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We consider the task of verifying the correctness of quantum computation for a restricted class of circuits

which contain at most two basis changes. This contains circuits giving rise to the second level of the Fourier

Hierarchy, the lowest level for which there is an established quantum advantage. We show that, when the circuit

has an outcome with probability at least the inverse of some polynomial in the circuit size, the outcome can be

checked in polynomial time with bounded error by a completely classical verifier. This verification procedure is

based on random sampling of computational paths and is only possible given knowledge of the likely outcome.

The paradigm of verification of quantum computation lies

deep into the roots of quantum mechanics, raising questions

about the falsifiability of the theory in regimes of high compu-

tational complexity [1]. The challenge is to certify the result

of a quantum computation using devices that are themselves

unable to derive that result. This is not only an issue of the-

oretical interest. In the last decade, the difficulty of verifying

the consistency of an experiment’s outcome with regards to

the predictions of quantum mechanics has increased dramat-

ically [2]. While simulating the quantum evolution of few

qubits on a classical computer is possible, the difficulty of this

simulation grows exponentially with the size of the quantum

computer. In this sense, the question of verifiability is inti-

mately connected to demonstrating computational advantage

of quantum computers over classical machines. For instance,

recent claims about the quantumness of certain experimen-

tal processors [3, 4] have sparked both excited reactions and

strong criticisms [5–7]. This situation shows how coming up

with a feasible approach for the verification of quantum com-

putation is of practical importance.

These issues have motivated recent theoretical efforts to

develop novel protocols for quantum verification, which are

comprehensively reviewed in [8]. Generally, these protocols

are presented as interactive games where a verifier with lim-

ited computational resources attempts to verify the output of a

quantum computation performed by a prover capable of pro-

cessing quantum information. Such verification protocols rely

on different methods: The embedding of veracity tests [9–13]

into blind quantum computing protocols [14–16], approaches

based on self-testing [17–19], hybrid techniques combining

these two procedures [20, 21] and methods based on the use of

error correction codes [22–24]. A common thread, however,

is the need for at least two parties with quantum capabilities:

either a verifier with limited quantum capabilities or multiple

quantum provers sharing entanglement. It remains an open

question whether decision problems in BQP can be efficiently

verified by a prover without any quantum power [25].

In this work, we explore the possibility of verifying a single

quantum processor using purely classical means. In particu-

lar, we focus on quantum computations with likely outcomes

containing only two layers of gates that do not preserve the

computational basis. The choice of two layers is motivated

by previous work on a hierarchy of complexity classes known

collectively as the Fourier hierarchy FH [26]. Each level FHk

of the hierarchy corresponds to the class of problems that can

be solved by polynomial quantum circuits, composed of gates

that preserve the computational basis and k layers of Fourier

transforms on disjoint subset of qubits. Crucially, the second

level of the Fourier Hierarchy FH2 is the smallest level that

contains quantum circuits that exhibit advantages over their

classical counterparts. In the following, we use FH2 to denote

both decision problems and the class of circuits containing

at most two Fourier transforms, with the meaning clear from

the context. The likelihood of the outcomes is motivated by

considerations of usefulness: Quantum algorithms believed to

offer an advantage over their classical analogs, such as quan-

tum search [27] algorithms, allow for the efficient extraction

of the desired outcome with high probability. Alternatively,

models of quantum computation based on sampling are not

known to have practical applications1. We exploit the struc-

ture of such circuits to show that a polynomial-time classical

verifier can efficiently verify the outcome of quantum compu-

tations, structurally similar to FH2 circuits, implemented by

a prover, with only a single round of communication between

them.

We begin with some terminology. If s = (s1, . . . , sn) is

an n-bit string, we denote by |s〉 = |s1〉 ⊗ · · · ⊗ |sn〉 the

corresponding computational basis state. A reversible classi-

cal computation C is a bijection from n-bit strings to n-bit

strings. We consider the corresponding quantum circuits Ĉ
that are bijections from n-qubit computational basis states to

n-qubit computational basis states, and say that such quan-

tum circuits are classical. We call PC the set of all circuits

Ĉ: This is the permutation group on the computational basis,

generated by the set of generalised k-Toffoli gates, where k
indicates the number of control qubits (i.e. for k = 0 we have

a Pauli-X , for k = 1 a CNOT gate and so on).

