum memory,
using classical measurements, is given by:

H(Q̂A|Q̂B) +H(R̂A|R̂B) ≥ log(ΩQR) + S(A|B). (2)

Here, H(Q̂A|Q̂B) is the conditional Shannon entropy
of the discrete probability distribution P (QAi, QBj) =
Tr
[
ρ̂AB |qAi〉〈qAi|⊗|qBj〉〈qBj |

]
, and |qAi〉 is the ith eigen-

state of Q̂A. The bound ΩQR approaches the dimension-

ality N of system A (or B) when observables Q̂ and R̂
are mutually unbiased [24]. When there are large correla-

tions between Q̂A and Q̂B and between R̂A and R̂B , the
quantum conditional entropy S(A|B) may be less than
zero, witnessing entanglement between A and B. The
inequality (2) without the state-dependent term S(A|B)
is an entropic EPR-steering inequality whose violation
both witnesses entanglement and demonstrates the EPR
paradox [22].

The second element of our entanglement quantifica-
tion scheme uses recent relations between entanglement
monotones and the negative quantum conditional en-
tropy. In [10] (and also discussed in [11]), it is shown
that the entanglement of formation EF , the relative en-

tropy of entanglement ERE , and the squashed entangle-
ment ESQ are all bounded below by the largest negative
quantum conditional entropy:

{EF , ERE , ESQ} ≥ max{0,−S(A|B),−S(B|A)} (3)

Furthermore, in [9], the distillable entanglement ED is
bounded from below by the mean of both negative quan-
tum conditional entropies:

ED ≥
1

2
(−S(A|B)− S(B|A)). (4)

Together, these two elements allow us to place large lower
bounds on entanglement monotones using strong corre-
lations across complementary observables. For entropic
EPR-steering inequalities [22] for pairs of N -dimensional
systems, the amount by which you violate the inequality
gives a minimum value for the entanglement monotones
{EF , ERE , ESQ}, while the mean of the violations for
EPR-steering in each direction gives a minimum value
for {ED}. Among other applications, this technique will
be of great use in quantifying the entanglement between
two large groups of qubits. In these situations, even state
tomography becomes prohibitively difficult because the
number of measurements needed for state tomography
grows with the fourth power of each party’s dimension.

To adapt (2) into an inequality for continuous ob-
servables, we define a pair of discrete observables re-
lated by a quantum Fourier transform that converge to
a pair of continuous observables related by a continu-
ous Fourier transform in the appropriate limit. Similar
approaches introducing continuous position and momen-
tum as a limit of discrete observables may be found in
[25, 26], while a similar approach deriving a continuous
variable (qualitative) entanglement witness as a limit of
discrete uncertainty relations can be found in [27].

Let us define two N -dimensional observables X̂ and K̂
such that:

X̂ ≡
N/2−1∑
`=−N/2

X`|X`〉〈X`|, (5)

where,

X` ≡ ` ·∆x, (6)

and such that

K̂ ≡
N/2−1∑
m=−N/2

Km|Km〉〈Km|, (7)

where,

Km ≡ m ·
2π

N∆x
, (8)

and the relation between X̂ and K̂ is that of a quantum
Fourier transform:

〈X`|Km〉 ≡
1√
N
ei

2π
N `m. (9)
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FIG. 1: Diagram of continuous-variable analogue
probability density ρ(x̄) (dotted line) to discrete
probability distribution P (X`). The green vertical lines
indicate the values of X` in the discrete probability
distribution P (X`).

The uncertainty principle in the presence of quantum
memory for measurements of X̂ and K̂ takes the form:

H(X̂A|X̂B) +H(K̂A|K̂B) ≥ log
( 2π

∆xA∆kA

)
+ S(A|B),

(10)
where we express N in terms of our defined ∆x and ∆k:

∆x∆k =
2π

N
. (11)

Next, we define continuous - variable ana-
logues (x̄A, x̄B , k̄A, k̄B) to the discrete variables

(X̂A, X̂B , K̂A, K̂B). The probability densities for
(x̄A, x̄B , k̄A, k̄B) are quantized into bins of size
(∆xA,∆xB ,∆kA,∆kB) such that integrating over
these bins gives the corresponding probabilities of the
discrete variables (X̂A, X̂B , K̂A, K̂B). See Fig. 1 for
diagram.

