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Studies of quantum metrology have shown that the use of many-body entangled states can lead
to an enhancement in sensitivity when compared to unentangled states. In this paper, we quantify
the metrological advantage of entanglement in a setting where the measured quantity is a linear
function of parameters individually coupled to each qubit. We first generalize the Heisenberg limit
to the measurement of non-local observables in a quantum network, deriving a bound based on the
multi-parameter quantum Fisher information. We then propose measurement protocols that can
make use of Greenberger-Horne-Zeilinger (GHZ) states or spin-squeezed states and show that in the
case of GHZ states the protocol is optimal, i.e., it saturates our bound. We also identify nanoscale
magnetic resonance imaging as a promising setting for this technology.

I. INTRODUCTION

Entanglement is a valuable resource in precision mea-
surement, as measurements using entangled probe sys-
tems have fundamentally higher optimal sensitivity than
those using unentangled states [1]. A generic measure-
ment using N unentangled probes will have a stan-
dard deviation from the true value asymptotically pro-
portional to 1/

√
N . By using N maximally entangled

probes, a single parameter coupled independently to each
probe system can be measured with an uncertainty pro-
portional to 1/N . This is the best possible scaling con-
sistent with the Heisenberg uncertainty principle and is
known as the Heisenberg limit [1, 2]. The procedure can
also be reversed–enhanced sensitivity to disturbances can
provide experimental evidence of entanglement [3–5].

Measurements making use of entanglement usually
couple one parameter to N different systems [1, 6, 7].
However, the emerging potential of long-range quantum
information opens new avenues for metrology [8, 9] and
entanglement distribution [10]. The ability to distribute
entanglement across spatially separated regions has al-
ready been used for recent loophole-free tests of Bell’s
inequality [11–13]. In this work, we are interested in cou-
pling N parameters to N different systems, which may
be spatially separated, and measuring a linear function
of all of them (see Fig. 1a) such as a single mode of a
spatially varying field. Such measurements may be of
interest in geodesy, geophysics, or medical imaging [14–
18], but in this paper we focus on potential application
to nanoscale nuclear magnetic resonance (NMR) imag-
ing. Later in this paper we will discuss precisely how our
method might apply in this setting.

The function q we wish to measure is a weighted sum
of the deterministic individual parameters θi, where i
indexes the individual systems and each weight is denoted

FIG. 1. (a) An illustration of the network setup in a nanoscale
NMR setting. Nodes, located at different points relative to a
large molecule, share an entangled state; at each node there is
both an unknown parameter θi and a known relative weight
αi. We are concerned with estimating α · θ. (b) Illustration
of the partial time evolution protocol for three qubits. Solid
green segments of the timeline represent periods when a qubit
is evolving due to coupling to the local parameter θi, while
dashed red segments represent periods after the qubit stops
evolving. The switches occur at times corresponding to the
qubits’ weights in the final linear combination. The weight of
the last qubit is α3 = 1.

by a known real number αi,

q =

N∑
i=1

αiθi = α · θ. (1)

In this paper, we characterize the advantage entangle-
ment provides in this setting and construct an optimal
strategy equivalent to turning some qubits’ evolution
“on” and “off” for time proportional to the weight with
which their parameter contributes to the function q (see
Fig. 1b). With this scheme of “partial time evolution,”
we can measure a linear function with the minimum vari-
ance permitted by quantum mechanics, which can be
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viewed as an extension of the Heisenberg limit to linear
combinations. We will also show that our method can
protect the secrecy of the result, allowing the network as
a whole to perform a measurement without eavesdrop-
pers learning any details of α · θ.

II. SETUP

We consider a system in which there are N sensor
nodes. Each sensor node i possesses a single qubit cou-
pled to an unknown parameter θi unique to each node.
We suppose that the state evolves unitarily under the
Hamiltonian

Ĥ = Ĥc(t) +

N∑
i=1

1

2
θiσ̂

z
i . (2)

Here, Ĥc(t) is a time-dependent control Hamiltonian cho-
sen by us, which may include coupling to additional an-
cilla qubits and σ̂x,y,zi are the Pauli operators acting on
qubit i. We wish to measure the quantity q defined in
Eq. (1). We assume that ∀i : |αi| ≤ 1 and additionally
that there is at least one αi such that αi = 1. These
conditions simply set a scale for the function, and for an
arbitrary α all that is needed is division by the largest αi
to meet this requirement. As an example, a network with
two nodes interested in measuring the contrast between
those nodes would set α = (1,−1) to measure θ1 − θ2.
We would like to establish how well an arbitrary measure-
ment of α·θ can be made and what the best measurement
protocol is for doing so. By “protocol” we mean three dif-
ferent choices: (1) which input state we begin with, (2)

what auxiliary control Hamiltonian Ĥc(t) we implement,
and (3) how the final measurement is made.