When a gate Ĝ does not preserve the computational basis,

there necessarily exists some computational basis elements |i〉
and |j〉 such that 0 < |〈i|Ĝ|j〉| < 1. We call such gates basis-

changing gates. The simplest example of a basis-changing

gate is the Hadamard gate Ĥ , which plays the role of a single-

1 see for example the the discussion on boson sampling in [28]
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qubit quantum Fourier transform [29]. In general, the quan-

tum Fourier transform on n qubits can be implemented by an

O(n logn log logn) combination of Hadamard gates and con-

trolled rotations about the Z-axis of the Bloch sphere [30].

Since any quantum circuit can be approximated by a sequence

of Toffoli and Hadamard gates, one can think of quantum cir-

cuits as procedures that alternate between classical (Toffoli)

and quantum (Hadamard) information processing.

The Fourier hierarchy captures part of the subtlety of quan-

tum computation, and its lowest levels correspond to some

common complexity classes, informally introduced here-

after [31]. A decision problem deterministically answerable

by a classical computer within time polynomial in the input

size belongs to the complexity class P. The class NP corre-

sponds to decision problems for which yes instances can be

deterministically verified in polynomial time by a classical

computer, given a suitable witness string, and so trivially P

⊆ NP. If a classical computer able to generate randomness

can answer in polynomial time a decision problem with er-

ror probability bounded by some constant < 1
2 , this decision

problem is contained BPP. Both NP and BPP are contained

in the class MA. A decision problem belongs to MA if it has a

witness string which can be verified by a polynomial time ver-

ifier with bounded probability of error. The class MA differs

from NP because in MA the verifier has a bounded non-zero

probability to accept a no instance. Moving from classical to

quantum, BQP is the complexity class corresponding to deci-

sion problems that can be answered with bounded error prob-

ability by a quantum computer in polynomial time. If a yes

instance of a decision problem can be verified with bounded

error probability by a quantum polynomial time verifier with

the aid of a particular quantum proof state, that decision prob-

lem belongs to the class QMA. The hierarchical relations P ⊆
BPP⊆ BQP ⊆ QMA, and NP ⊆ MA⊆ QMA hold. Note that

the relationship between NP and BQP is unknown, although

it is conjectured that NP * BQP and that BQP* NP [32].

Let us allow only uniform families of quantum circuits.

Then it is easy to see that FH0 = P: Any decision problem

represented as a quantum circuit composed solely of classical

gates corresponds to a decision problem in P. It also follows

that FH1 = BPP since, for an input state in the computa-

tional basis, a single change of basis cannot cause phase in-

terference. Hence, for a computational basis input, the quan-

tum output of a FH1 circuit is uniformly distributed on the

support of the Fourier transform, and it gives access to ran-

domness elevating P to BPP. Characterising the levels of the

Fourier hierarchy becomes intriguing in terms of complexity

for k ≥ 2. Indeed, Shor’s algorithm [33] for factorisation,

which gives a substantial speedup when compared to the most

efficient known classical algorithm for factorisation, belongs

to FH2. One might then wonder if two layers of quantum

Fourier transforms, or basis-changing gates in general, suffice

to unlock the power of quantum computation. While to date

an exact relationship between FH2 and the other complexity

classes remains unknown, there exist results that assess the

classical simulability of a set of FH2 circuits. In particular,

when the final probability distribution of a FH2 circuit has a

support at most polynomial in the input size, this can be ef-

ficiently sampled by a classical computer [34]. Note that in

our analysis we deal with a larger set of quantum circuits. We

highlight this difference later in the discussion.

Our main result deals with the verification of circuits with

two layers of basis-changing gates preceded, interspaced, and

followed by classical computation from PC . These circuits

are composed of a number of gates polynomial in the input

size. Importantly, the basis-changing gates are classically

samplable, a property defined rigorously in the next para-

graph. Consider a prover performing the circuit just described

on a generic input in the computational basis. The prover

claims that the classical outcome of the computation, after

measuring the resulting quantum state in the computational

basis, is the n-bit string s = (s1, . . . , sn). The verification

problem we consider is to decide whether the probability of

obtaining s is large or alternatively small, under the promise

that exactly one of these two instances holds and that their

separation is at least some inverse polynomial in n. We prove

that the verification process can be performed by a random-

ized polynomial time classical verifier with access to the clas-

sical description of the input state, the quantum circuit and the

string s.

We begin by defining the class of basis-changing gates used

in the quantum circuits that we consider. We say that an n-

qubit unitary operator T̂ is a classically samplable transform

if it satisfies the following set of conditions:

1. T̂ can be implemented by a number of Hadamard,

CNOT, and π
8 gates polynomial in the input size n.

