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We propose an effective approach for generating highly pure and strong cavity-mechanical en-
tanglement (or optical-microwave entanglement) in a hybrid modulated three-mode optomechanical
system. By applying a two-tone driving to the cavity and modulating coupling strength between
two mechanical oscillators (or between a mechanical oscillator and a transmission line resonator),
we obtain an effective Hamiltonian where an intermediate mechanical mode acting as an engineered
reservoir cools the Bogoliubov modes of two target system modes via beam-splitter-like interactions.
In this way, the two target modes are driven to two-mode squeezed states in the stationary limit. In
particular, we discuss the effects of cavity-driving detuning on the entanglement and the purity. It
is found that the cavity-driving detuning plays an critical role in the goal of acquiring highly pure
and strongly entangled steady states.

I. INTRODUCTION

Theoretical explores of quantum optomechanical sys-
tem started from 1990s, including several aspects such as
squeezing of light [1, 2], quantum non-demolition detec-
tion of the light intensity [3, 4], preparation of nonclas-
sical states [5–7], and so on. Since the optical feed-back
cooling scheme based on the radiation-pressure force was
first experimentally demonstrated in 1999 [8], cavity op-
tomechanics has attracted much interest and achieved
fruitful progress. Apart from its potential applications
in building highly sensitive sensors and in testing macro-
scopic quantum mechanics [9], cavity optomechanics can
also serve as a light-matter interface to convert informa-
tion among different systems such as atoms or atomic
ensembles [10, 11], Bose-Einstein condensates [12, 13],
superconducting solid state qubits [14].

To date, a variety of experimental optomechanical se-
tups have been reported, for example, whispering gallery
microdisks [15, 16] and microspheres [17, 18], membranes
[19] or nanorods [20] inside Fabry-Perot cavities, nanome-
chanical beam inside a superconducting transmission line
microwave cavity [21]. Notably, the hybrid optomechan-
ical system consisting of different physical components
possesses the distinct advantages of each component,
which maybe beneficial for quantum information pro-
cessing (QIP). As experimentally demonstrated by Lee
[22] and Winger [23], one can manipulate a mechanical
nanoresonator via both the opto- and electro-mechanical
interactions, which may provide a platform to entangle
microwave and optical fields [24].
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In this paper, we propose an effective approach for
generating strong steady-state opto-mechanical entangle-
ment (or optical-microwave entanglement) which is of
great importance for both fundamental physics and ap-
plications in QIP. For a simple optomechanical system
consisting of a laser-driven optical cavity and a vibrat-
ing end mirror, the entanglement between the cavity field
and the mechanical resonator can be induced by the radi-
ation pressure. However, the amount of created entangle-
ment is largely limited due to environmental noises and
stability constraint of systems [25]. In order to enhance
the entanglement strength, a feasible way is to apply a
suitable time modulation to the driving laser [26, 27].
The method is also effective on three-mode [28–30] or
four-mode [31, 32] optomechanical systems. Another
promising approach for creating strong entanglement or
squeezing is to induce effective engineered reservoir by
pumping the optomechanical systems with proper blue
and red detuned lasers [31–40], which is highly attractive
from the experimental point of view. As far as we know,
previous studies mostly focus on enhancing entanglement
between two cavity fields [33, 34] or two mechanical oscil-
lators [30–32, 35–38]. Here, inspired by the approach in
Ref. [36], which has been experimentally demonstrated
recently [41], we propose to use both time-modulation
and reservoir engineering techniques to generate highly
pure opto-mechanical or optical-microwave entanglement
that goes far beyond the entanglement limit based on co-
herent parametric coupling (i.e., ln2) [26, 42, 43]. In our
hybrid three-mode optomechanical system, the interme-
diate mechanical mode acting as a cooling reservoir and
the sum mode of the Bogoliubov modes of the other two
system modes are coupled via the beam-splitter-like in-
teraction. The sum mode in turn is coupled to the dif-
ference mode of the Bogoliubov modes. The swap in-
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teractions allow both the sum and the difference modes
to be cooled via the dissipative dynamics of the inter-
mediate mechanical mode, which is quite different from
Refs. [33, 34]. In Refs. [33, 34] only one of the two Bo-
goliubov modes of the target modes is cooled while the
other Bogoliubov mode is a dark mode that is not cou-
pled to the engineered bath and thus can not be cooled.
Accordingly, the obtained steady states are two-modes
squeezed thermal states i.e., mixed states. On the con-
trary, our proposal allows the engineered bath to cool
both Bogoliubov modes simultaneously. In this way, we
are able to obtain highly pure and strongly entangled
steady state which is vital in the standard continuous-
variable teleportation protocol [44, 45]. Moreover, unlike
the proposal in Ref. [36] which mainly focuses on the
generation of steady-state mechanical-mechanical entan-
glement in the adiabatic limit, we show that the steady
opto-mechanical entanglement (or optical-microwave en-
tanglement) can be maximized by choosing proper ratio
of the effective optomechanical couplings. We also dis-
cuss the critical role of the effective Bogoliubov-mode
coupling (i.e., the frequency detuning between the cavity
and the pumping) on the steady-state entanglement and
purity, which is not considered in Ref. [36].