We define the quality of measurement in terms of
an estimator, Q, constructed from experimental data.
(Throughout this paper, we denote operators with hats,
vectors by boldface, quantities to be estimated by low-
ercase, and corresponding estimators by uppercase.) We
assume that the estimator is unbiased, so that its expec-
tation value is the true value E [Q] = q. Then our metric
for the quality of the measurement is the average squared
error, or variance, of the estimator,

VarQ = E
[
(Q− q)2

]
. (3)

If measurements of θi can be made locally with accuracy
Var Θi for an estimator Θi, then we could compute the
linear combination by local measurements and classical
computation. In this case, the variance is given by clas-
sical statistical theory as VarQ = ‖α‖2 Var Θ0 assuming
that Var Θi is identical at each site and equal to Var Θ0.
A measurement of an individual θi in Eq. (2) can be
made in time t with a variance of 1/t2 [2]. Therefore, our
entanglement-free figure of merit is

VarQ ≥ ‖α‖
2

t2
. (4)

We consider this the standard quantum limit for net-
works. To compare to the typical case where N inde-
pendent qubits measure a single parameter, consider the
average θ̄, which is equivalent to setting all αi = 1 and
then using Θ̄ = Q/N to obtain Var Θ̄ = 1/Nt2. It is our
goal in this paper to present a means to improve on the
limit in Eq. (4).

III. HEISENBERG LIMIT FOR SENSOR
NETWORKS

A. Using Fisher Information Matrix

Our task is to perform parameter estimation on a quan-
tum system evolving under some set of parameters {θi}
linearly coupled to sensor qubits as in Eq. (2) [19–22].
Although we are only interested in measuring a single
number, we still need to treat a system that has many
parameters in the evolution, necessitating the use of a
multi-parameter theory as in Refs. [23–31]. It is known
from classical estimation theory that, given a probability
distribution p(z) over a set of outcomes z that depends on
a number of parameters, all estimators of the parameters
obey the Cramér-Rao inequality [32, 33],

Σ ≥ F−1

M
. (5)

Here, M is the number of experiments performed, F is
the Fisher information matrix (see below), and Σ is the
covariance matrix, where Σij = E [(Θi − θi) (Θj − θj)].
The inequality is a matrix inequality, meaning that MΣ−
F−1 is positive semidefinite. We will concern ourselves
with the single-shot Fisher information, and set M = 1
from now on. The Fisher information matrix captures
how each parameter changes the probability distribution
of outcomes,

Fij =

∫
p(z)

(
∂ ln p(z)

∂θi

)(
∂ ln p(z)

∂θj

)
dz. (6)

This bound is a purely classical statement about proba-
bility distributions, and is saturated asymptotically us-
ing a maximum-likelihood estimator [34]. Note that al-
though we have presented the formulas for the Fisher
information matrix, in the case of a single parameter the
Fisher information will be a scalar which can be obtained
by setting i = j in Eq. (6).

Quantum theory bounds the probability distributions
that can result from a state evolved under a parameter-
dependent unitary operation [19]. We thus define the
quantum Fisher information FQ for a process with a given
initial state as the maximization of the Fisher informa-
tion over all possible measurement schemes. This gives
rise to the quantum Cramér-Rao bound (QCRB), which
simply replaces F with FQ in Eq. (5). A matrix element

of FQ for a pure state evolving under a Hamiltonian Ĥ
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is given by

(FQ)ij = 4t2 [〈ĝiĝj〉 − 〈ĝi〉 〈ĝj〉] , (7)

where ĝi =
(
∂Ĥ/∂θi

)
is the generator corresponding to

parameter i. For instance, in Eq. (2) the generator ĝi
is the operator 1

2 σ̂
z
i . Unlike the Cramér-Rao bound, the

QCRB cannot always be satisfied, even asymptotically.
However, in the setting of this paper, where all generators
commute, it can be [23]. Equation (5) then takes the
form:

Σ ≥ F−1 ≥ F−1Q . (8)

To formulate the appropriate Cramér-Rao bound in
the case where the quantity we wish to estimate is a
linear combination of the θi, we simply use the fact that
the variance of a linear combination α · θ can be written
as αTΣα. It follows immediately from Eq. (8) that

VarQ ≥ αTF−1Q α. (9)

Note that although we began by considering the full co-
variance matrix, we now focus on just a single scalar
αTF−1Q α because our quantity of interest is a single lin-
ear transformation of the original parameters.

In order to properly define the Cramér-Rao bound, it
is necessary to consider the fact that F and FQ are only
positive semi-definite and not necessarily invertible. For
instance, if a parameter has no effect on probabilities at
all, then it cannot be estimated from experimental re-
sults and the bound on the variance of its estimator is
undefined. To sidestep this issue, we can instead look
at F̃Q, the quantum Fisher information projected onto
its own image [31], assuming that α has no overlap with
the kernel of FQ. This matrix (and its inverse) are now
both positive definite, meaning they can always be in-
verted. Equation (9) is therefore always well-defined if

F̃Q is used.

