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The search for new, application-specific quantum computers designed to outperform any classical
computer is driven by the ending of Moore’s law and the quantum advantages potentially obtainable.
Photonic networks are promising examples, with experimental demonstrations and potential for
obtaining a quantum computer to solve problems believed classically impossible. This introduces
a challenge: how does one design or understand such photonic networks? One must be able to
calculate observables using general methods capable of treating arbitrary inputs, dissipation and
noise. We develop novel complex phase-space software for simulating these photonic networks, and
apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude
lower than experimental correlation measurements for the same number of samples. We show that
these techniques remove systematic errors in previous algorithms for estimating correlations, with
large improvements in errors in some cases. In addition, we obtain a scalable channel-combination
strategy for assessment of boson sampling devices.

I. INTRODUCTION

Bosonic quantum systems have an exponential com-
plexity which has long been recognized as a fundamen-
tal theoretical challenge. At the same time, such com-
plexity is also a potential resource in quantum technol-
ogy. One solution to this challenge is in the application
of coherence theory to these problems. Yet very little
of the intuition and power of coherence theory[1] and
quasi-probability theory[2] has been brought to bear on
the problems of quantum technology. As an example, the
quantum statistical properties of bosonic networks are al-
most exclusively discussed in terms of number state rep-
resentations. Such treatments can be useful, but quickly
run into the inevitable complexity limits of number state
expansions, when applied to networks of large size.

Linear bosonic networks are now being used to imple-
ment novel quantum technologies, including boson sam-
pling [3, 4] and high accuracy, quantum Fourier inter-
ferometers [5]. In this paper, we utilize complex P-
representation methods [6] that can treat any quantum
inputs and outputs to such networks, even at large sizes.
The novelty of our approach is in a transformation from
an exponentially hard number state problem, to a simpler
one in which coherent states with equivalent moments
and correlations is sampled. These techniques help an-
alyze quantum hardware. As an application, we treat
the open problem of how to assess that boson sampling
experiments work correctly. We propose a strategy for
assessment that is scalable to a large network size.

In such experiments one prepares an M -mode bosonic
state ρ̂, which is input into a passive linear optical mul-
timode device, followed by a measurement on the out-
put [7]. For N single boson inputs into multiple channels,
the generation of the random output counts is an expo-
nentially hard computational problem [4, 8]. The most
advanced known classical algorithm [9] takes a time ex-

ponential in N to generate a single random sample of this
type, which makes it impractical at large N . Quantum
Fourier interferometers are an application of this quan-
tum technology in high-precision metrology [10]. How-
ever, most of the development of the theory has taken
place using orthogonal number states, which have in-
herent limits when treating large numbers of bosons or
modes. Our methods are based on general quantum
phase-space representation theorems, so that the under-
lying techniques are generally applicable to linear pho-
tonic networks.

Boson sampling experiments [5, 7, 11–17] have the goal
of demonstrating computations thought to be impossible
on classical computers, and lay the foundations for new
quantum technologies. To fully realize this potential, one
must have tools to analyze them. Ultimately it will be
necessary to take account of imperfect inputs, as well
as losses and other non-ideal behavior. Here, we derive
a hybrid computational and analytic approach to allow
the assessment of such networks. This algorithm is not
intended to solve the BosonSampling problem of generat-
ing the random counts. However, it does make it feasible
to analyze, design and assess photonic networks used for
this and other quantum technology applications.

Linear photonic networks are defined by an M × M
mode unitary matrix U , or more generally by an input-
output transformation matrix T , which can include
losses. The simplest boson sampling experiments [11–
16, 18] have an initial N -photon state |n〉. Here n is
a vector such that N =

∑
nj , nj = 0, 1, and |n〉 is

the number state basis. More generally, one may antic-
ipate that other nonclassical input states will be used.
The output photon numbers, n′, are the observables.
The permanent-squared of the sub-matrices defined by
the input and output modes [19, 20] gives the probabil-
ity of measuring one photon in each preselected output
mode [5, 13], as illustrated in Fig. 1. The optimal classi-
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Figure 1. Channel diagram of a boson sampling photonic
network gedanken experiment.

cal techniques for calculating this #P hard problem [21]
scale exponentially as N2N [22] operations for N inputs,
and become rapidly infeasible above N = 50 [23].

To understand the reason for this scaling, we note that
the permanent of a square matrix U is defined as a sum
over all permutations m of the set of indices {1, . . . , N},
perm(U) =

∑
m

∏
j Ujmj . The number of such permu-

tations is N !. This complexity occurs naturally in a pho-
tonic network, driven by the enormous number of possible
interference paths that a photon can take. Typically, the
filled channels N are only a small fraction of the open
channels M , so that N = M/k where k � 1. Thus, not
only is the calculation of each permanent exponentially
hard as N increases, but in addition there are exponen-
tially many possible sets of N output channels. Each
of these combinations corresponds to a different, unique
permanent — all exponentially hard — which must be
calculated to predict the full set of output probabilities.
While it is known [9] that there exists a random bit gen-
eration algorithm that is only exponential in N (rather
thanM), for generating single random samples, this does
not solve the assessment problem.

We simulate such linear photonic experiments us-
ing “quantum simulation software”, by transforming this
problem into an exact expansion on non-classical phase
space [6], combined with a random sampling method that
generates single phase-space samples with an algorithm
that is only polynomial in N and M . The approach al-
lows unbiased estimates of the experimentally measured
probabilities, and scales better than an experiment, in
terms of time taken for a correlation measurement with
a given sampling error. This is an important point, since
theories used to assess the experiments must be calcu-
lable in a time comparable to the measurements them-
selves, in order to be useful. In addition, it removes
systematic errors that can occur when estimating cor-

relations using previous algorithms. We expect that the
general approach will be applicable to experiments using
a range of nonclassical input states.

However, neither measurements nor calculations of cor-
relations can be readily scaled to large sizes for assess-
ment in a finite time with typical unitaries. Instead, we
propose an analytic signature for assessing claims to solve
Boson Sampling, using a hierarchy of measurable combi-
nations of N -th order correlations, with successive chan-
nels deleted.

Assessment is an integral part of analyzing solutions to
exponential complexity. Our proposal involves sums over
exponentially large numbers of sub-permanents present
in the experiments. This is essential to obtain significant
experimental counts. Any assessment is limited by exper-
imental and theoretical scaling limits, due to count rate
issues. Our analytic theory itself involves a conjectured
solution that is verified numerically. It is likely that it
can be rigorously proved using random matrix theory.

Finally, our approach can calculate in principle any in-
put state or output measurement. More details of these
applications to quantum Fourier transform interferome-
try including dissipative effects from phase noise can be
found elsewhere [24]. This is essential for understanding
how this technology can be scaled to large sizes with im-
perfect sources, with recent progress in this direction for
boson sampling using time-binning techniques [25] and
in metrology applications [26].

The contents of the paper are as follows. Section II
explains how the complex-P continuous phase-space rep-
resentation can be used to calculate arbitrary observ-
ables given any quantum input state to a photonic net-
work, while Section III gives a discrete version of this
method. Section IV gives sampled results for both these
approaches, using a randomized calculation of a boson
sampling experiment. This section includes a treatment
of scaling behavior and a comparison both to experimen-
tal sampling errors and to the Gurvits approximation for
permanents. Section V explains how these results are
generalized to obtain a scalable assessment method for
boson sampling, with comparisons to some other propos-
als. Section VI gives our conclusions.