The continuous Shannon entropy is defined as a limit
of the discrete Shannon entropy plus a distribution-
independent offset [28]. Because the discrete variables

(X̂A, X̂B , K̂A, K̂B) obey the inequality (10), and the con-
tinuous analogue variables (x̄A, x̄B , k̄A, k̄B) obey the re-
lation:

H(X̂A|X̂B) + log(∆xA) = h(x̄A|x̄B), (12)

they must also obey the inequality:

h(x̄A|x̄B) + h(k̄A|k̄B) ≥ log(2π) + S(A|B). (13)

This inequality (13) is valid no matter the values of
∆xA, ∆xB , NA or NB . In the limit as NA and NB
approach ∞ followed by the limit as ∆xA and ∆xB ap-
proach zero, the discrete observables (X̂A, X̂B , K̂A, K̂B)

approach observables with unbounded continuous spec-
tra related by continuous Fourier transforms. These lim-
iting observables are identical to continuous position x̂

and momentum k̂. See Section 1 of Appendix for details.
Consequently, the probability densities for the resulting

continuous observables (x̂A, x̂B , k̂A, k̂B) must obey the
same inequality. This proves our first relation. For parti-
cles A and B, the probability densities for continuous po-
sition observables (x̂A, x̂B), and momentum observables

(k̂A, k̂B) are constrained by the inequality:

h(xA|xB) + h(kA|kB) ≥ log(2π) + S(A|B) (14)

This inequality represents a classical analogue to the
continuous-variable uncertainty principle in the presence
of quantum memory derived by Frank and Lieb [29].
While equation (2) follows directly from Berta et al ’s un-
certainty principle in the presence of quantum memory, it
remains to be shown using the novel form of continuous-
variable quantum entropy [30] how our relation may be
obtainable as a consequence of Frank and Lieb’s relation.
Our result (14) will have far-reaching implications in ex-
perimental investigations of quantum entanglement, as
we explore further in this article.

The techniques we used to develop our continuous-
variable entropic uncertainty relation (14) apply to any
pair of Fourier-conjugate observables. While we de-
rived our relation for continuous position and momen-
tum, they apply equally well for conjugate field quadra-
tures û = 1√

2
(â† + â) and v̂ = i√

2
(â† − â), with commu-

tator [û, v̂] = i:

h(uA|uB) + h(vA|vB) ≥ log(2π) + S(A|B) (15)

Using the more common convention for field quadratures
where û = 1

2 (â†+ â) and v̂ = i
2 (â†− â), with commutator

[û, v̂] = i/2 only changes the relation by adding 1 bit to
the bound due to the scaling law of continuous entropies.

Just as with continuous position and momentum, it is
also straightforward to show how our technique works
for (bounded continuous) angular position θ and (un-
bounded discrete) angular momentum `z = Lz/~:

H(`zA|`zB) + h(θA|θB) ≥ log(2π) + S(A|B), (16)

One needs only to take the limits ∆x → 0 and N → ∞
while holding the product N∆x contant, to hold ∆k con-
stant (or equivalently ∆`z). Consequently for photon
number N and phase φ, which are also Fourier-conjugate
observables of a single mode of the quantized electromag-
netic field [24]:

H(NA|NB) + h(φA|φB) ≥ log(2π) + S(A|B). (17)

Moreover, since angular frequency ω and (relative)
time t are also Fourier-conjugates, we also obtain the
analogous inequality relating frequency and (arrival)
time correlations:

h(tA|tB) + h(ωA|ωB) ≥ log(2π) + S(A|B). (18)
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These new relations allow straightforward quantification
of high-dimensional entanglement using orbital angular
momentum (OAM) measurements, quadrature measure-
ments, frequency and time measurements in addition to
transverse spatial measurements. These degrees of free-
dom are all promising candidates for high-density quan-
tum communication.