Since F̃Q is Hermitian and positive definite,
√
F̃Q is

Hermitian. We can then write the following for an arbi-
trary real b by invoking the Cauchy-Schwarz inequality:

αT F̃−1Q α =
‖
√
F̃−1Q α‖2‖

√
F̃Qb‖2

bT F̃Qb
(10)

≥
‖αT

√
F̃−1Q

√
F̃Qb‖2

bT F̃Qb
(11)

≥ ‖α
T b‖2

bT F̃Qb
. (12)

Taking b to be the bth element of the standard basis gives

VarQ ≥ αT F̃−1Q α ≥ α2
b(

F̃Q

)
bb

. (13)

Here,
(
F̃Q

)
bb

is the quantum Fisher information for a

single parameter, as defined by Eq. (7). In Ref. [21], it
was shown that for any time-dependent control Hamilto-
nian Ĥc(t), including those with ancilla qubits,(

F̃Q

)
bb
≤ t2‖ĝb‖2s. (14)

Here ‖ĝb‖s is the operator seminorm (difference between
the largest and smallest eigenvalues) of the generator cor-
responding to parameter θb. Our final bound comes from
applying this condition and recognizing that the formula
must hold for all b:

VarQ ≥ max
b

α2
b

t2‖ĝb‖2s
. (15)

We emphasize that Eq. (15) remains true no matter what

time-dependent control Ĥc(t) is applied.
In Eq. (2), all ĝb = 1

2 σ̂
z
b , ‖ĝb‖s = 1, and we find a

bound,

VarQ ≥ max
i

α2
i

t2
=

1

t2
. (16)

Here we have used the fact that the largest αi = 1. If we
want to estimate the average of the θi, then all qubits are
equally weighted and the desired quantity is θ̄ = q/N , so
Var Θ̄ ≥ 1/N2t2 and we reproduce the desired Heisenberg
scaling which is more precise than the 1/N in Eq. (4).
However, note that if we wanted to estimate only a sin-
gle θi, then we would not benefit from the entanglement.
In general, we can, for some situations, greatly improve
the precision of parameter esitmation with nonlocal tech-
niques if the parameter itself is also non-local. Our bound
allows us to explore the full range of possible α between
these two extremes. Compared to the bound on unen-
tangled states [Eq. (4)], Eq. (15) simply picks out the
largest contribution due to uncertainty from a single site.
Equation (15) can be viewed as an extension of the usual
Heisenberg bound to linear combinations of parameters.

We can illustrate the above argument by optimizing
over the space of all control Hamiltonians Ĥc(t). As this
is computationally expensive, we limit ourselves to a two-
qubit sensor network with no ancillas. The Hamiltonians
we optimize over include enough operators to provide
universal control on two qubits, meaning we can effec-
tively modify the input state as well as the final measure-
ment basis in order to optimize the Fisher information.
In order to test the form of our bound, Eq. (15), which
depends both on relative weights of each parameter and
the underlying generator, we couple θ1 to a generator σ̂z1
which has ‖σ̂z1‖s = 2. We leave the second qubit coupled
to a generator 1

2 σ̂
z
2 as in Eq. (2). The bound correspond-

ing to the first qubit from Eq. (15) is α2
1/4t

2 and that
of the second qubit is α2

2/t
2. In our numerics, we set

α1 = t = 1, meaning the two bounds are 1/4 and α2
2.

Our analytic result leads us to believe therefore that if
α2
2 > 1/4, the minimum possible variance should be α2

2.
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FIG. 2. Numerical optimization of αTF−1
Q α for two qubits

with α1 = 1 compared to the bound predicted by our analytic
result. Each point is generated by running a gradient descent
algorithm until convergence; the control parameters begin at
small random values. The dashed (dotted) line is the analytic
bound derived from the first (second) qubit. As α2 increases,
the second qubit becomes the source of the relevant bound.

However, if α2
2 < 1/4, then the lower bound should be

1/4. That behavior is precisely what we find through
the numerical optimization shown in Fig. 2, confirming
Eq. (15).

B. Using Single-Parameter Bounds

It is tempting to dismiss the above argument as un-
necessarily complicated, as the ultimate quantity of in-
terest is only a single parameter. Why not simply apply
the Cramér-Rao bound directly to α · θ instead of us-
ing the matrix approach? We will now show that the
single-parameter bound that arises from naive applica-
tion of the Cramér-Rao bound is looser than Eq. (15).
This gap occurs because the single-parameter bound can
only be applied if there is only one unknown parameter
controlling the evolution of the input state, which im-
plicitly places a constraint on the other components of
the field. Later, we will discuss how the single-parameter
approach can be amended to take this into account and
agree with Eq. (15).

To apply the single-parameter Cramér-Rao bound to
our evolution Hamiltonian Eq. (2), we consider the
Hamiltonian as 1

2θ · σ̂ where σ̂ is simply a vector of op-
erators whose ith element is σ̂zi . We then rewrite θ in a
new basis,

θ =

N−1∑
i=0

(αi · θ)βi. (17)

We assume that α0 = α and that the other αi>0 make
up a basis. The set of vectors βi is then a dual basis
such that αi · βj = δij . (For this basis as well, we will
drop the subscript 0 to indicate that this particular vector

corresponds to the parameter of interest.) The advantage
of rewriting θ this way is that we can now identify the
term in the Hamiltonian which is proportional only to
α · θ. The generator corresponding to the quantity α · θ
is:

ĝ =
∂Ĥ

∂ (α · θ)
=
β · σ̂

2
. (18)