II. COMPLEX P-REPRESENTATION

We first explain our phase-space method, which uses
the complex P-distribution. This is a quantum phase-
space expansion over a basis of coherent state projec-
tors [6]. It is an extension of methods developed origi-
nally by Glauber [2] in quantum optics, and has the capa-
bility of treating any input quantum density matrix. We
use this method to simulate linear photonic experiments,
evaluating the measurable photonic moments by proba-
bilistically sampling over specifically selected contours in
the higher dimensional complex space CM×CM . Our sim-
ulations do not generate a classical sequence of photon
counts with a permanental distribution, which is known



3

to be exponentially hard. Instead we employ something
more useful for assessment purposes: a sequence of num-
bers that generates equivalent correlations and moments
to an experiment, but has much lower sampling errors
for the same number of samples used.

The integration contour is illustrated schematically in
Fig. 2, noting that only one complex variable of the 2N
that are integrated is shown. We note that this simula-
tion does not directly model photon-counting measure-
ments, since there is a different representation for every
operator ordering and measurement, as originally men-
tioned in Dirac’s review [27]. The advantage of this ap-
proach is that the simulation is no longer exponentially
hard to carry out and can still be used to evaluate correla-
tions or moments of photon-counts, which has important
applications for assessment protocols.

A. Contour integrals and input states

There are several different generalized P-
representations, including complex and positive valued
representations [6]. Because it has a compact form,
without large radius tails, the complex P-representation
is very scalable when treating the high-order correlations
measured in boson sampling experiments. With this
representation, the input quantum density matrix ρ̂(in)

is represented by an integral over a closed contour C
enclosing the origin in a multi-dimensional complex
plane as in Fig. 2:

ρ̂(in) =

‹
C

P (α,β)Λ̂ (α,β) dαdβ . (2.1)

Here, P (α,β) is a complex distribution function that
is a function of the input photon numbers, while α =
[α1, · · ·αM ] is a vector of M complex numbers, as is β.
The quantum operator basis Λ̂ is a set of generalized co-
herent state projectors:

Λ̂ (α,β) =
‖α〉 〈β∗‖
〈β∗‖ α〉

, (2.2)

onto un-normalized Bargmann-Glauber [1] coherent
states ‖α〉. These are defined using photon number states
|nk〉 with nk photons in the k-th input mode,

‖α〉 ≡
∏
k

[ ∞∑
nk=0

αnkk√
nk!
|nk〉

]
. (2.3)

For the purposes of the sampling, it is only necessary
to know that αk and βk are complex numbers, and that
the phase space method will generate the correct quan-
tum moments. We integrate around a circular contour
of radius r, by randomly sampling unit modulus com-
plex numbers z, z′, where α = rz and β = rz′ , with
a complex-valued weight P (α,β). The contour is illus-
trated in Fig. 2.

Figure 2. Contour integral for z, where α = rz. Here z is
chosen randomly with unit modulus for sampling purposes,
to give a Monte-Carlo sampled contour integral.

The over-completeness of the coherent states in quan-
tum mechanics means that there is more than one way
to choose the contour C, and in particular the circular
radius r can be varied. It is an essential feature of our
method that this flexibility enables us to tailor the rep-
resentation to optimize the sampling for different tasks.

For greater accuracy when developing sampling tech-
niques to be used later, one can also use the fact that the
density matrix is hermitian. In this refinement, we define
the expansion in an explicitly hermitian form by taking
the real part, thus imposing the constraint that the final
result must be real:

ρ̂(in) = <
‹
C

P (α,β)Λ̂ (α,β) dαdβ . (2.4)

To perform simulations using this approach it is nec-
essary to have a representation, P (α,β), of the initial
state. This distribution exists for an arbitrary initial
density matrix, either pure or mixed, with any coher-
ence properties and photon numbers [6]. In this paper,
we focus on the simplest case: a pure state in which the
k-th channel has an nk-boson input. The usual boson
sampling experiments send one photon into each of a set
σ of N input modes, so that nk = 0, 1, and, therefore:

N =
∑
k

nk =
∑
k∈σ

nk .

There is more than one way to represent these states,
which are illustrated below. However, the same tech-
niques can be readily adapted to treat other quantum
inputs, for example squeezed or entangled states, which
can be more easily generated in experiments.
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B. Output measurements

Any bosonic input density matrix ρ̂(in) is changed by
transmission through a linear network to an output den-
sity matrix ρ̂(out). In general, to take into account in-
evitable losses, one can imagine a larger unitary that in-
cludes loss channels, but only consider the sub-matrix
T for the accessible channels that are measured, with
other channels just being ignored. An example is the
transmission matrix T =

√
tU in which all channels ex-

perience equal loss. This combines the M ×M unitary
mode transformation U of the entire network, with an
absorptive transmission coefficient t.

The effect of the transmission matrix T on the phase-
space distribution is straightforward, owing to the nor-
mal ordering property of the complex P-representation.
It simply transforms the coherent amplitudes in a deter-
ministic way [28], such that α(out) = Tα, β(out) = T ∗β.
The resulting output density matrix is therefore a con-
tour integral with the same weight, but a modified pro-
jector:

ρ̂(out) = <
‹
C

P (α,β)Λ̂ (Tα, T ∗β) dαdβ . (2.5)

Any output number correlation is given by comput-
ing moments of the known input P -function, using the
equivalent output number variable,

n
(out)
k (α,β) = α

(out)
k β

(out)
k (2.6)

=

∑
j

Tkjαj

∑
j

T ∗kjβj

 .

A typical observable in these experiments [29–31] is an
arbitrary normally ordered quantum correlation of k-th
mode operators, n̂k ≡ â†kâk, belonging to a set of output
modes σ′. In boson sampling we are interested in the cor-
relator over N output channels. Since it is assumed that
no photons are generated inside the device — it has no
gain — any N -fold coincidence count means that there
is exactly one photon detected in each output channel.
The correlator or coincidence count therefore has acces-
sible eigenvalues of 1, 0.

This property of binary counts means that the correla-
tor is also the probability of an N -fold coincidence count,
given an M ×M transmission matrix,

PN |M ≡

〈∏
k∈σ′

n̂k

〉
Q

, (2.7)

where quantum expectation values are denoted 〈〉Q. In
other words, the correlation and the count probability
are identical. Since these observables are hermitian, we
can take the real part of the expansion as in Eq. (2.5).
The quantity of interest here is therefore given by the
following expression for PN |M , where a contour integral

over the complex P-function is denoted as 〈〉P :

PN |M = <
‹
C

P (α,β)
∏
k∈σ′

n
(out)
k (α,β)dαdβ

≡ <

〈∏
k∈σ′

n
(out)
k (α,β)

〉
P

. (2.8)

As the representation P is not unique (the choice of
contour being flexible), one can choose different repre-
sentations of the input state. The main point that we
wish to emphasize is that these techniques comprise a
complete set of efficient strategies for treating quantum
photonic networks. Even though we focus here on num-
ber state inputs and outputs, the general approach is not
limited to this case. Such methods have previously been
used in nonlinear quantum problems as well, and give a
general strategy for calculating any normal-ordered ob-
servable correlation [1].

The complex P-representation is known to have ex-
act solutions for the non-equilibrium steady-state solu-
tions in other quantum photonic devices. These include
the driven anharmonic cavity [32–34], the nonlinear two-
photon absorber [35], the degenerate parametric oscilla-
tor [36], the non-degenerate parametric oscillator [37] as
well as approximate solutions for coupled nonlinear cav-
ities [38] and Bose condensates [39]. Thus, it may not be
impossible to extend these techniques to nonlinear pho-
tonic networks.