Furthermore, while the original discrete observables
X̂A and K̂A in (10) are related by a quantum Fourier

transform, the variables X̂B and K̂B are wholly arbitrary
and may correspond to observables in disparate degrees
of freedom (e.g., polarization). This affords us the ca-
pability of quantifying hybrid entanglement as well. For
polarization observables σ̂XB and σ̂ZB , the following in-
equality:

H(X̂A|σ̂XB)+H(K̂A|σ̂ZB) ≥ log
( 2π

∆xA∆kA

)
+S(Ax|Bσ)

(19)
will witness entanglement between a spatial degree of
freedom of particle A (represented by Ax), and the spin
degree of freedom for particle B (represented by Bσ).

Additionally, in the limit that particles A and B are
completely independent of one another, our relation (14)
reduces to the position-momentum uncertainty relation
for a single particle including quantum entropy discussed
in [31], i.e.,

h(xA) + h(kA) ≥ log(2π) + S(A). (20)

To adapt our continuous-variable uncertainty relation
(14) to experimental measurements carried out at fi-
nite resolution, we follow the same procedure used in
[32, 33] to adapt Walborn et al ’s continuous-variable
EPR-steering inequality to discrete measurements. Sim-
ply put, coarse graining of any kind is a non-decreasing
operation on continuous entropy. Consequently, the in-
equality:

H(XA|XB) +H(KA|KB) ≥ log
( 2π

∆xA∆kA

)
+ S(A|B).

(21)
is valid for position and momentum measurements car-
ried up to (now arbitrary and independent) resolutions
∆x and ∆k, respectively.

As one additional improvement, we may add together
bounds for the entanglement between respective degrees
of freedom to obtain a bound for the total entanglement.
This comes from the sub-additivity of the quantum con-
ditional entropy, e.g.,:

S(Ax, Aσ|Bx, Bσ) ≤ S(Ax|Bx) + S(Aσ|Bσ). (22)

With this, we need only add the lower bounds in each
degree of freedom to obtain the total lower bound for
the entanglement of formation (among other measures)
of the complete joint state.

With our inequality (14), we can efficiently establish
the presence of a large amount of entanglement. To give
an idea of how much entanglement we can witness, we
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FIG. 2: Plot comparing the entanglement of formation
of a double-Gaussian state in both transverse
dimensions (dotted curve) to the amount of
entanglement our inequality witnesses as a function of
the correlation ratio R (solid curve). The difference
between the two rapidly approaches a constant value of
1.771 ebits. The vertical bar indicates the correlation
ratio R ≈ 30.8 predicted for Type-I SPDC using a 390
nm Gaussian pump beam with a 0.68 mm beam
diameter incident on a 2.0 mm BiBO nonlinear crystal.

can obtain a looser, variance-based relation in the same
fashion as Heisenberg’s relation is a limit of Bialynicki-
Birula and Mycielski’s entropic relation. In particular, it
is straightforward to show that:

h(xA|xB) ≤ h(xA ± xB) ≤ 1

2
log
(

2πeσ2
(xA±xB)

)
, (23)

and from this, to get the quantitative entanglement wit-
ness for position and momentum variances:

EF ≥ − log
(
e σ(xA±xB)σ(kA∓kB)

)
(24)

Similar relations can be used to witness entanglement us-
ing variances in field quadratures, frequencies, and other
continuous-variable degrees of freedom.

Using this variance-based relation, we discover that the
spatial correlations measured in one of the seminal papers
on spatial entanglement [3] thirteen years ago, actually
indicate at least 1.88 ebits of spatial entanglement (their
value of σ(xA−xB)σ(kA+kB) is about 0.1), though the wit-
nessed entanglement would likely be doubled if they mea-
sured in both transverse dimensions, and increased fur-
ther with higher experimental resolution. Indeed, later
experiments measuring these variances in similar systems
quantify as much as 3.88 ebits of spatial entanglement
[34]. While this alone doesn’t break the record set by
Martin et al last year, it does break the same record
they do, showing that our relations witness comparable
amounts of entanglement with much simpler measure-
ment schemes.

To examine the efficiency of our quantitative entan-
glement witness (i.e., how much of the total entangle-
ment can be verified), we consider one of the only en-
tangled wavefunctions whose entanglement of formation
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can be explicitly evaluated to have a basis of compari-
son. The double-Gaussian state approximates the trans-
verse spatial correlations of photon pairs generated by
Spontaneous Parametric Down-Conversion (SPDC) (See
Fig. 2) [35, 36]. For a pair of particles A and B, in a
double-Gaussian state, their joint position wavefunction
ψ(xA, xB) is given by:

ψ(xA, xB) =
1√

2πσ+σ−
e
− (xA+xB)2

8σ2
+ e

− (xA−xB)2

8σ2− . (25)

This wavefunction closely approximates the state origi-
nally considered in the EPR paradox.