II. THE MODEL

As shown in Fig. 1, a hybrid modulated three-mode
optomechanical system is composed of an optical cav-
ity mode a and two mechanical oscillators b1 and b2 [see
Fig. 1(a)]; or a cavity mode a, a mechanical oscillator
b1, and a transmission line resonator b2 [see Fig. 1(b)].
g1 is the single-photon optomechanical coupling strength
between the cavity mode a with frequency wc and the in-
termediate mechanical mode b1 with frequency w1. The
cavity is driven by a two-tone laser EL(t). g2(t) is the
time-dependent coupling between the intermediate me-
chanical mode b1 and the second mechanical resonator
(or the transmission line resonator) b2 with frequency
w2. Here, the controllable mechanical-mechanical cou-
pling g2(t) in Fig. 1(a) can be realized by using piezoelec-
trically induced parametric mode mixing [46] or by mod-
ulating the Coulomb interactions between the mechanical
oscillators [40, 47–50], while the mechanical-microwave
coupling g2(t) in Fig. 1(b) may be achieved via the me-
chanical displacement-dependent capacitance Cx of the
microwave cavity.

The system Hamiltonian reads (set ~ = 1)

H = wca
†a+ w1b

†
1b1 + w2b

†
2b2 + g1(b1 + b†1)a†a

+g2(t)(b1 + b†1)(b2 + b†2) +Hdr, (1)

where

g2(t) = 2[gA2 cos(w1 + w2 + wc − wd)t
+ gB2 cos(w1 − w2 − wc + wd)t], (2)
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FIG. 1. (Color online) Schematic representation of the sys-
tem. An optical cavity mode a driven by a two-tone laser
EL(t) is coupled to a intermediate mechanical mode b1 with
single-photon optomechanical coupling strength g1. b1 is in
turn coupled, with a time-dependent coupling strength g2(t),
(a) to another mechanical oscillator or alternatively (b) to a
transmission line resonator b2.

and Hdr is the Hamiltonian of the two-tone driving with
frequencies wd ± w1

Hdr = (ε∗+e
iw1t + ε∗−e

−iw1t)eiwdta+ h.c.. (3)

Moving into a rotating frame by performing the unitary

transformation U = exp{−i[wda†a+w1b
†
1b1 +(w2 +wc−

wd)b
†
2b2]t}, we obtain

HR = U†HU − iU†∂U/∂t
= δ(a†a− b†2b2) + g1(b1e

−iw1t + b†1e
iw1t)a†a

+g2(t)(b1e
−iw1t + b†1e

iw1t)[b2e
−i(w2+δ)t

+b†2e
i(w2+δ)t] + [(ε∗+e

iw1t + ε∗−e
−iw1t)a

+h.c.], (4)

where δ = wc − wd is the cavity-driving frequency de-
tuning. Applying the displacement transformation a =
ā+e

−iw1t + ā−e
iw1t + d to Eq. (4) in the strong driving

case, we obtain the linearized Hamiltonian by discard-
ing all nonlinear terms of the quantum fluctuations pro-
vided that the single-photon optomechanical coupling g1
is small

Hlin = H0 +H1 +H2, (5)

with

H0 =δ(d†d− b†2b2), (6a)

H1 =g1[(ā+b1d+ ā−b1d
†) + (ā+b1d

†

+ ā−b1d)e−2iw1t] + h.c., (6b)

H2 =gA2

{
b1b2[1 + e−2i(w1+w2+δ)t]

+ b1b
†
2[e2i(w2+δ)t + e−2iw1t]

}
+ gB2

{
b1b2[e−2i(w2+δ)t + e−2iw1t]

+ b1b
†
2[1 + e−2i(w1−w2−δ)t]