III. DISCRETE COMPLEX
P-REPRESENTATION

Just as the coherent states do not provide unique
expansions of quantum states, neither do complex P-
representations. This provides an opportunity to adapt
the representation to a given task. In this section,
we recall the most well-known type of complex P-
representation, and also explain an alternative form using
discrete sums, which is more suitable to sampling high-
order correlations. For number state inputs, the complex
P-distribution has a well-known solution that is readily
proved to exist using Cauchy’s theorem:

P (α,β) =
∏
k

[(
nk!

2πi

)2
eαkβk

(αkβk)nk+1

]
, (3.1)

where nk is the photon count in the mode k. For nk = 0,
the single pole at the origin means that one can replace
the input variable by its vacuum value of αk = βk = 0 in
any average, so that P (αk, βk) = δ (αk) δ (βk), where for
the case of a vacuum mode input into a single mode k.

A. Discrete summation method

While the contour integral solution given above always
exists, other forms are also possible. These give a differ-



5

ent strategy allowing efficient random sampling meth-
ods. Here we will use the limit of an infinitely small
contour, which allows us to use a discrete phase summa-
tion method. Other choices can be utilized for more gen-
eral states. Discrete phase sums have particular utility
in cases where the initial photon number is bounded, for
example with a fixed input boson number. We now intro-
duce one of these discrete approaches, which we term the
discrete or qudit complex P-representation (QCP) [40].
This construction is useful in the limit of the circular ra-
dius r → 0, which leads to d coherent phases distributed
on an infinitesimal circle.

This alternative solution for P (α,β), is still in the
form of Eq. (2.1), but with the distribution consisting
of d discrete delta-functions arranged on a circle of ra-
dius r → 0. With appropriate choices of the complex
amplitude at each point, one can represent an arbitrary
quantum state of a d-dimensional qudit, with initial pho-
ton occupation numbers in each mode of up to n = d−1.
We will show that this approach unifies quantum rep-
resentation theory [6] with discrete sampling permanent
approximation methods [41]. It has numerical properties
that make it both accurate and efficient.

In this approach the input quantum state is expanded
as a superposition of a discrete set of coherent amplitudes
in each of the N non-vacuum modes, defined as:

α(q) = rzq q = 0, . . . d− 1 (3.2)

β(q̃) = rz−q̃, q̃ = 0, . . . d− 1 ,

where z = exp (iφ) is the d-th root of unity and the
phase interval is φ = 2π/d. The density matrix is then
expanded in coherent states with a discrete summation
for the N modes that are not initially in the vacuum
state, using a discretized complex P-function, PQ(q, q̃)
which is expanded in terms of a number-projected kernel,
Λ̂(d):

ρ̂ =
1

d2M

∑
q,q̃

PQ(q, q̃)Λ̂(d)(q, q̃) . (3.3)

Here Λ̂(d)(q, q̃) = P
∥∥α(q)

〉 〈
β(q̃)∗

∥∥, where P is a pro-
jector onto a subspace of up to d − 1 photons per input
mode, and the coherent amplitudes are:

α(q) ≡
[
α(q1), α(q2), . . .

]
β(q̃) ≡

[
β(q̃1), β(q̃2), . . .

]
. (3.4)

This form of representation, the complex qudit P-
distribution (QCP), can be shown to always exist for
Hilbert spaces of bounded occupation numbers, using dis-
crete Fourier transforms. While the full derivation [40] is
given elsewhere, there is an important point to be noted.
The discrete form is combined with a projection opera-
tor at finite r. However, these coherent states have unit
norm in the limit of r → 0, and in this limit no projection
is needed. Input states of higher photon number are ex-
cluded automatically, either from Fourier orthogonality
or because they have negligible weight in this limit.

Therefore, using the above expansion, a complex qudit
P-function PQ always exists for the input density matrix
ρ̂ used here, where:

PQ(q, q̃) =
∑
n,m

〈m| ρ̂ |n〉
∏
j

√
nj !mj !

rnj+mj
e[iφ(nj q̃j−mjqj)] .

(3.5)
Here the expansion allows occupation numbers for

mode k up to nk = 0, . . . d − 1. We note that such dis-
crete sampling gives continuous sampling in the limit of
d → ∞, and in this limit simply reduces to the earlier
contour integral result of (3.1) at small radius. The dis-
crete expansion can be verified as a solution, by inserting
this distribution into the expansion of the density ma-
trix, and noting that, from the properties of the discrete
Fourier transform,

1

dN

∑
q

eiq·(n−m)φ = δn−m. (3.6)

In the simplest binary, or qubit, case where d = 2 and
nk = 0, 1 we consider qk = {0, 1}. This implies that
αk = ±r.

For finite d, this method is only applicable to photon
number inputs that are bounded, which is precisely the
case in many boson sampling experiments, such as Quan-
tum Fourier interferometry [5]. It is also the case in the
assessment scheme described in Section V. Since this is
a case of the complex P-representation, the input-output
transformation used previously in (2.8) is still valid. The
output coherent amplitude for a given discrete input α(q)

is therefore Tα(q). This output is no longer restricted to
the same input set of discrete phases, and hence can in-
clude other particle numbers, different to those in each
input channel. Physically this means that interference ef-
fects can occur, leading to the coherent Hong-Ou-Mandel
type phenomena that are responsible for the nonclassical
boson sampling output statistics.

The output photon number phase-space variable, given
an input of single bosons into the first N modes, is:

n
(out)
k (α(q),β(q̃)) = r2

∑
j∈σ

Tkjz
qj

∑
j′∈σ

Tkj′z
q̃j′

∗ .
(3.7)

Here the notation j ∈ σ is used to restrict the sum
to the N occupied input channels. This is then further
summed over all the possible input values of q, q̃, and
weighted with PQ(q, q̃). The quantum expectation value
or probability of observing a simultaneous count in each
of a particular set σ′ of N output channels is then given
by:

PN |M =
1

d2N
<

∑
q,q̃

PQ(q, q̃)
∏
k∈σ′

n
(o)
k (q, q̃)

 . (3.8)
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B. P-Representation for single-photon inputs

We have shown that there is a mapping between the
phase-space expansion and a combinatoric sum. In the
simplest one mode, one boson case, an inspection of
the general discrete result, Eq. (3.5), shows that the P-
function is simply the product of two complex variables
together with a radial factor:

PQ(q, q̃) =
1

r2
zq̃z−q . (3.9)

The advantage of the small radius limit is that the
known identities for the generalized P-representation are
all valid, and the r → 0 limit can be taken after the cal-
culation. Thus, we can use the standard result that after
transmission through a linear optical system with phase-
shifts, beam-splitters and losses, the output coherent am-
plitudes are multiplied by the relevant linear transmission
matrix. In calculating N -th order correlations of an N -
photon input, all the factors proportional to the radius r
simply cancel.

As a result, after including the complex P-function
weights, an N -th order output correlation is:

PN |M =

∣∣∣∣∣∣ 1

dN

∑
q

∏
`∈σ

z−q`
∏
k∈σ′

∑
j∈σ

Tkjz
qj


∣∣∣∣∣∣
2

.

= |perm [T (σ′, σ)]|2 . (3.10)

As expected [8], this is the square of the permanent of
the sub-matrix of T with rows in σ′ and columns in σ,
which we call T (σ′, σ) ≡ M. After summation on the
q indices, the only terms that survive involve products
of distinct permutations of the matrix indices, which is
the permanent. However, there are exponentially many
terms involved at large N , which requires a sampling
technique that we explain in the next section.

We finally note that the complexity for exact calcula-
tions depends on the value of the discretization number,
d. The minimum value of d for a boson sampling experi-
ment with 1 photon per input channel is d = 2. This gives
the least complexity in an exact computation. It also di-
rectly corresponds to the most efficient and well-known
computational technique for computing permanents.