For the Double-Gaussian state (in one transverse di-
mension), the sum of position and momentum condi-
tional entropies is given by:

h(xA|xB) + h(kA|kB) = log
( 2πe

R+ 1/R

)
(26)

where R is the (correlation) ratio of the standard de-
viations σ(xA+xB) over σ(xA−xB). For the experimental
system in [3], which also uses SPDC, with a 390 nm
pump beam with a 1/e2 beam diameter of 0.68 mm, us-
ing a 2.0 mm long nonlinear crystal, this ratio R ≈ 30.8,
indicating an entanglement of formation (using both
transverse dimensions) greater than or equal to 7.00
ebits. While the Double-Gaussian state only approxi-
mates the transverse spatial wavefunction of entangled
photon pairs, it is the state with maximum entangle-
ment for a given correlation ratio R [36], so that the
actual entanglement of formation of a state with these
correlations is at most 8.77 ebits (See Fig. 2 and supple-
mentary material for details). In order to simply witness
entanglement, correlation ratios as small as 2.28 are suf-
ficient for our quantitative witness. These bounds indi-
cate our techniques can witness within two ebits of the

total entanglement present in the system in two dimen-
sions, or within one ebit in one dimension. This may
yet be further improved to quantify all the spatial en-
tanglement, as the discrepancy between the witnessable
entanglement of the Double-Gaussian state, and its ac-
tual entanglement of formation is directly related to the
difference between our inequality’s (14) fixed bound of
log(2π) and the bound of log(eπ) for the corresponding
position-momentum EPR-steering inequality [37].

Here we have developed a new technique to verify
large amounts of entanglement using only the correla-
tions needed to demonstrate the EPR paradox. In par-
ticular, the amount by which entropic EPR-steering in-
equalities [22] can be violated is directly related to the
amount of entanglement that can be verified. With stan-
dard experimental equipment, one may witness over 10
ebits of spatial entanglement in SPDC photon pairs. As
a direction for future investigation, we point out that
the frequency/time correlations between photon pairs in
SPDC are theoretically strong enough to witness in ex-
cess of 30 ebits of entanglement (e.g., by pumping a
0.5mm BiBO crystal at 775nm to produce spectrally
degenerate SPDC with a narrow linewidth laser) [36]).
While 30 ebits represents more entanglement than what a
quintillion-dimensional (or 60-qubit) joint state can sup-
port, techniques to fully resolve these correlations remain
to be developed.
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[17] O. Gühne and G. Tóth, Physics Reports 474, 1 (2009).
[18] F. Brandao, Physical Review A 72, 022310 (2005).
[19] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47,

777 (1935).
[20] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys.

Rev. Lett. 98, 140402 (2007).
[21] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D.

Reid, Phys. Rev. A 80, 032112 (2009).
[22] J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G.

Cavalcanti, and J. C. Howell, Phys. Rev. A 87, 062103
(2013).

[23] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and
R. Renner, Nature Physics (2010), 10.1038/nphys1734.

[24] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner,
Rev. Mod. Phys. 89, 015002 (2017).

[25] R. Shankar, Principles of Quantum Mechanics (Springer
Science + Business Media, LLC., 1994).

[26] J. Cresser, “Lecture notes for quantum physics phys301,”
(2009).

[27] D. Tasca,  L. Rudnicki, R. Gomes, F. Toscano, and
S. Walborn, Physical review letters 110, 210502 (2013).

[28] T. M. Cover and J. A. Thomas, Elements of Information
Theory, 2nd ed. (Wiley and Sons, New York, 2006).

[29] R. L. Frank and E. H. Lieb, Communications in Mathe-
matical Physics 323, 487 (2013).

[30] F. Furrer, M. Berta, M. Tomamichel, V. B. Scholz,
and M. Christandl, Journal of Mathematical Physics 55,
122205 (2014).