2. For all s1 ∈ {0, 1}n, there exists a polynomial time ran-

domised classical algorithm which randomly samples a

distribution over n bit strings such that the probability

of outputting s2 ∈ {0, 1}n is

ps1s2 =
|〈s2|T̂ |s1〉|

∑

s∈{0,1}n |〈s|T̂ |s1〉|
. (1)

3. For every s1 and s2, the complex phase of 〈s2|T̂ |s1〉,
can be computed classically in polynomial time.

Any tensor product of the identity operator, Hadamard,

Fourier, or inverse Fourier transforms on disjoint systems sat-

isfies the above definition. However the full set of operations

that satisfy these criteria is larger, and we do not limit the sub-

sequent analysis to the gates listed above. This extends the

class of circuits we allow with respect to the classically simu-

lable circuits analysed in [34]. There, in contrast to our case,

the second classically samplable transform is either exactly a

Fourier or inverse Fourier transform applied to any subset of

k ≤ n qubits, or alternatively an arbitrary tensor product of n
single-qubit unitary operations.

We say that the subset ST̂ ⊆ {1, ..., n} is the support of T̂

if T̂ acts non-trivially on the qubits labelled by the elements
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of ST̂ . Given an input state |s〉 we use B(T̂ , |s〉) to denote the

set of all n-bit strings where the i-th component is equal to si
for all i /∈ ST̂ . For simplicity, in our analysis we restrict our

attention to classically samplable transforms for which ps1s2 =
2−m, where m is the cardinality of ST̂ . We thereby define a

k-transform circuit, which is a quantum circuit C that has the

following properties.

1. The input to C is a computational basis state.

2. The quantum circuit C comprises of a polynomial num-

ber of Toffoli gates (basis preserving) and k classi-

cally samplable transforms (basis changing), followed

by measurement of all qubits in the computational ba-

sis.

3. The output of C is the bit string that corresponds to the

measured computational basis state.

Having defined the circuits under examination, we cast the

corresponding verification task as a decision problem with

the promise that the input satisfies the requirements for ei-

ther a yes instance or a no instance as we now describe. A

k-transform circuit is δ-deterministic with output s if the mea-

surement outcome after running the circuit is s with probabil-

ity at least δ. In the k-transform verification problem, an in-

stance consists of a k-transform circuit C and a string s, with

the promise that exactly one of the following instances is true.

1. The yes instance: C is δ-deterministic with output s.

2. The no instance: C is not ǫ-deterministic for any output.

The task is to decide if either the yes instance or the no in-

stance holds for the circuit C, where the thresholds δ and ǫ are

positive real numbers in the interval [0, 1] such that ǫ < δ/2,

and γ =
√

δ
2 −

√
ǫ satisfies γ = Ω(poly−1(n)). This last con-

straint ensures that the probabilities are sufficiently distinct so

that the difference can be resolved with a polynomial number

of samples.

Our main result is that the k-transform verification promise

problem is in BPP for k ≤ 2. It suffices to show that if C
is δ-deterministic then there exists a proof of this fact that

can be verified by a classical prover in polynomial time with

bounded error of 1
3 , and that this verification procedure rejects

any proof with bounded error of 1
3 if C is not ǫ-deterministic.

When k = 0, the circuit is completely classical, and hence it

can be verified by direct evaluation. When k = 1, let us call

each layer of classical computation Ĉi, where the index i in-

dicates the temporal order of the layer in the circuit. Then the

output state of C before the final measurement is Ĉ2T̂1Ĉ1|sin〉
with an n-qubit computational basis input state |sin〉. Here Ĉ1

and Ĉ2 are polynomial-sized Toffoli circuits in PC , and T̂1

is a classically samplable transform. Note that C1(sin) = r

for some n-bit sting r and hence Ĉ1|sin〉 = |C1(sin)〉 = |r〉.
Because of the reversible classical property of Ĉ2, the verifier

can efficiently derive |C−1
2 (s)〉, where Ĉ2|C−1

2 (s)〉 = |s〉. Fi-

nally the complex phase 〈C−1
2 (s)|T̂1|r〉 can be trivially com-

puted by definition. This answers the verification problem for

k = 1.