However, this is only a lower bound. One can use any
value of d ≥ 2. In particular, we can also consider the
exact continuum path-integral as well. This simply cor-
responds to replacing the sums in Eq. (3.10) by integrals
over φ = [φ1, . . . φN ], so that:

PN |M =

∣∣∣∣∣∣
ˆ

dNφ

(2π)
N

∏
`

e−iφ`
∏
k

∑
j

Mkje
iφj

∣∣∣∣∣∣
2

.

(3.11)
The last expression is also the d → ∞ limit of the

discrete complex P-representation, which is a complete
representation. It can be generalized to treat arbitrary

input states, in which case one should use the full ex-
pression of Eq. (3.5) to specify the P-distribution. While
an integral is more complex numerically than a discrete
sum, we show in the next section that it is extremely
efficient when random sampling methods are employed.

IV. METHODS FOR SAMPLING PHASE-SPACE

While the results of the previous section are exact, they
are also exponentially complex. Next, we will explain
the approximate randomized technique that is utilized to
calculate the photon counting coincidence probabilities
in polynomial time. This does not contradict complex-
ity theory results, which only prohibit polynomial time
methods for direct generation of random photon counts
or the exact evaluation of matrix permanents. Verifying
such coincidence probabilities is an important step in any
assessment procedure for boson sampling devices.

For reasons of efficiency, the combinatoric sums can
be evaluated approximately by taking pairs of randomly
chosen integer vectors

(
q(j), q̃(j)

)
, and averaging over

samples of these random phases. In a Hilbert space of
dimension d, there are d possible random discrete phases.
This can be taken to the limit of d → ∞ for a continu-
ously sampled Monte Carlo integral.

There are similarities between experimental measure-
ments and the use of sampled quantum simulations. In
both cases there is a sampling error, since one must cal-
culate or measure results for correlations using a finite
number of samples. The time taken is proportional to the
number of samples used. It is therefore crucial to know
how the average sampling error scales with the number of
active channels N , which determines the computational
time

We find some important results, as follows:

• Random sampling method is scalable even for the
most complex exact method, that is, the d → ∞
limit.

• Computed correlations have a lower sampling error
than in an experimental measurement.

• These techniques eliminate a systematic error that
occurs using previous approximate methods.

A. Overview of calculations and sampling
procedure

In order to explain the general procedure, we will sum-
marize the steps involved in analyzing a photonic net-
work.

1. Firstly, the input M -mode bosonic state ρ̂0 must
be known, which can be any density matrix. For
bounded photon number, a discrete complex-P ex-
pansion can be utilized, otherwise a continuous ex-
pansion is necessary. The existence theorems [6] are
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used to choose a contour and obtain the P-function,
P (α,β) = |P | eiφ, which is a distribution over a
contour in N complex dimensions.

2. The M ×M transmission matrix T must be known
or measured. This can include any arbitrary loss in
principle. In cases of low-frequency phase noise —
for example, from 1/f noise [42, 43] — the refrac-
tive index and hence the transmission matrix is a
random variable, since each repetition of the exper-
iment has a different T . Dispersion and noise cor-
related on time-scales shorter than pulse durations
require a more sophisticated theory [28, 44, 45].

3. The input contour is sampled with equal proba-
bility, |P |, to give coherent samples α(j),β(j), to-
gether with the relevant complex phase. These
are multiplied by the transmission matrix giving
the output coherent samples whose moments, com-
bined with the phase factor φ, give the expected
quantum correlations.

This gives a detailed procedure that would be followed
in the most general case. The present paper treats the
simplest case of considering correlated single-photon out-
puts in a predefined set of channels, without dissipation.
More general examples are treated elsewhere.

B. Sampled calculations of the permanent squared

In both the continuous phase and discrete phase ap-
proach, we use independent random samples of z(j) =

exp
(
iφq(j)

)
, z̃(j) = exp

(
iφq̃(j)

)
. These amplitudes of

unit modulus correspond to scaled versions of α,β∗ in
the original complex P-representation. For each channel
(i) and sample (j), we have z(j)i = zq

(j)
i . In order to ob-

tain an unbiased estimate of the absolute value squared,
we use an ensemble of size L of two independent conju-
gate noise vectors, z, z̃.

To explain the notation, we define a polynomial func-
tion p(M, z) of the N ×N sub-matrix of interest, as:

p(M, z) =

N∏
`=1

z−1`

N∏
k=1

 N∑
j=1

Mkjzj

 . (4.1)

Each approximation of the permanent, which we denote
as p(M, z), is a function of the sub-matrix M and a noise
vector z.

Regardless of the discretization parameter d, any of
these sampling methods give an unbiased estimate of the
modulus-squared of the permanent, and are applicable
to any type of matrix permanent calculation, although
the error scaling depends on the algorithm and type of
matrix. We define 〈〉L as the stochastic expectation value
over an ensemble of L random samples of a stochastic
vector. The sampled calculation of a permanent is then

given by:

〈p(M, z)〉L ≡
1

L

L∑
j=1

p(M, z(j)) . (4.2)

When applied to calculating a permanent, with the dis-
cretization value of d = 2, this method corresponds to
a previously known permanent approximation method,
known as the Gurvits approximation [41].

We do not use this more traditional approach. The
methods described here lead to a much larger class of
permanent approximations, as well as algorithms that are
specifically optimized for calculating the modulus squared
of the permanent — which is the quantity of interest in
boson sampling. In fact, the optimal sampling method
for the modulus squared is not simply using the per-
manent algorithm and squaring the result. The draw-
back with this method is that when taking the modulus
squared of the stochastic estimate, an additional term
is obtained equal to the sampling variance. Hence, the
resulting estimate is not unbiased.

Instead, following the derivation given above, our coin-
cidence rate — or modulus squared of the permanent —
is approximated as the real part of a product of two in-
dependent sets of samples, z, z̃, each composed of E ran-
dom vectors:

PN |M ≈ <
[
〈p(M, z)〉E 〈p(M, z̃)〉∗E

]
. (4.3)

The expression has two terms which are independent but
conjugate on average. The factored terms give indepen-
dent estimates of the permanent and its conjugate, and
their product is an unbiased estimate of the modulus
squared.

C. Estimating the sampling error

In any calculation using random sampling, it is essen-
tial to have a statistical procedure for estimating the
errors. A further modification is therefore used in our
numerical procedure to obtain error estimates. Since we
wish to understand how reliable the procedure is in terms
of its sampling error, the random sampling process de-
scribed above is repeated and averaged a large number
of times for each sub-matrix, to obtain independent sta-
tistical estimates. This allows the standard deviation in
the mean due to sampling error to be estimated. This
gives a theoretical error-bar in our graphs, to indicate
how accurate the calculation is.

To achieve this in our calculations, we divide the total
number of ensembles L into L2 sub-ensembles, so that
L = L1L2. Each of the L2 sub-ensembles has a large
number L1 of independent noise terms. The final esti-
mate is then an average over the L2 sub-ensemble esti-
mates:

|perm(M)|2 ≈ 1

L2
<

L2∑
i=1

〈p(M, z)〉(i)L1
〈p(M, z̃)〉(i)∗L1

.

(4.4)
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The notation 〈〉(i)L indicates an average over the i-th
subensemble, as given in Eq. (4.2). These individual
averages have independent distributions. For large L1,
by the central limit theorem, they are approximately
Gaussian since they involve sums of many independent
random variables. In the limit of small variances, the
products of independent Gaussian distributed quantities
with a non-vanishing average remain nearly Gaussian dis-
tributed. Hence each term of the sum over sub-ensembles
is approximately Gaussian distributed, as we are using in-
dependent estimates of the permanent and its conjugate,
or at worst has a χ2 distribution.