To obtain the quantum Fisher information correspond-
ing to this generator, we consider the variance of the
operator ĝ. The maximum variance of this generator is
given by the operator seminorm [21]. Using this fact, we
can write:

FQ ≤ t2‖ĝ‖2s = t2

(∑
i

|βi|

)2

. (19)

In general the bound on VarQ derived from Eq. (19)
is a looser lower bound than Eq. (16). For example, with
α = (1, 12 ) and α1 = ( 1

2 ,−1), this implies that β =

( 4
5 ,

2
5 ). Equation (19) would suggest that

VarQ ≥ 25

36t2
, (20)

which is looser than the 1/t2 given by Eq. (15). This
discrepancy can be addressed by thinking more closely
about the process of choosing a new basis. We will use the
seminorm condition again to bound the maximum pos-
sible Fisher information. To start calculating the semi-
norm, we express it in terms of the elements of β:

‖ĝ‖s = ‖
∑
j

βj
1

2
σ̂zj ‖s =

∑
j

|βj | . (21)

We will now show that it is possible to choose a basis
such that the seminorm in Eq. (21) goes to infinity. This
shows that the approach which led us to Eq. (19) should
not be applied blindly, and we will then discuss how to
control for this issue. First, an illustration of the bound
diverging. Suppose that in a two-parameter problem,
the basis vectors we choose are α and α′. It can then be
shown by direct computation of the matrix inverse that
yields the dual basis that the implied maximum Fisher
information from Eq. (21) is:

F ≤ ‖ĝ‖s =
α′2 + α′1

|α1α′2 − α′1α2|
. (22)

If we then choose α′ = (α1/α2 + ε, 1), it follows that:

F ≤
1 + ε+ α1

α2

εα2
. (23)

As ε → 0, this becomes arbitrarily large. From this we
conclude that our previous approach was ill-advised as it
can yield arbitrarily small lower bounds on the estimator
variance – using this basis, we would conclude that the
right-hand side of Eq. (19) could be ∞.
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In order to produce a useful bound from Eq. (21), we
recognize that any possible choice of basis must yield a
valid bound. Therefore, rather than look at one particu-
lar basis (as we did in deriving Eq. (19)) we instead need
to optimize for the highest lower bound over all possible
choices of basis. Finding the tightest bound on Fisher
information will then produce the highest lower bound
on parameter uncertainty. To do this, we first write the
following chain of inequalities using the relationship of α
and β:

1 =
∑
j

αjβj ≤
∑
j

|αjβj | ≤
∑
j

|βj | , (24)

where the last line follows due to the fact that |αj | ≤ 1.
Note that we can achieve equality,∑

j

|βj | = 1, (25)

by taking the other N −1 basis vector αj to be unit vec-
tors ej in the standard basis, making sure that the j that
does not appear has αj 6= 0 to ensure the entire space is
spanned. Now we look to the minimum possible value of
‖ĝ‖s. The minimum possible value is interesting to us
because the minimum ‖ĝ‖s will be the choice of basis for
which the bound on Fisher information is tightest.

It follows from Eq. (21) and Eq. (24) that the min-
imum seminorm ‖ĝ‖s is equal to 1, implying that the
maximum value for Var ĝ is 1/4 [21]. Using this to op-
timize the bound in Eq. (19) over all possible choices of
re-parameterization implies that Varα ·θ ≥ 1/t2, just as
we found in Eq. (16).

The single-parameter bound is applicable in our situ-
ation, but it requires careful accounting of the influence
of other parameters in the problem. The reason that our
previous results such as Eq. (15) do not hold in this case
is that Cramér-Rao bound does not apply if we can take
advantage of constraints on the signal field θ to improve
our estimation strategy.

These naive single-parameter bounds can be applied
and saturated if the field structure is known before the
measurement takes place. To demonstrate, suppose that
for a set of fields θ where we wish to learn α ·θ, we know
that the fields are proportional to αi. Then we can write
the total field as:

θ = q
α

‖α‖2
, (26)

and our goal is to estimate q = α ·θ. This is now a truly
one-parameter problem, enabling a new strategy which
saturates Eq. (19). By defining w as a new vector such
that wi = sgn (αi), we can measure the quantity

w · θ = q

∑
|αi|
‖α‖2

. (27)

Since w is a linear combination which satisfies the con-
dition |wi| ≤ 1, we can estimate q′ = w ·θ with accuracy

bounded by 1/t2 as shown in Sec. IV. Then:

Var (Q′) = Var

(
Q

∑
|αi|
‖α‖2

)
≥ 1

t2
, (28)

=⇒ VarQ ≥ ‖α‖4

t2 (
∑
|αi|)2

. (29)

This saturates the bound in Eq. (19). The reason we
are able to outperform Eq. (15) is that we have assumed
something about the structure of the field which reduces
it to a lower-dimensional problem. This is only possible
by using knowledge about components of θ not parallel
to α. Otherwise, there is no guarantee that θ will be
proportional to α. In general cases w · θ will contain
noise from “undesired” components.