We now evaluate the probability that a fixed output string

s is obtained from any 2-transform circuit evaluated on the

n-qubit computational basis state |sin〉. The output of a 2-

transform circuit C before the measurement can be written

as Ĉ3T̂2Ĉ2T̂1Ĉ1|sin〉 where the transforms T̂1, T̂2 act non-

trivially on a ≤ n and b ≤ n qubits respectively. Then

T̂1|r〉 = 2−
a
2

∑

j∈B(T̂1,|r〉)

eiαr,j |j〉 , (2)

where αr,j is the phase for the complex amplitude of the state

|j〉 produced by the samplable transform given the fixed input

|r〉. Then

Ĉ2T̂1|r〉 = 2−
a
2

∑

j∈B(T̂1,|r〉)

eiαr,j |C2(j)〉 , (3)

and

T̂2Ĉ2T̂1|r〉 = 2−
a+b
2

∑

j∈B(T̂1,|r〉)

k∈B(T̂2,|C2(j)〉)

eiαr,jeiβC2(j),k |k〉 , (4)

where each βC2(j),k is the phase associated to the complex

amplitude of each state |k〉 induced by the action of T̂2 on

the state |C2(j)〉. The combined action T̂2Ĉ2T̂1, equivalent to

the core of Shor’s algorithm, is unlikely to be simulated effi-

ciently by a classical circuit because the gate Ĉ2 is performed

on a superposition of computational basis vectors [35]. In-

deed, such circuits allow for the preparation and measurement

in the XY -plane and Z-basis of arbitrary graph states, and

hence can be used to implement uncorrected measurement-

based computation [36]. Under post-selection this becomes

universal, and hence by standard arguments [37–39] sampling

the output of 2-transform circuits within bounded multiplica-

tive error is computationally hard classically. However, with

knowledge of s, Born’s rule Ps = |〈C−1
3 (s)|T̂2Ĉ2T̂1|r〉|2

gives the probability of obtaining the output s, which can be

estimated using a sampling technique as follows.

A randomised classical sampling algorithm that runs in a

time polynomial in n is used to answer the verification prob-

lem for any 2-transform circuit on n qubits. To show this, we

start with the amplitude ξs = 〈C−1
3 (s)|T̂2Ĉ2T̂1|r〉 associated

to the state |s〉. One needs to distinguish between the b ≥ a
and a > b cases. We consider only the former case, since

the same analysis can be performed for the latter case by first

taking the complex conjugate of the amplitude ξs and expand-

ing over paths through T̂2 rather than T̂1, as is done next. We

expand the amplitude as

ξs = 2−
a
2

∑

j∈B(T̂1,|r〉)

eiαr,j〈C−1
3 (s)|T̂2|C2(j)〉

= 2−
a+b
2

∑

j∈B(T̂1,|r〉)

θC2(j),C
−1
3 (s)e

iαr,j+iβ
C2(j),C

−1
3

(s) ,
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where θC2(j),C
−1
3 (s) ∈ {0, 1} depending on whether

〈C−1
3 (s)|T̂2|C2(j)〉 is non-zero. To simplify notation, we de-

fine

uj = 2−aRe
(

θC2(j),C
−1
3 (s)e

iαr,j+iβ
C2(j),C

−1
3 (s)

)

, and

vj = 2−aIm
(

θC2(j),C
−1
3 (s)e

iαr,j+iβ
C2(j),C

−1
3 (s)

)

,

so that ξs = 2−
(b−a)

2

(

∑

j uj + ivj

)

. The triangle inequality

implies that 2−
b−a
2 ≥ |ξs|. Hence all the cases where b −

a = Ω(poly(n)) are trivial to analyse, since they cannot be

poly−1(n)-deterministic for any s. In the following we use

the rescaled values δ′ = 2b−aδ and ǫ′ = 2b−aǫ such that

γ′ =
√

δ′

2 −
√
ǫ′. Let A = 2−a

∑

j∈B(T̂1,|r〉)
uj and B =

2−a
∑

j∈B(T̂1,|r〉)
vj. It follows that when |ξs|2 ≥ δ we have

|A+ iB| ≥
√
δ′, then either |A| ≥

√

δ′

2 or |B| ≥
√

δ′

2 is true.

When |ξs|2 ≤ ǫ, from the triangle inequality, the inequality

|A + iB| ≤
√
ǫ′ implies that both |A| ≤

√
ǫ′ and |B| ≤

√
ǫ′

are true.