}
+ h.c., (6c)

where the classical cavity field amplitudes ā± are as-
sumed to be real

ā± = iε±/(−κ/2− iδ ± iw1), (7)

and κ is the cavity decay rate. If we set g1ā+ = gA2 = G+,
g1ā− = gB2 = G−, under the conditions w1, w2, |w1−w2−
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δ| � G±, all the non-resonant terms in the linearized
Hamiltonian Hlin can be effectively neglected under the
rotating-wave approximation

HRWA = δ(β†1β1 − β
†
2β2) + [G(β†1 + β†2)b1 + h.c.], (8)

where the Bogoliubove modes β1 and β2 are unitary
transformations of d and b2, respectively

β1 =s(r)ds†(r) = d cosh r + b†2 sinh r, (9a)

β2 =s(r)b2s
†(r) = b2 cosh r + d† sinh r. (9b)

Here, G =
√
G2
− −G2

+ (we have assumed G+ < G− to

ensure stability) and s(r) = exp[r(db2−d†b†2)] is the two-
mode squeezing operator with the squeezing parameter
r = tanh−1(G+/G−). It’s clear from Eq. (9) that the
joint ground state of β1 and β2 is the two-mode squeezed
vacuum state of the cavity mode d and the mechanical
mode b2. Introducing the sum mode and the difference
mode of Bogoliubov modes

βsum = (β1 + β2)/
√

2, βdiff = (β1 − β2)/
√

2, (10)

then the Hamiltonian in Eq. (8) becomes

HRWA = δβ†sumβdiff +
√

2Gβ†sumb1 + h.c., (11)

which is similar to that of Ref. [36]. Obviously, the sum
mode βsum is coupled to both the intermediate mechan-
ical mode b1 and the difference mode βdiff each via a
beam-splitter-like interaction. Through the intermediate
mechanical mode b1 acting as an engineered reservoir,
both the sum and difference modes, i.e., the two Bogoli-
ubove modes β1 and β2 can be cooled to near ground
state, generating two-mode squeezing between the cavity
mode d and the mechanical mode b2.

III. ENTANGLEMENT AND PURITY

The quantum Langevin equations governing the dy-
namics of the linearized system can be written as

ḋ =i[Hlin, d]− κ

2
d+
√
κdin, (12a)

ḃj =i[Hlin, bj ]−
γj
2
bj +

√
γjbj,in, (12b)

where γj (j = 1, 2) is the damping rate for the jth me-
chanical oscillator, din and bj,in are independent zero
mean vacuum input noise operators obeying the following
correlation functions

< din(t)d†in(t′) >=(n̄d + 1)δ(t− t′), (13a)

< d†in(t)din(t′) >=n̄dδ(t− t′), (13b)

< bj,in(t)b†j,in(t′) >=(n̄j + 1)δ(t− t′), (13c)

< b†j,in(t)bj,in(t′) >=n̄jδ(t− t′) (13d)

with n̄d and n̄j being equilibrium mean thermal occupan-
cies of cavity and the jth mechanical baths, respectively.

Introducing the position and momentum quadratures
for the bosonic modes and their input noises

Qo = (o+ o†)/
√

2, Po = (o− o†)/(i
√

2), (14)

with o ∈ {d, b1, b2, din, b1,in, b2,in} and the vectors of all
quadratures

R =[Qd, Pd, Qb1 , Pb1 , Qb2 , Pb2 ]T , (15a)

N =[
√
κQdin ,

√
κPdin ,

√
γ1Qb1,in ,

√
γ1Pb1,in ,

√
γ2Qb2,in ,

√
γ2Pb2,in ]T , (15b)

the linearized quantum Langevin equations Eq. (12) can
be written in a compact form

Ṙ = M(t)R+N. (16)

Here, M(t) is a 6× 6 time-dependent matrix

M(t) =


−κ/2 δ Im(G1 +G2) Re(G2 −G1) 0 0
−δ −κ/2 −Re(G2 +G1) Im(G2 −G1) 0 0

Im(G1 −G2) Re(G2 −G1) −γ1/2 0 Im(G3 +G4) Re(G4 −G3)
−Re(G2 +G1) −Im(G1 +G2) 0 −γ1/2 −Re(G3 +G4) Im(G4 −G3)

0 0 Im(G3 −G4) Re(G4 −G3) −γ2/2 −δ
0 0 −Re(G3 +G4) −Im(G3 +G4) δ −γ2/2

 ,(17)

where Re and Im respectively denote the real and imag- inary parts. G1 ∼ G4 are given by