Combining sub-ensemble estimates in ‘quasi-
conjugate’ pairs that are complex conjugate on average,
but are independent, allows for an unbiased estimate
of the permanent squared. The use of sub-ensembles
additionally gives an approximate sampling error, using
statistical methods valid for Gaussian distributions.
We have verified that these statistical estimates are in
fact reliable, by also calculating the error from exact
calculations of the permanent, where available. We find
that there is a good agreement between calculated and
estimated errors, and this agreement is maintained over
a wide range of matrix sizes, as shown in Fig. 3. Results
are shown here for d = 2 and d→∞, with similar results
for the sampling errors, and good agreement with exact
calculations. Since the errors depend on the unitary,
results are obtained here by averaging over randomly
chosen unitaries, as explained next.

D. Unitary averages

Although one can simulate individual unitaries with
this approach, it is more useful to know how the gen-
eral performance scales with network size. This is only
meaningful when expressed as an average over all possi-
ble unitary matrices. Serendipitously, infinite sums over
exponentially complex permanents are analytically cal-
culable, using results from the theory of matrix polar
coordinates and random matrices. This can be usefully
employed to obtain the expected scaling of the average
count rate, for comparison purposes. We therefore can
express our results on computing permanents as averages
over the Haar measure of unitary matrices. These aver-
aging techniques are well-known, and can be applied to
numerical averages.

In these calculations, we therefore obtain a set of ran-
domly chosen unitary matrices according to the Haar
measure over the unitaries, to give a third level of random
averaging. We repeat the above process for each unitary
matrix, to get unitary averages over the sampling errors
that occur in simulating typical random unitary matrices.

For comparison purposes, we note that a boson sam-
pling experiment, the probability of finding N photons
in the M output modes of a linear optical network is
given by PN |M . In the lossless case where T is unitary,
this is the permanent squared of an N × N sub-matrix

of an M ×M unitary matrix, perm
(
UN |M

)
[13]. That

is, in terms of our earlier notation, we take the lossless
case for simplicity (t = 1) and consider the transmission
matrix of interest as a unitary sub-matrix: M = UN |M .
We denote the average over all unitary matrices of this
permanent squared as:〈

PN |M
〉
U

=
〈∣∣perm

(
UN |M

)∣∣2〉
U

≡ P̄N |M . (4.5)

Using techniques from the theory of matrix polar coordi-
nates and unitary averages, this has a known scaling law
given by [46, 47]:

ln P̄N |M = Nε (k) +O(lnN), (4.6)

where ε (k) = k ln k − (1 + k) ln(1 + k) and k = M/N is
the channel ratio.

Unitary averages that are carried out numerically in-
volve a different type of sampling error. Since the space
of unitaries is extremely high dimensional, this average
is carried out in a Monte Carlo way, by choosing random
unitaries according to their Haar measure and averaging
over a finite set. In most cases we find that this variance
over the unitaries is rather small. Where it is significant,
the unitary sampling errors are plotted. This does not
exclude the possibility that there could be atypical uni-
taries where the count rates or estimation errors are very
different from the unitary average. However, these fall
into a set of very small measure, especially at large N
values.

E. Sampling error comparisons

There is a close relationship between the QCP method
with qubits for the permanent squared, and the Gurvits
method for permanent approximation [48], in the case of
an N -photon input and output. Both methods employ
random sampling over binary numbers. We extend this
to qudit and continuous cases, which has advantages in
certain calculations. The Gurvits method provides an
unbiased estimate of the permanent. However, it intro-
duces systematic errors when computing the permanent
squared, owing to effects of the finite distribution width.
It also has large sampling errors when used for combina-
tions of permanents, as described in the next section.

Figs. 4(a) and (b) show the systematic errors of the
modulus-squared of the permanent using the Gurvits
method and the QCP representation with d → ∞ for
a ratio k = 4, when averaged over 100 randomly chosen
40× 40 and 80× 80 unitary matrices respectively. These
figures show that the Gurvits algorithm has a large sys-
tematic bias for the permanent squared. This is an order
of magnitude larger than the standard deviation in the
examples given here. This statistical bias is reduced as
the number of samples is increased, but the samples re-
quired rapidly become impractical as the matrix size N
is increased.
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Figure 3. Actual error of the Gurvits method (solid blue lines)
and the QCP representation with d = 2 (dashed orange lines)
and d → ∞ (dotted green lines) for the modulus-squared
of the permanent, relative to the value of the permanent-
squared, as a function of the total number of samples L =
L1L2. For each point we have used Nm = 100 random
unitary matrices and L2 = 1000 sub-ensembles of size (a)
L1 = 104 . . . 106 and (b) L1 = 106 . . . 108. Here we consider
k = 4, (a) N = 10 and (b) N = 20. Dash-dotted grey lines
denote the estimated experimental error

√
〈P 〉e,m/L.

The data processing for Fig. 4 is performed as follows.
Each data point in the plot corresponds to L total sam-
ples, which is split in L2 sub-ensembles of L1 = L/L2

samples. For the Gurvits method the effective number of
sub-ensembles is L̃(G)

2 = L2 ≡ 103, and for the QCP it
is L̃(QCP)

2 = L2/2 (since two independent sub-ensembles
are used to produce a single sub-ensemble value of the
permanent squared). In this way we ensure that the to-
tal number of random samples used for the comparison is
the same for both methods. For each data point we ob-
tain a Nm× L̃2 matrix P (j)

i of permanent squared values
for each of Nm random matrices and each sub-ensemble.
We also calculate the exact permanent squared values
P̃ (j) for each random matrix.

Per-matrix actual errors are:

E(j) =

∣∣∣∣∣∣ 1

L̃2

L̃2∑
i=1

P
(j)
i − P̃ (j)

∣∣∣∣∣∣ ≡
∣∣∣〈P (j)〉e − P̃ (j)

∣∣∣ , (4.7)
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Figure 4. Actual error of the Gurvits method (solid blue lines)
and the QCP representation with d → ∞ (dashed orange
lines) for the modulus-squared of the permanent, expressed
in the units of the sampling error, as a function of the total
number of samples L. Graphs have N = 10 and N = 20
respectively, with k = 4. The dotted line indicates a 3σ con-
fidence interval. Other parameters are the same as in Fig. 3.

estimated sampling errors are calculated as:

E
(j)
S =

√
〈
(
P (j)

)2〉e − 〈P (j)〉2e√
L2

. (4.8)

We then plot the ratio ∆ of actual errors E relative to the
sampling errors Esamp, that is, we calculate the values

∆(j) = E(j)/E
(j)
S , (4.9)

and plot the mean of the relative error 〈∆〉m averaged
over a finite set of unitaries and the estimated error of
the mean

√
〈∆2〉m − 〈∆〉2m/

√
Nm as error-bars.

In summary, our methods gives an unbiased estimate
of the permanent squared, which is the relevant quantity
in boson sampling experiments. Even more importantly,
our methods can also be used in the practical case that
the input is not a pure binary number state, or where the
output measurements are not n-th order correlations.

From the mathematical viewpoint, these numerical
methods unify the complex P-representation approach in
quantum optics with the computational problem of effi-
cient approximations of permanents and the permanent
squared, which is the relevant calculation for boson sam-
pling.
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F. Experimental vs simulated errors

To make useful predictions about experimental observ-
ables, perfect accuracy is not essential. It is only neces-
sary to calculate the output correlations with better than
experimental errors. Such errors can be accurately esti-
mated from the count rates, which are determined by the
permanents in the idealized case of number-state inputs.
In the experimental case, the measured standard devia-
tions are simply Poissonian errors in the counts, whose
scaling is estimated in the figures.