In many situations where the field structure is known,
new strategies can be introduced which may outperform
our previous results, even asymptotically. Consider as an
example a case with a field:

θ = θ
α

‖α‖2
+ θγγ, (30)

where α·γ = 0 and θγ is a nuisance parameter describing
the field magnitude orthogonal to α. Any field can be
written in this way to separate out the α component.
Suppose we measure w · θ. We know that:

VarQ′ ≥ 1

t2
(31)

is an achievable bound. By writing w = cαα + cγγ,
decomposing w into its only relevant components, we
can obtain the following bound on VarQ:

VarQ ≥ 1

t2cα
+ c2γ‖γ‖2. (32)

Therefore, the optimal strategy is to pick aw which max-
imizes w ·α while minimizing (preferably to zero) w · γ.
However, in general, learning the structure of the field
perpendicular to α is just as difficult as learning the
component parallel to α, so beginning from a state of
ignorance, it is still optimal to measure α · θ rather than
a different linear combination.

The bound in Eq. (19) can actually be found by
other statistical methods which fully treat the initial
multi-parameter structure, for instance, the constrained
Cramér-Rao bound of Ref. [35]. It can also be derived
from the Van Trees inequality [36] by assuming that we
have pre-existing knowledge that the components of θ
perpendicular to α have a normal distribution of width
ε and then taking the limit ε→ 0.

If rather than a constraint we simply have some initial
information in the form of a prior distribution, the Van
Trees inequality (which takes into account that prior in-
formation) will reduce to the Cramér-Rao bound in the
limit of many measurements. This is because the infor-
mation gained from measurements scales linearly with
the number of measurements while the prior information
is static.
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IV. PROTOCOLS

We now present two protocols that saturate the bound
of Eq. (16) and are therefore optimal. The first be-
gins from the conceptually simple Greenberger-Horne-
Zeilinger (GHZ) state or a spin-squeezed state and uses
time-dependent control during phase accumulation to
produce an output state sensitive to the desired α · θ,
while the second method uses a more complicated initial
state but requires no control during the phase accumula-
tion.

A. Protocols Involving Time-Dependent Control

1. Using GHZ Input State

We start by considering an N -qubit GHZ state:

1√
2

(
|0〉⊗N + |1〉⊗N

)
. (33)

Under σ̂z evolution, each |1〉 accumulates a phase relative
to |0〉. By allowing qubits to accumulate phase propor-
tional to the desired weight αi, we obtain a final state in

which |1〉⊗N has accumulated a total phase of α · θt rel-

ative to |0〉⊗N . We refer to our protocol as “partial time
evolution” because it relies on a qubit undergoing evo-
lution for a fraction of the total measurement time (see
Fig. 1). We can realize this by applying σ̂xi to a qubit at
time ti = t (1 + αi) /2 so that the qubit evolution will be
identical to evolving it for a time αit. Note that if there
is a fixed experimental time t, this scheme can realize val-
ues of αi ∈ [−1, 1], which motivates our restrictions on
the values of individual αi. Specifying this sequence of
gates identifies the Ĥc(t) which defines the protocol. The
result of this protocol is an effective evolution according
to the unitary operator

Û(t) = e−i
t
2

∑N
i=1 αiθiσ̂

z
i . (34)

Under this evolution, the final state is:

1√
2

(
e−i

t
2 q |0〉⊗N + ei

t
2 q |1〉⊗N

)
. (35)

Now we make a measurement of the overall parity of the

state, P̂ =
⊗N

i=1 σ̂
x
i . The details of this measurement

and calculation of 〈P̂ 〉 are given in Ref. [1]; notably, the
measurement can be performed locally at each site. Mea-
surement of the time-dependent expectation value 〈P̂ 〉(t)
allows for the estimation of Q with accuracy [37]

VarQ =
Var P̂ (t)(
∂
〈
P̂
〉
/∂q
)2 =

sin2 qt

t2 sin2 qt
=

1

t2
, (36)

saturating the bound in Eq. (16) and Fig. 2.

We can also directly evaluate FQ and F for this pro-
tocol. FQ can be found by noting that this protocol is
identical to evolution under the Hamiltonian 1

2

∑
αiθiσ̂

z
i .

Therefore the quantum Fisher information matrix FQ is
simply

(FQ)ij = t2
[〈
αiσ̂

z
i αj σ̂

z
j

〉
− 〈αiσ̂zi 〉

〈
αj σ̂

z
j

〉]
= αiαjt

2.

(37)
Furthermore, we can show that this FQ satisfies the sec-

ond inequality in Eq. (13). The inverse of F̃Q can be
easily written, as FQ simply projects onto α. In order to

get F̃−1Q F̃Q = αTα/‖α‖2 (identity on the image of FQ),
we must have

F̃−1Q =
αiαj
t2‖α‖4

. (38)

αT F̃−1Q α is then equal to 1/t2, saturating the second

inequality in Eq. (13) for the basis vector b corresponding
to the largest α component, αb= 1.

To evaluate the classical Fisher information in this
case, we note that the final measurement [37] projects
onto one of two outcomes with probability sin2 (α · θt/2)
and cos2 (α · θt/2). Therefore the classical Fisher infor-
mation is simply:

F =

(
∂(sin2 α·θt

2 )
∂α·θ

)2

sin2α · θt/2
+

(
∂(cos2 α·θt

2 )
∂α·θ

)2

cos2α · θt/2
(39)

= t2. (40)

This Fisher information also implies the variance bound
in Eq. (16).