Using the variables uj and vj we define the indepen-

dently and identically distributed random variables X̂i for

i = 1, . . . , N where N is polynomial in n and Pr(X̂ =
uj + ivj) = 2−a for all j ∈ B(T̂1, |r〉). The definition of T̂
ensures that there exists a polynomial time randomised classi-

cal algorithm for sampling the set {X̂i}Ni=1. Let Â and B̂ be

the real and imaginary parts of 1
N

∑

i X̂i respectively. Let

θ =
√
ǫ′ + γ′/2. Without loss of generality assume that

at the end of the sampling |Â| ≥ |B̂|. If this is the case,

when |Â| < θ, the verifier concludes that |A + iB| ≤
√
ǫ′,

and if |Â| ≥ θ, the verifier concludes that |A + iB| ≥
√
δ′

since the promise of the problem excludes the possibility that
√

δ′

2 ≤ |A + iB| <
√
δ′. If |Â| ≤ |B̂| the same conclusions

apply when substituting |Â| with |B̂|. In the following para-

graphs we prove that the conclusion of the verifier is incorrect

with probability exponentially small in N .

Here we utilise the Hoeffding bound [40] and the reverse

triangle inequality applied to probabilities. Hoeffding’s bound

states that Pr
[

|Â−A| ≥ γ′

2

]

≤ 2e−γ′2N/8. The reverse tri-

angle inequality implies that |Â−A| ≥ ||Â|− |A||, and hence

Pr

[

||Â| − |A|| ≥ γ′

2

]

≤ Pr

[

|Â−A| ≥ γ′

2

]

. (5)

Note that when |A| ≥
√

δ′/2,

Pr
[

|Â| ≤ θ
]

≤ Pr

[

|A| − |Â| ≥ γ′

2

]

. (6)

Combining the inequalities in Eq. 5 and Eq. 6 with the Ho-

effding bound results in Pr[|Â| ≤ θ] ≤ 2e−γ′2N/8. When

|A| ≤
√
ǫ′,

Pr
[

|Â| ≥ θ
]

≤ Pr

[

|Â| − |A| ≥ γ′

2

]

. (7)

By similar reasoning to the previous case, this yields Pr[|Â| ≥
θ] ≤ 2e−γ′2N/8.

We have hence shown that a randomised classical algorithm

can distinguish between the yes and the no instance with prob-

ability at least 1−2e−γ′2N/8. This classical test assesses if the

string s is a likely outcome of the quantum computation and

gives a protocol for the classical verification of a 2-transform

circuit C:

1. The prover performs C. It generates a classical output

string s and sends it to the verifier.

2. The verifier uses the string s to identify the ampli-

tude 〈C−1
3 (s)|T̂2Ĉ2T̂1|r〉. It then classically samples

N complex phases {X̂j}, with X̂j = Âj + iB̂j .

3. If |Â| > θ and |B̂| > θ the verifier accepts the result s,

and it rejects otherwise.

If the circuit C is δ-deterministic with outcome s, the verifier

accepts with probability at least p if N > 8γ−2 log 2
1−p , and

rejects with at least the same probability otherwise. The most

general case of non-uniformly distributed amplitudes can be

derived by using results from past work on classical simula-

bility of quantum circuits by Van den Nest [41]. There, it is

proved that there exists an efficient classical algorithm to ap-

proximate the element 〈C−1
3 (s)|T̂2Ĉ2T̂1|r〉 with polynomial

accuracy, without imposing any additional assumption. This

can be used to extend our approach to a most general setting.

The fact that the k-transform verification problem is in BPP

for k ≤ 2 bears relevant consequences. We can modify the

question by asking whether there exists any s′ for which C is

δ-deterministic, given the promise as before that either such

an s′ exists, or the circuit is not ǫ-deterministic for any output.

Since s acts as a witness for this, using the previous algorithm,

it follows that this problem is in MA for k ≤ 2. Furthermore,

this witness can be efficiently found by sampling C with high

probability, which can be accomplished by a prover limited to

efficient quantum computation.

We conclude with a remark. The results from [34] state that

circuits in FH2 with sufficiently sparse output distribution can

be simulated efficiently by a classical computer. It remains

an open problem to prove whether the circuits we consider

in this work can be simulated classically. These circuits can

be used to define a novel hierarchy of circuits with respect

to the number of classically samplable transforms, analogous

to the Fourier hierarchy, such that each FHk is necessarily

contained within the k-th level of this hierarchy. Studying

the complexity of classically simulating this hierarchy of cir-

cuits promises then to improve our understanding on the rela-

tionship between the structure of quantum computations and

quantum supremacy.
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