To make sensible comparisons, one must choose time-
scales that are comparable. Here we note that both digi-
tal computers and photonic devices use similar counting
and logic electronics, which limit the speed of any one
simulation or measurement task. To obtain good statis-
tics, both types of device require repeated measurement
and averages over many samples, to reduce sampling er-
rors.

The time taken is then just T = LTN for L samples,
where TN is the time taken per sample for N channels.
We assume that the factor TN is similar for digital and
photonic devices. In both cases, there are other effects
due to computational overheads and/or physical limits
as N increases, which are neglected here for simplicity.
Given this assumption, we can compare the sampling er-
rors over similar time-scales, that is, with the same num-
ber of samples. Our main purpose is to show that, at a
given error, the computation of quantum correlations is
as feasible as an experimental measurement.

Figs. 5(a)-(d) show the average modulus squared of the
permanent of an N ×N sub-matrix, denoted by P̄N |kN ,
as well as the mean error, or average deviation of the
sampled result from the exact value. The mean error E is
defined as E = 〈|P −〈P̃ 〉e|〉m, where P is exact, and 〈P̃ 〉e
is the quantum simulation ensemble average. All results
are averaged over a finite unitary ensemble of matrices
〈〉m. We have also plotted the Poissonian experimental
error, which is asymptotically larger than the error of our
simulations for an identical sample number.

While exact results for permanents are not available
at large N, owing to their complexity, the average scal-
ing behavior of N -channel coincidences over all possi-
ble unitaries can be calculated analytically. One could
make comparisons of every possible unitary, but as they
are uncountably infinite in number, this approach is not
very practical. In each experiment with E trials, the
unitary average Poissonian measurement variance due to
shot-noise is

〈
σ2
〉
U

= P̄ /L, which therefore scales as
ln
〈
σ2
〉
U

= Nε (k)− lnL+O(lnN).
To verify an experimental probability, one must have

a theoretical error less than this experimental sampling
error. Typically the channel ratio k ranges from unity —
its minimum value — up to a number of order N , which
has theoretical advantages in computability theory [8].
Hence our numerical results given below are compared
with sampling errors in the corresponding experiments,
over a range of parameters. The results show that the

computational error using our method has a better scal-
ing than experiment, for the same size L of the ensemble
of measurements or samples.

The graphical comparisons demonstrate a necessary
requirement for any assessment method. Without this
favorable scaling, the calculation of expected correla-
tions would take exponentially longer than the experi-
ment itself. Instead, computational sampling errors re-
duce rapidly with N , faster than experimental error re-
ductions. This means that the computational time is not
prohibitive.

However, the graphs also show that the average per-
manent values reduce even faster. This makes direct per-
manent measurements problematic at large N , except for
matrices with large permanents. In other words, at suffi-
ciently large N the average count rate for any individual
set of channels goes rapidly to zero for most unitary sub-
matrices, so that the measurement of an individual cor-
relation or moment is impractical. We turn to a solution
of this problem in the next section.

V. CORRELATION BASED VERIFICATION
STRATEGY

As boson sampling experiments improve, the problem
of verification at large N will become acute [16, 29, 31,
49–52]. Ideally, one needs a verification protocol that has
the following properties. It should be:

1. Calculable at large N , in practical timescales.

2. Measurable at large N , in practical timescales.

3. Able to distinguish the required distribution from
other ones.

4. Applicable to all possible transmission unitaries.

5. Unable to be readily mimicked.

6. Part of a well-defined progression of tests.

We emphasize that satisfying every possible desirable re-
quirement for assessment may not be feasible. The re-
quirement to differentiate the desired permanent squared
distribution from all other distributions is still an open
question, and will not be treated here in detail for brevity.
Hence, the last condition is based on the assumption that
no single test will be conclusive.

Since the exact permanents are exponentially hard to
compute, a test that relies on knowing the exact perma-
nent for any sub-unitary will not satisfy the first criterion.
Verification methods that rely on calculating single per-
manents exactly have a limited applicability. They may
work well at small N values. Eventually, exponential
complexity will make such methods impractical. There-
fore, other methods must be found.

Even our quantum simulation techniques cannot reli-
ably predict the permanent squared with high enough
accuracy for all unitaries. At large N , it is really only
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Figure 5. Estimation of the error for unitary-averaged coincidence rate P̄N|kN as a function of N using the QCP method with
a random discrete phase d → ∞. For each point we have used Nm = 100 random unitary matrices and L2 = 100 ensembles
of L1 = 105 samples each. Dashed orange line corresponds to the average for the exact value of PN|kN . Solid blue line is the
average error ε, compared to the exact value. Dash-dotted green line denotes the estimated experimental error

√
〈P 〉e,m/L.

This is always greater than the simulation error, for the same number of samples. Here we consider: (a) k = 1,
(b) k = 2, (c) k = 6 and (d) k = 10.

useful for permanents that have large values. However, it
is the low experimental count rate that is the main limit-
ing factor. The methods described here can compute any
permanent that is measurable with better than the exper-
imental error. An ideal solution is to have an assessment
signature that is both measurable and calculable at large
N values.

We turn to this challenging question in this section.

A. Combined correlations

To obtain a quantity that is both measurable and cal-
culable for typical unitaries at large N , we use the fact
that collecting data from a single combination of N out-
put channels is extremely inefficient. Almost all the out-
put information is lost with this procedure. Yet both
the experimental data and the simulation data can pro-
vide parallel information about all channel combinations
simultaneously, utilizing far more of the available infor-
mation.

Hence, we first consider the combined correlation
CN |M ≡ 〈ĈN |M 〉, defined as the sum over all different
channel combinations σ of length N :

ĈN |M =
∑
σ

N∏
j∈σ

n̂j . (5.1)

Figure 6. A schematic of the combined correlations strategy.
Photo-detectors on output channels are indicated by triangles.
Counter outputs must be binary or passed through a step
function filter. Thus, channel counts are always 0 or 1, even
for multiphoton events, which give total counts less than N .
As a result, the final output counts all events with exactly N
photons in N distinct channels. This sums over all possible
channel combinations.

These sums combine an exponentially large number of
permanents, each of which is exponentially hard to com-
pute. Despite this, they can be evaluated efficiently with
the QCP method using a modification of this technique
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that employs a discrete Fourier transform (DFT); see the
Appendix for details. While Gurvits type binary meth-
ods could also be used in combination with the DFT ap-
proach, the sampling error is much greater than with a
qudit or continuous sampling, in addition to the system-
atic error problem already identified with such methods.

This combined channel, continuous sampling method
provides an exceptionally efficient route to the random-
ized calculation of all the exponentially large number
of N -th order correlations, each involving an exponen-
tially large permanent calculation. The advantage of us-
ing CN |M as the assessment signature is that it has high
count rates even at large N values, and therefore is scal-
able. This can be measured experimentally with high
average count rates, especially in the important large
k regime [46, 47]. A possible experimental realization
would be to attach a detector to every output of the Bo-
son Sampling device, triggered if it detects any photons.
The outputs of these detectors are joined in a correlator
which registers an event when exactly N of the detec-
tors are triggered. See Fig. 6 for an illustration of the
strategy.

Naturally, this is still not exact for finite resources, due
to sampling errors both in the experiment measurements
and theoretical estimates. This leads to a problem: for
large N , CN |M for any unitary is almost always given by
its unitary average. This is known as the self-averaging
property of a large random unitary.