G1 =G+ +G−e
2iw1t, (18a)



4

G2 =G− +G+e
−2iw1t, (18b)

G3 =G+[1 + e2i(w1+w2+δ)t]

+G−[e2i(w2+δ)t + e2iw1t], (18c)

G4 =G−[1 + e2i(w1−w2−δ)t]

+G+[e−2i(w2+δ)t + e2iw1t]. (18d)

Since the system is linearized, it remains Gaus-
sian starting from an initial Gaussian state whose
information-related properties can be fully described
by the covariance matrix [51–53]. For our three-mode
bosonic system, the covariance matrix σ is a 6×6 matrix
with components defined as

σj,k =< RjRk +RkRj > /2, (19)

where Rk is kth component of the vector of quadratures
R in Eq. (15). From Eqs. (13), (15) and (16), we can
derive a linear differential equation of the covariance ma-
trix that is equivalent to the quantum Langevin equations
Eq. (16) when only Gaussian states are relevant [26]

σ̇ = M(t)σ + σM(t)T +D. (20)

Here, D is a diffusion matrix whose components are asso-
ciated with the noise correlation functions (see Eq. (13))

Dj,kδ(t− t′) =< Nj(t)Nk(t′) +Nk(t′)Nj(t) > /2. (21)

D is found to be diagonal

D = diag{κ(2n̄d + 1)/2, κ(2n̄d + 1)/2, γ1(2n̄1 + 1)/2,

γ1(2n̄1 + 1)/2, γ2(2n̄2 + 1)/2, γ2(2n̄2 + 1)/2}. (22)

The general stability conditions of the linear differen-
tial equation (Eq. (16) or equally Eq. (20)) are deter-

mined by the corresponding homogeneous equation Ṙ =
M(t)R, which is fully characterized by the time-periodic
coefficient matrix M(t). Suppose that the period of the
coefficient matrix M(t) is T > 0, i.e. M(t) = M(t+ T ).
Let Π(t) be a principal matrix solution of the homoge-
neous equation. The eigenvalues λj (j = 1, 2, ..., 6) of
Λ = Π−1(0)Π(T ) are called the characteristic multipliers
or Floquet multipliers [54], where Π(T ) can be obtained
by numerical integration with initial condition Π(0). The
solutions of Eq. (16) and Eq. (20) are stable if all Flo-
quet multipliers satisfy |λj | < 1. For the special case
of a time-independent coefficient matrix M = M(t = 0)
under the rotating-wave approximation, i.e. omitting all
nonresonant terms in Eq. (5) (all time-dependent terms
in Eq. (17)), the stability requirements can be readily
inferred from the eigenvalues of time-independent coeffi-
cient matrix M , i.e. all eigenvalues of M having nega-
tive real parts. The stability conditions will be carefully
checked in all simulations throughout this paper.

For two-mode Gaussian states of the cavity mode d and
the mechanical resonator b2 of interest here, it is conve-
nient to use the logarithmic negativity EN as a measure-
ment of the entanglement [55, 56]. EN can be computed

from the reduced 4× 4 covariance matrix σr for d and b2
whose components are just the terms associated with d
and b2 only in the full covariance matrix σ. If we write
σr in the following form

σr =

(
V1 Vc
V Tc V2

)
, (23)

where V1, V2, and Vc are 2 × 2 subblock matrices of σr,
the logarithmic negativity EN is then given by

EN = max[0,− ln(2η)], (24)

with

η =2−1/2{Σ− [Σ2 − 4 detσr]
1/2}1/2, (25a)

Σ = detV1 + detV2 − 2 detVc. (25b)

The purity of a two-mode Gaussian state described by a
covariance matrix σr is simply given by

µ = 1/(4
√

detσr). (26)

We next study the steady-state entanglement (σ̇(t) = 0
in the stationary limit t� 1/κ, γ1,2 if the system is sta-
ble) with the time-independent Hamiltonian in Eqs. (8)
and (11) under the rotating-wave approximation (by
dropping all time-dependent terms in Eq. (17)). Fig. 2
displays the steady-state entanglement EN of the cav-
ity mode d and the mechanical mode b2 as functions
of the coupling asymmetry G+/G− for different δ with
zero bath occupations for all modes, where the down-
ward triangle denotes the optimal value of each curve.
Apparently, EN is a non-monotonic function of G+/G−
in any given set of parameters and takes a maximum for
a specific G+/G−. The phenomenon is similar to that in
Refs. [33, 36, 40], and can be explained as follows. The
relation tanh r = G+/G− indicates that the increase of
the ratio G+/G− can raise the squeezing parameter r,
which is beneficial for enhancing the entanglement. But,
from another point of view, the increase in G+/G− (with
G− fixed) accompanies the decline of effective coupling