[31] R. L. Frank and E. H. Lieb, “Entropy and the uncertainty
principle,” (2012).

[32] J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broad-
bent, and J. C. Howell, Phys. Rev. Lett. 110, 130407
(2013).

[33] J. Schneeloch, arXiv preprint arXiv:1312.2604 (2013).
[34] M. Edgar, D. Tasca, F. Izdebski, R. Warburton, J. Leach,

M. Agnew, G. Buller, R. Boyd, and M. Padgett, Nat.
Commun. 3, 1 (2012).

[35] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903
(2004).

[36] J. Schneeloch and J. C. Howell, Journal of Optics 18,
053501 (2016).

[37] S. P. Walborn, A. Salles, R. M. Gomes, F. Toscano, and
P. H. Souto Ribeiro, Phys. Rev. Lett. 106, 130402 (2011).

Appendix A: Supplementary Material

1. The Continuum Limit

To facilitate the continuum limit, we define the non-
normalized eigenkets of X̂ and K̂:

|X̃`〉 ≡
|X`〉√

∆x
; |K̃m〉 ≡

|Km〉√
∆k

(A1)

Expressing X̂ and K̂ in terms of these non-normalized
eigenkets gives us, e.g.,

X̂ =

N/2−1∑
`=−N/2

∆x X`|X̃`〉〈X̃`| (A2)

and a similar expression for K̂.
The continuum limit is taken where first, N approaches

infinity, and then ∆x approaches zero. In this sequence
of limits, the sums become integrals, where:

X̂ →
∫ ∞
−∞

dx` x`|x̃`〉〈x̃`| = x̂ (A3)

and K̂ approaches its corresponding integral. Taking the
first limit (i.e., N →∞), X̂ becomes an observable with
a discrete, but unbounded spectrum, with eigenvalues
evenly spaced apart by amount ∆x, while K̂ approaches
an observable with a bounded but continuous spectrum,
since in this limit ∆k → 0, but N∆k remains constant.
Then, taking the second limit ∆x → 0, the spectrum of
X̂ becomes both continuous and unbounded, while for K̂
the bounds to the spectrum approach infinity (making
the “momentum” spectrum unbounded as well. Thus,
in this limit, X̂ and K̂ approach observables with un-
bounded continuous spectra still related by a quantum
Fourier transform. Because of our choice of definition
for the eigenvalues Km, the relation between X̂ and K̂
becomes that for continuous position and momentum:

〈X̃`|K̃m〉 =
1√
2π
eiX`Km → 〈x|k〉. (A4)

Since our defined observables approach continuous ob-
servables related by a continuous Fourier Transform as
with continuous position and momentum, we can apply
these limits to (2) to obtain our relation.

2. Relation for Quantum Conditional Entropy

The relation:

S(Ax, Aσ|Bx, Bσ) ≤ S(Ax|Bx) + S(Aσ|Bσ). (A5)

can be re-expressed in terms of quantum mutual infor-
mation:

I(Bx : Bσ) ≤ I(Ax, Bx : Aσ, Bσ). (A6)

The relation is valid because adding new systems cannot
decrease the quantum mutual information.
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3. Maximum Entanglement of Formation of a
Biphoton Wavefunction for a given Correlation

Ratio

As mentioned previously, the Double-Gaussian state is
the maximally entangled state for a given correlation ra-
tio R. To show this, we point out that the Schmidt eigen-
values of the Double-Gaussian state form a maximum en-
tropy probability distribution for a given mean, (i.e., a
geometric distribution), and this entropy is equal to the
entanglement of formation. Second, the mean value of
this probability distribution is a one-to-one function of
the correlation ratio R for all values of R ≥ 1. With this,

the Schmidt eigenvalues of the double-Gaussian state are
also a maximum entropy probability distribution for a
given value of R, so long as R ≥ 1. Therefore, a given
biphoton wavefunction, with a given correlation ratio R
will have a maximum entanglement of formation of what
a double-Gaussian state would have for the same value
of R:

Ef (ρ̂AB) ≤ h2(λ)

λ
: λ ≡ 4R

(R+ 1)2
. (A7)

Here, h2(λ) is the binary entropy function:

h2(λ) = −λ log2(λ)− (1− λ) log2(1− λ). (A8)
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