Although satisfying the other criteria, CN |M therefore
doesn’t adequately distinguish between the different uni-
taries, due to sampling errors in the measurement pro-
cess, combined with self-averaging. A fraudulent boson
sampling device could be constructed to approximately
replicate the required statistics, without having to pro-
cess any information about the unitary.

B. Channel-deletion verification

An improved strategy is needed in order to discrim-
inate between different unitary matrices, and obtain a
unique signature of the required permanent distribution.
Therefore, to assess the boson sampling device, we now
consider a hierarchy of experiments in which one or more
channels is deleted from the channel combinations. This
leads to channel-deleted, combined correlation C

(p)
N |M ,

which sum over all N -fold correlations that don’t include
a specific channel p, as illustrated in Fig. 7:

Ĉ
(p)
N |M =

∑
σ,p/∈σ

N∏
j∈σ

n̂j . (5.2)

In this approach we measure the combined permanents
conditioned on channel p having no counts. Similarly, one
can have a hierarchy of measurements C(ρ)

N |M , which are
conditioned on channels in the set ρ = {p1, p2, . . .} hav-
ing no counts. Eventually this exhaustively enumerates

Figure 7. A schematic of the channel deleted combined corre-
lations strategy. One or more channels are deleted randomly
by switching off their counters. Therefore, only the events
with N counts in N distinct channels, excluding deleted chan-
nels, are counted. This gives a high total count rate. At the
same time, it provides a successively more detailed fingerprint
of the unitary. This becomes effectively unique as the number
of deleted channels is increased.

all measurable N -th order correlations, starting with the
most readily measured combinations having the highest
count rates and the lowest experimental errors.

The advantage of this approach is that the goal of a
boson sampling device is to generate samples with a per-
manent distribution. However, any probability distribu-
tion over a finite range has a unique fingerprint [53]: the
set of all its moments. The hierarchy of channel-deleted
combinations converges to this unique signature, in the
limit in which all possible deletions are included.
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Figure 8. Combined correlations C(M)

N|M given in Eq. (5.3)
evaluated using the QCP method. Here we have used d→∞,
k = 6, Nm = 1 and L2 = 104 ensembles of L1 = 106 samples.
The dotted grey line is the analytical result given in Eq. (5.4),
where N = M/k. The dashed blue line corresponds to our
numerical results. The solid blue line is the average estimate
of the error in the mean ES = 〈

√
〈C2〉 − 〈C〉2〉m/

√
L2. The

dash-dotted orange line is the estimate of the error for the
case of d = 2.

Calculation with complex-P distributions is straight-
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is a substantial variation between unitaries even for relatively
large N . All other parameters as in Fig. 8.

forward. The specified channel becomes a loss reservoir
for the remaining M − 1 channels. This modified corre-
lation can be readily evaluated using the QCP method,
since its expectation value can be calculated probabilis-
tically as:

C
(p)
N |M =

〈
1

M − 1

∑
j

e−ijkδ
M−1∏
k=1

[
1 + eijδmk

]〉
. (5.3)

Here mk is a scaled boson number. We note, however,
that even this technique has too large a sampling error
for large enough N values. Eventually, it will become
essential to obtain an analytically calculable signature
to verify boson sampling for the large N case, which is
important from the complexity theory viewpoint.

For this modified correlation with a single channel-
deletion we give a physical argument that allows to con-

jecture an analytical form at large N . In this case the
selected channel p acts as a loss reservoir for the other
M−1 channels. Therefore, we can write α(out) = Uα(in),
β(out) = β(in)U† so that〈

n
(out)
j

〉
=
〈
Uα(in)β(in)U†

〉
jj

=

N∑
i=1

|Uij |2 = Tj ,

and
∑M
j=1 Tj = N . Next, we exclude the counts in chan-

nel p, since this acts as a loss reservoir. From unitarity,∑M
j=1 Tj = Nt , and we get:

M∑
j 6=p

Tj = Nt− Tp = Nt (1− Tp/Nt) = tpN,

where the effective channel loss rate for channel p is tp =

t
(

1−
∑N
i=1 |Upi|

2
/N
)
.

For large k ≡M/N , the modified correlation — which
is the probability of N coincidences in any of the re-
maining M − p channels — is given by the sum of per-
manents of the N × N sub-matrices of the remaining
(M − 1) × (M − 1) matrix. We conjecture that this is
given asymptotically by taking an M − 1 dimensional
unitary average, together with an additional reduction of
tNp due to channel loss, in channel p, so that:

C
(p),conj
N |kN ∼

k→∞

tNp (kN − 1)!(kN − 2)!

((k − 1)N − 1)!((k + 1)N − 2)!
, (5.4)

We have tested this result using our simulation methods,
that allow us to sum over exponentially large numbers —
up to 1034 — of large permanents in parallel. In Figs. 8
and 9 we show numerical results for the channel combi-
nations C(p)

N |M using the QCP method as well as for the

conjecture C(p),conj
N |M . This remarkable task of summing

over exponentially large numbers of quantities, each of
which is exponentially difficult to compute, demonstrates
the versatility of the simulation techniques used here.

Having established that the conjecture gives asymp-
totically correct results — with the exception of a set of
unitaries of measure close to zero, such as unitaries near
to the identity — one might inquire whether it is able
to distinguish between the different random unitaries.
This is investigated in Fig. 10, which plots the mean and
standard deviation of the calculated last-channel-deleted
count rate, C(M),conj

N |M , for 28 randomly chosen sets of 104

unitaries with k = 6. The largest unitaries considered
are 180×180. This graph shows that, while the standard
deviation of the count-rate due to the randomness of the
unitaries is less than the rate itself, the deviation from
one unitary to the next is far from being negligible.

Our numerical simulations show that the conjecture is
asymptotically valid at large k for a single unitary, apart
from anomalous matrices with zero asymptotic measure,
such as the unit matrix. It is in excellent agreement with
our quantum simulations of a random unitary, to a rel-
ative accuracy of order 1% for k = 6. This signature is
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purely analytic, and calculable for large sizes. It is ex-
perimentally accessible, and can distinguish unitaries. It
can be generalized recursively to allow increasing num-
bers of channel deletions, giving an increasingly unique
fingerprint of the relevant permanent squared distribu-
tion, so that it will eventually distinguish any unitaries.
Of course, such distinction is only possible if the unitaries
are sufficiently distant relative to the sampling error.

There have been many different approaches to assess
boson sampling experiments. We must start by ruling
out techniques that require an exact calculation of the
permanent for an arbitrary matrix. This is a #P hard
computation and hence cannot be carried out for large N
with known algorithms. Measurement of the permanent
within multiplicative error is similarly hard (on average),
due to exponential suppression of count rates.

There are interesting methods that distinguish the bo-
son sampling network from an uniform sampler [16, 49].
Other tests are based on considering either distinguish-
able or indistinguishable photons on the boson sam-
pler [16, 49, 50] or distinguishing particles based on their
statistics [31, 54].

In [54], an assessment protocol using the generalized
bunching effect for bosons was proposed. In this case,
for indistinguishable photons an absolute maximum of
the probability of detecting all input particles in some
output modes exists. This assessment protocol has the
advantage that is detectable in a polynomial number of
runs for an arbitrary network, and can distinguish a bo-
son sampler from some other distributions. However, it is
not proven to distinguish boson sampling from all other
possible output distributions, and so does not satisfy cri-
terion 3. This appears to be a fundamental problem
shared by all tests that are scalable, and would imply
that a wide variety of tests is desirable, rather than any
single test.