G =
√
G2
− −G2

+ between the sum mode βsum and the

mechanical mode b1 , which is harmful for the cooling ef-
fect and thus reduces the amount of entanglement. The
best value is obtained when the two competing effects
balance. In addition, we find that the smaller the ratio
γ2/γ1, the lager the maximal entanglement EN and the
optimal G+/G− in each figure. Since the entanglement
generation is largely based on cooling the Bogoliubov
modes via the dissipative dynamics of the mechanical
mode b1, one would expect that a strong damping rate γ1
of b1 and simultaneously weak damping rates γ2 of b2 and
κ of d should increase the peak entanglement EN (corre-
sponding to bigger G+/G−). Comparing Figs. 2(a), 2(b)
and 2(c) with different values of δ, one can find that the
achievable entanglement is also dependent on δ which is
the effective coupling between the sum mode βsum and
the difference mode βdiff and induces the cooling process
of βdiff .
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FIG. 2. (Color online) Stationary cavity-mechanical entan-
glement EN versus the ratio of the effective couplings G+/G−
for different values of δ. (a) δ = 10γ1; (b) δ = 5γ1; (c)
δ = γ1. The other parameters are: G− = 2.5γ1, κ = γ2,
n̄1 = n̄2 = n̄d = 0.

Fig. 3 shows the purity as functions of the coupling
asymmetry G+/G−. Clearly, we can observe that the
purity is inversely correlated to G+/G−. If γ2 is small
enough compared to γ1, one can keep high purity (≈ 1) of
the steady states over a wide range of G+/G−. However,
in order to enhance the entanglement one needs larger
squeezing parameter r = tanh−1(G+/G−) (i.e. larger
G+/G−) which, on the other hand, weakens the effective
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FIG. 3. (Color online) Steady-state purity of the cavity mode
d and the mechanical mode b2 against the ratio of the effective
couplings G+/G− for different values of δ. (a) δ = 10γ1; (b)
δ = 5γ1; (c) δ = γ1. All other parameters are the same as
those in Fig. 2.

coupling G =
√
G2
− −G2

+ and, hence, cripples the cool-

ing process of Bogoliubov modes toward a pure ground
state via the dissipation of b1. For the sake of gaining
large amount of entanglement while retaining relatively
high purity of the entangled states, we can select proper
detuning δ as shown in Figs. 4 and 5, where the down-
ward triangles indicate the optimal values of correspond-
ing curves. Note that the chosen coupling asymmetry
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tanglement EN versus the effective coupling δ. The sets
of parameters corresponding to different lines are γ2 =
γ1/20, G+/G− = 0.604 (red solid); γ2 = γ1/200, G+/G− =
0.786 (blue dashed); and γ2 = γ1/2000, G+/G− = 0.918 (olive
dotted). The other parameters are: G− = 2.5γ1, κ = γ2,
n̄1 = n̄2 = n̄d = 0.
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FIG. 5. (Color online) Steady-state purity of the cavity mode
d and the mechanical mode b2 versus the effective coupling δ.
All parameters are the same as those in Fig. 4.

G+/G− for each γ2 is the value where EN takes maxi-
mum in Fig. 2(a). Remarkably, one can find specific δ
where both the entanglement and the purity take local
maximum. For example, when γ2 = γ1/2000, G+/G− =
0.918, δ ≈ γ1, we have EN ≈ 3.2 and µ ≈ 0.98. In other
words, our scheme allows the generation of highly pure
and strongly entangled optomechanical states.