It may seem surprising that an optimal measurement
can be one in which most qubits spend some of the mea-
surement time idle. Since more time yields more sig-
nal, intuition suggests that the most effective strategy
would make better measurements on the less-weighted
qubits rather than keep them off for much of the mea-
surement time. For example, by disentangling a qubit
from the larger state halfway through the protocol, a sep-
arate measurement could be made on θ1 + 1

2θ2 and 1
2θ2,

which appears to yield more information than just mea-
suring the quantity of interest θ1 + 1

2θ2. This reasoning
fails because there is no way to use information about θ2
to improve an estimate of θ1 + 1

2θ2 without also knowing
about θ1. Because we do not know about the individual
parameters, only a measurement of the entire function is
usable and our scheme is optimal in this case. However,
once we account for pre-existing knowledge about the
parameter values (drawn from physically-motived esti-
mates or less-precise previous measurements) our bound
will instead apply in the regime of asymptotically many
measurements (M � 1) and in that setting our scheme
will also saturate it [38]. This is because the value of
prior knowledge becomes increasingly low as we accumu-
late measurement data.

One advantage of this protocol is that an eavesdropper
cannot learn the result of the network measurement by
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capturing a subset of the nodes’ σ̂x measurement results.
This privacy can be shown by tracing out the first qubit
in Eq. (35), which leaves no phase information in the
resulting mixed state. The central node can receive the
measurement outcomes from all other nodes but keep
its own secret, and no eavesdropper is able to extract
information from the broadcasted results. This is true
even if the central node’s qubit is unweighted (i.e., αi =
0), which follows simply from the properties of the GHZ
state.

2. Using Spin Squeezed States

The perfect security of the GHZ state arises because
obtaining the measurement result requires every qubit,
but this also implies an extreme sensitivity to noise. This
noise can be a serious problem for metrological applica-
tions [39, 40]. Because the GHZ state decoheres faster
than an individual qubit, the advantage provided by en-
tanglement is nullified if the interrogation time of the
qubit is limited by its coherence time [41]. However, in
many settings the time spent on a single measurement
will be much shorter than the decoherence time, for in-
stance, to gather data on short timescales. In these cases,
GHZ states still provide a metrological advantage. Note
that dynamical decoupling [42] or quantum error correc-
tion [43, 44] could be used to lengthen the effective de-
coherence time in some cases.

In other situations, however, it may be that decoher-
ence is the dominant concern. In these situations, the
best strategy uses a highly-symmetric entangled state
which is more robust to noise than the GHZ state [41].
Under dephasing, these states can still offer a constant
factor improvement over unentangled metrology. In this
section, we show that spin-squeezed states can also func-
tion as inputs to the partial time evolution protocol, and
so may be good candidates for a sensor network operating
in a situation where decoherence limits the interrogation
time. Squeezed states are collective spin states which,
due to entanglement, have reduced variance along one
axis of the collective Bloch sphere at the cost of increased
variance along an orthogonal axis [2, 45]. Recently, it
has been shown that these states may allow Heisenberg-
scaling measurements even without single-particle detec-
tion, which makes them very attractive for experimental
implementations [46].

We consider a state whose overall spin vector is aligned
along +x, such that 〈σ̂xi 〉 ≈ 1. We assume that the
other spin components have zero expectation value, but
that the variance of the collective spin projection Ĵy =
1
2

∑
i σ̂

y
i is decreased while the variance of Ĵz is increased.

We quantify this effect through the spin-squeezing pa-
rameter ξ [2],

ξ =

√
Var Ĵy
N/4

. (41)

Suppose that we perform Ramsey interferometry on
such a state [2, 37]. The protocol includes both partial

time evolution Û(t) and a final rotation pulse R̂x
(
π
2

)
=

exp
(
−iπ4

∑
i σ̂

x
i

)
. A final measurement is made of the

total spin projection Ĵz after applying these operations:〈
Ĵz(t)

〉
=
〈
Û†(t)R̂†x

(π
2

)
Ĵz(0)R̂x

(π
2

)
Û(t)

〉
, (42)

=
1

2

〈
N∑
i=1

σ̂xi sinαiθit+ σ̂yi cosαiθit

〉
. (43)

If we specify that this expectation is to be taken over
a squeezed state with 〈σ̂xi 〉 ≈ 1 and 〈σ̂yi 〉 = 0, then our
signal will be sensitive only to α · θ if each individual
phase is small:

〈
Ĵz(t)

〉
squeezed

≈ 1

2

N∑
i=1

sinαiθit ≈
t

2

N∑
i=1

αiθi. (44)

This shows that a squeezed state can be used for mea-
surements of linear functions. The sensitivity can then
be calculated just as in Eq. (36),

VarQ =
Var Ĵz(t)(

∂
〈
Ĵz(t)

〉
/∂q
)2
∣∣∣∣∣∣∣
q=0

=
Var Ĵy
t2/4

=
Nξ2

t2
. (45)

We evaluate the sensitivity at q = 0 because we are in-
terested in small signals. Partial time evolution with
spin-squeezed input beats the standard quantum limit
if ξ ≤ ‖α‖/

√
N . Note that there are N components of α

and therefore ‖α‖ will generally be of order
√
N assum-

ing that the moments of the field being measured are well
distributed. Squeezed states can achieve squeezing pro-
portional to N−1/2 [2, 45], which approaches the bound
in Eq. (16) up to numerical prefactors not scaling with
N .

Other highly-entangled states such as Dicke states also
have metrological value in the presence of noise and could
also serve as input states to partial time evolution with
similarly favorable scaling [30, 47–50].

B. Time-Independent Protocols

In this section, we present two other possible mea-
surement schemes for linear combinations of parameters.
Both of these differ from the protocols of Sec. IV A be-
cause they prepare a particular state and then allow for
free evolution during phase accumulation, rather than us-
ing pulses to evolve for an effective time of αit on qubit
i. We will present time-independent schemes that begin
with both a GHZ-like state and the spin-squeezed state.
Note that these protocols rely on assumptions about the
size of signals θi or the evolution time t.
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1. Using GHZ-like Input State

We begin by defining a single-qubit state |τ 〉, where τ
is a vector whose elements are τj = −1, 0, 1:

|τ 〉 =

N⊗
j=1

{
|0〉 τj 6= −1

|1〉 τj = −1
. (46)

We then define the entangled state |ψ(τ )〉 as

|ψ(τ )〉 =
1√
2

(|τ 〉+ |−τ 〉) . (47)

This state can be understood as a general class that in-
cludes the GHZ state as the case τj = 1 for all j. For
every τj = −1, spin j is flipped relative to the GHZ state,
while for every τj = 0, spin j is entirely disentangled.

In order to measure α · θ, we will evolve |ψ(τ )〉 under
the Hamiltonian in Eq. (2) and then measure the follow-

ing observable Π̂(τ ):

Π̂(τ ) =
⊗
j

(
σ̂jx
)τj

. (48)

That is, we multiply the outcomes of the individual pro-
jective σx measurements for each qubit which was origi-
nally entangled with the others (τj 6= 0). It can be shown
that probability distribution of this observable is

P
(

Π̂ = ±1
∣∣∣τ ,θ) =

{
cos2 (θ · τ t/2) 1,

sin2 (θ · τ t/2) −1
. (49)

To create a final protocol, we will now randomize the
choice of τ , which in turn means we will randomly select
both the initial state and the final measurement. An
overall sensitivity to α·θ can be realized if the probability
distribution for every individual spin to be τj is given by:

P (τj) =

{
αj(αj±1)

2 τj = ±1

1− α2
j τj = 0

. (50)

By then summing over P (τ ), we find that
〈

Π̂(θ, t)
〉

=

1 − t2 (α · θ)
2

to lowest order in t. Since Π̂2 = 1, we
can use the same approach as Eq. (36) to find that the
sensitivity for this measurement is VarQ = 1/t2, leading
to the same sensitivity as the time-independent protocol.

2. Using Spin-Squeezed States

To implement a time-independent protocol that makes
use of a spin-squeezed input state, we will actually use
a two-part measurement protocol. First we will derive a
general expression that applies to both parts, and then
show how they can be combined.

Much as in Sec. IV A 2, we will use the Heisenberg evo-
lution of the total angular momentum along one axis to

evaluate the final observable. We can begin with the re-
sult of Eq. (43), but with two alterations. First, rather

than Û representing a partial time evolution on each
qubit, instead it will be the full time evolution operator
Û = exp (−it

∑
θiσ̂

z
i ). Second, we will add an additional

operator at the beginning of the protocol, which we write
as Q̂(η):

Q̂ (η) =

N⊗
i=1

r̂iz (ηi) . (51)

Here, r̂iz is the single-qubit rotation about the z axis.
That is, we apply a qubit-dependent rotation about the
z axis before we begin the evolution. The final operator
Ĵz(t) will be:

Ĵz(t) = Q̂†(η)Û†(t)R̂†x

(π
2

)
Ĵz(0)R̂x

(π
2

)
Û(t)Q̂(η).

(52)

The effect of Q̂ is to add an additional phase to the evo-

lution, meaning the final value for
〈
Ĵz(t)

〉
can be found

by substituting the angles θit + ηi for αiθit in Eq. (43).
As a result, we find that the final expectation value is:

〈
Ĵz(t)

〉
=

1

2

〈
N∑
i=1

σ̂xi sin (θit+ ηi) + σ̂yi cos (θit+ ηi)

〉
.

(53)
By using the conditions that 〈σ̂xi 〉 ≈ 1 and 〈σ̂yi 〉 ≈ 0, we
find that: 〈

Ĵz(t)
〉
≈ 1

2
sin (θit+ ηi) . (54)

Now we introduce a two-step protocol. In the first step,
we perform this sequence (prepare a spin-squeezed state,

add qubit-dependent rotations, evolve, measure Ĵz) with
ηi = φi, where cosφi = αi. We will call the quantity
measured Ĵ+

z . Then, we repeat the process with ηi =

−φi, and call the resulting quantity Ĵ−z . The expectation
value of the sum of these quantities is:

〈
Ĵ+
z + Ĵ−z

〉
≈ 1

2

N∑
i=1

sin (θit+ φi) + sin (θit− φi) (55)

=

N∑
i=1

cosφi sin θit ≈
N∑
i=1

αiθit. (56)

Here, as in Sec. IV A 2, we have assumed that the phases
to be detected, θit, are small enough to make the small-
angle approximation.