To find the optimal δopt, one can recall the Hamilto-
nian under the rotating-wave approximation in Eq. (11).
The sum mode βsum is simultaneously coupled to the
difference mode βdiff and the mechanical mode b1 with

beam-splitter-like coupling strengths δ and
√

2G respec-
tively. The coupling between βsum and b1 induces the
cooling process of βsum, while the coupling between βsum
and βdiff is responsible for cooling the βdiff mode. For
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FIG. 6. (Color online) The time evolution of the entan-
glement [(a) and (b)] and purity [(c) and (d)] of the quan-
tum states of the cavity mode d and mechanical mode b2
with [(b) and (d)] and without [(a) and (c)] the non-resonant
terms. The parameters are G− = 2.5γ1, G+ = 0.918G−,
κ = γ2 = γ1/2000, δ = γ1, n̄2 = n̄d, ω1 = 10γ1, and
ω2 = 100γ1.
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a given (fixed) set of parameters G+, G−, on one hand,

if δ is too small (relative to G =
√
G2
− −G2

+), βdiff can

not be effectively cooled by βsum. For example, when δ
approaches 0, only the βsum mode can be cooled by b1.
On the other hand, if δ is too large, i.e., βdiff and βsum
are strongly coupled, the quanta are confined and swap
rapidly between them. Hence, βsum can not be effec-
tively cooled by b1 in this case. For different sets of pa-
rameters G+ and G−, one would expect some moderate
values of δ that correspond to maximum entanglement
and purity. In fact, we have found that the optimal δopt
is approximately equal to G from Figs. 4 and 5, where
δopt ≈ G ≈ 2γ1 for red solid lines, δopt ≈ G ≈ 1.5γ1 for
blue dashed lines, and δopt ≈ G ≈ 0.99γ1 for olive dotted
lines.

So far all our discussions are restricted to the rotating-
wave approximation. To study the effects of non-resonant
terms of the linearized Hamiltonian in Eq. (5), we plot
in Fig. 6 the time evolution of the entanglement and pu-
rity with (Figs. 6(b) and 6(d)) and without (Figs. 6(a)
and 6(c)) the non-resonant terms for some bath occu-
pancies. We study the system dynamics by numeri-
cally solving the differential equation of the covariance
matrix in Eq. (20) with the initial states of all modes
assumed to be in thermal equilibrium with their local
baths. When performing the numerical simulations, the
effects of non-resonant terms are included by using the
full time-dependent coefficient matrix M(t) in Eq. (17)
containing all time-dependent terms. We find that the
non-resonant terms only induce small oscillations and do
not significantly reduce the amount of steady-state en-
tanglement and purity in the long-time limit, suggesting
that the rotating-wave approximation is indeed valid.

IV. CONCLUSIONS

In summary, we have proposed an effective approach to
generate pure and strong steady-state opto-mechanical
entanglement (or optical-microwave entanglement) in a
hybrid modulated three-mode optomechanical system.
By applying a proper two-tone driving of the cavity and
modulating coupling strength between two mechanical
oscillators (or between mechanical oscillator and a su-
perconducting transmission line resonator), one can pre-
pare the two target modes of the system in an entangled
steady state. The proposal uses a intermediate mechan-
ical mode acting as an engineered reservoir to effectively
cool both Bogoliubov modes of the target modes to near
their ground state via the beam-splitter-like interactions.
Our approach allows the generation of highly pure and
strongly entangled steady state, by properly choosing not
only the ratio of the effective optomechanical couplings
but also the cavity-pump detuning.
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A. Guerreiro, V. Vedral, A. Zeilinger, and M. As-
pelmeyer, Phys. Rev. Lett. 98, 030405 (2007).

[43] M. Paternostro, D. Vitali, S. Gigan, M. S. Kim,
C. Brukner, J. Eisert, and M. Aspelmeyer, Phys. Rev.
Lett. 99, 250401 (2007).

[44] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80,
869 (1998).

[45] G. Adesso and F. Illuminati, Phys. Rev. Lett. 95, 150503
(2005).

[46] H. Okamoto, A. Gourgout, C.-Y. Chang, K. Onomitsu,
I. Mahboob, E. Y. Chang, and H. Yamaguchi, Nat. Phys.
9, 480 (2013).

[47] E. Buks and M. L. Roukes, J. Microelectromech. Syst.
11, 802 (2002).

[48] W. K. Hensinger, D. W. Utami, H.-S. Goan, K. Schwab,
C. Monroe, and G. J. Milburn, Phys. Rev. A 72, 041405
(2005).

[49] J.-Q. Zhang, Y. Li, M. Feng, and Y. Xu, Phys. Rev. A
86, 053806 (2012).

[50] P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M.
Zhang, Phys. Rev. A 90, 043825 (2014).

[51] G. Adesso and F. Illuminati, J. Phys. A 40, 7821 (2007).
[52] C. Weedbrook, S. Pirandola, R. Garćıa-Patrón, N. J.
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