In order to evaluate the sensitivity of this measure-
ment, we look at the point of zero signal as in Eq. (45).
At zero signal, J+

z + J−z gives
∑
αiσ

y
i . It can be shown

that Var
∑
αiσ

y
i ≤ 4 Var Jy, and so, by the same calcu-

lations used in Eq. (45), the variance is no more than
4Nξ2/t2. Note, however, that this assumes that both

Ĵ+ and Ĵ− are measured for time t. For a fairer com-
parison, we can replace t with t/2 so the time required
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for the two-step protocol is the same as for one time-
dependent round. In this case, the sensitivity is no worse
than 16Nξ2/t2.

Interestingly, this two-step protocol requires only
single-qubit operations once the initial squeezed state is
created. This may make it a more tractable scheme for
experimental realizations of quantum enhancements in
measurements of linear combinations of parameters.

V. ENTANGLEMENT-ENHANCED
MOLECULAR NMR

Many applications of entangled sensor networks may
emerge as distributed entanglement becomes easier to
achieve. In this section we focus on an application which
may be viable in the near future: nanoscale nuclear
magnetic resonance (NMR) as a form of molecular mi-
croscopy. NMR has long been used to investigate the
chemical composition of molecular structures and per-
form medical imaging [51]. The spatial resolution of
NMR had been limited to a few micrometers until the
recent advent of nitrogen-vacancy (NV) center magne-
tometers [52–54]. These magnetometers are sensitive to
nanotesla magnetic fields with spatial resolution on the
nanometer scale and can be used to image molecules or
single proteins deposited on a diamond layer with em-
bedded NV centers [55–57].

Nanoscale NMR applications are a promising setting
for entanglement-enhanced sensor networks. The elec-
tronic spin associated with an NV center in diamond can
be operated as a two-level system whose free evolution
results in the accumulation of phase dependent on the
local magnetic field [54]. Because NV centers are use-
ful platforms for quantum information processing, en-
tangling protocols already exist and have been demon-
strated experimentally [58–61]. Our protocol is particu-
larly useful for studies of chemical or magnetic dynamics,
such as Ref. [62], because the measurement timescale may
be much shorter than the decoherence time of the GHZ
state, making our noise-free treatment applicable.

Linear combinations of spatially separated field val-
ues are interesting measurement quantities in nanoscale
NMR. Reference [63] describes an imaging protocol which
combines many different Fourier spatial modes, and
Ref. [56] similarly combines many signals to perform
molecular microscopy. These measurements could be
performed more accurately using entangled NV sensors.
In addition, our entanglement scheme can perform sim-
ple subtraction of the signal between two qubits. This
allows common mode noise subtraction between a sensor
qubit and another qubit exposed only to environmental
noise. In general, even if a full GHZ state of all sensors
is not feasible, smaller clusters of entangled sensors can

still enhance sensitivity.

Entanglement-enhanced imaging of objects larger than
single molecules may also be a fruitful area of research.
An experiment detecting the firing of a single animal neu-
ron with accuracy near the standard quantum limit has
already been performed [64], making exploration of tech-
niques surpassing the limit a natural next step. Similar
experiments could demonstrate an enhancement due to
distributed entanglement in the near future.

VI. OUTLOOK

We have presented measurement protocols for quan-
tum networks which are useful for measuring linear
combinations of parameters and developed a Heisen-
berg limit for the optimal estimation of linear combi-
nations. Our protocol can be considered a generaliza-
tion of entanglement-enhanced Ramsey spectroscopy, as
in Ref. [1], to the measurement of spatially varying quan-
tities. In the future, we hope to search for further pro-
tocols and to remove the requirements of small signal or
evolution time where we have imposed them. We identi-
fied magnetometry in general and nanoscale NMR in par-
ticular as candidate applications of our protocol, but we
wish to stress our protocol’s significantly broader scope.
In particular, we expect that our protocol will be use-
ful for measuring spatially varying quantities in contexts
such as gravimetry [65, 66], spectroscopy [6], and rota-
tion sensing [67–69]. Note there is also no requirement
that the parameters measured in a linear combination be
of the same physical source. For instance, a sensor net-
work could measure a linear combination of both electric
and magnetic fields.

In general, our protocol can be applied in any setting
where Ramsey spectroscopy can be applied if the quan-
tity of interest is nonlocal. In addition, recent work [70]
indicates that spatial correlations in measurements may
be a useful tool for noise-filtering and error correction in
quantum sensors.

Many schemes for quantum sensing rely on coherence
in photonic, rather than atomic, degrees of freedom, such
as spectroscopic microscopy [71]. A recent manuscript,
Ref. [31] provides a general framework for treatment of
sensor networks which is applicable to photonic systems
and others.
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