Many-particle interference can also be used as an as-
sessment for boson sampling [31] using a mode correlator,
which contains the statistical properties of the particles.
Using random matrix theory it is possible to obtain ana-
lytical result for the first three moments for certain condi-
tions on the sub-matrix that contains the information of
the coupling between the input and output modes. We
note that such low order moments are not used in our
assessment protocol, which instead relies on high-order
moments that are directly relevant to the boson sampling
problem. Recent experiments that consider if the input
photons are distinguishable or indistinguishable photons
have been performed based on machine learning [55] or
Sylvester matrices [56]. Generally speaking, these meth-
ods also do not seem to distinguish different unitaries,
although this is a nontrivial requirement.

In [29] a method based on symmetric sampling matri-
ces was proposed. This distinguishes a boson sampler
from another device as a mean field sampler. The test
relies on verifying the suppression law for Fourier matri-
ces [57]. It has the advantage that the proposal can be
carried out for any N , which makes it extremely power-

ful. There is no doubt that this is a very sensitive test.
Yet, as it does not allow assessment for any other unitary,
it cannot satisfy criterion 4.

Our proposed method has the advantage that it can,
in principle, treat any type of matrices, not just Fourier-
transform unitary ones, since it does not rely on the zero-
transmission law that uses the Fourier transform. Our
proposal treats N-th order correlations, and does not rely
on a generalized average bunching effect. In this regard,
while still not necessarily able to eliminate all other pos-
sible distributions, it test for features in the distribution
that were not addressed in previous proposals.

Finally, we note that counting rates are rather cru-
cial at large N values. Efficient nanowire detectors with
t = 0.9 (using an optimistic estimate) and 1 GHz mea-
surement rates [58] could allow one to reach high count
rates. Coincidence rates as high as one per second even
for N = 100 and k = 10, are not impossible, making
these tests possible for large networks. Even very large
boson sampling experiments beyond the limit of exact
computability for permanents are potentially viable for
our test. Such large Nvalues would give an example of a
quantum computation of a random bitstream that is in-
accessible with digital computers. It is important to note
that our complex phase-space methods do not replicate
the random bitstream of coincidence counts, so they can-
not replace the quantum network. Their role is to enable
the design and assessment of the device.

VI. CONCLUSION

In summary, we obtain novel quantum simulation
methods based on complex phase-space P-distributions.
These can be used for the efficient simulation of com-
pletely general linear photonic networks, using samples
of integrals over coherent states. Our method is applica-
ble to arbitrary inputs, losses and outputs. The genera-
tion of each sample is possible within polynomial time in
N and M . By contrast, classical generation of random
photon number counts takes an exponentially large time
in N for each sample, as we expect from known funda-
mental complexity properties of boson sampling. Thus,
our sampling technique is exponentially faster than gen-
erating photon counts.

We also calculate how the sampling error in an es-
timated counting probability scales with the number of
samples. Here there is an unexpected result. Rather than
giving an exponentially slower method than experiment,
as one would obtain using classical random bit genera-
tion, the algorithm is exponentially faster than experi-
ment. This is because of the properties of the coherent
basis. Weighted contour integral sampling of moments
has a much lower error at large N values than estimating
moments from numbers of photon counts. This makes
possible the prediction of any photonic correlation, with
less error than an experimental measurement taking a
similar time.
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In a very large network — the target scenario for boson
sampling — the limitation of any assessment protocol is
the low experimental count rate in any given set of chan-
nels. This is especially an issue when one is no longer
able to efficiently compute permanents using standard
methods. Accordingly, we propose a combined channel
grouping protocol that allows one to assess large-scale
boson sampling experiments. This uses a channel dele-
tion protocol to distinguish different unitaries with rela-
tively low experimental sampling error. The number of
deleted channels can be recursively increased for more
and more fine-grained distinction between the possible
distributions. In such cases, one could then claim vali-
dation at successively more challenging levels of channel
deletion.

We emphasize that our quantum simulation results are
still limited by sampling errors. This is a strong limita-
tion, even with the relatively efficient methods we use.
However, these sampling errors are unbiased, and are
generally much less than with other techniques carried
out with the same computational time requirement. In
addition, since the analytic test we propose is a conjec-
ture, its limitations need to be investigated by further
studies using random matrix theory. Application of the
simulations to dissipation and noise in boson sampling
interferometry will be given elsewhere. Finally, an inter-
esting open question is the applicability of these methods
to other input states.
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Appendix A: Combined correlation calculations

We wish to use the QCP complex phase-space method
in order to evaluate the sums of combined correlations
CN |M ≡ 〈ĈN |M 〉 shown in Fig. 6, given by:

ĈN |M =
∑
σ∈SN

∏
j∈σ

n̂j ,

where SN is the set of combinations
of length N of integers from 1 to M
({1, 2, . . . , N − 1, N}, {1, 2, . . . , N − 1, N + 1}, . . .,
{M −N + 1,M −N + 2, . . .M − 1,M}). This set cor-
responds to all different N -th order correlations of the
output channels. The expectation value of this operator
combines an exponentially large number of permanents
of N × N sub-matrices of an M × M unitary matrix,
each of which is exponentially hard to compute.

We first consider the following correlation polynomial,

defined for j = 0, . . .M − 1:

D̂j =

M∏
k=1

[
1 + eijδn̂k

]
,

with δ ≡ 2π/M . There are M distinct correlation poly-
nomials for j = 0, . . .M − 1, each including all possible
combinations of n̂k. Their Fourier transform is given by:

F̂k =
1

M

M∑
j=1

e−ijkδD̂j .

Here D̂j includes all possible multinomials in n̂k. For
N−th order multinomial terms, the phase factors cancel,
giving us the required correlation:

F̂N ≡ ĈN |M .

Using the results of Section III:

〈ĈN |M 〉 =
1

M

M∑
j=1

e−ijNδ〈D̂j〉

=
1

M

M∑
j=1

e−ijNδ〈
M∏
k=1

[
1 + eijδn̂k

]
〉

=
1

M

M∑
j=1

e−ijNδ〈
M∏
k=1

[
1 + eijδn

(o)
k (q, q̃)

]
〉P

where n(out)k is given by Eq (3.7) as:

n
(out)
k = r2

(∑
s∈σ

Tksz
qs

)(∑
t∈σ

Tktz
q̃t

)∗
for an M ×M transmission matrix T , and single-photon
inputs in a set of distinct channels σ ∈ SN . Here
z = e2πi/d and qs and q̃t are random integers uniformly
distributed in the range [0, d− 1]. The P -function used
in the averaging 〈〉P is the product of the factors (3.9)
for one-photon inputs and ones for zero-photon inputs:

P (q, q̃) =

N∏
m=1

1

r2N
zq̃mz−qm

Denoting αk =
∑
s∈σ Tksz

qs , β∗k =
∑
j∈σ Tktz

q̃t , and
introducing a scaled boson number mk = αkβk, and a
combined unit random ym = zq̃mz−qm , we get for the
combined correlation:

〈ĈN |M 〉 =
1

M

M∑
j=1

e−ijNδ ×

〈

(
N∏
m=1

1

r2N
ym

)(
M∏
k=1

[
1 + eijδr2mk

])
〉.
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Since all the terms with more or less than N of mk fac-
tors are eliminated by the Fourier transform technique,
the only ones that are left have the r2N multiplier that
annihilates the 1/r2N of the P-function:

〈ĈN |M 〉 =
1

M

M∑
j=1

e−ijNδ〈

(
N∏
m=1

ym

)(
M∏
k=1

[
1 + eijδmk

])
〉.

Appendix B: Combined correlations with excluded
channels

We now consider how to distinguish unitaries. Define a
count rate C(ρ)

N |M , such that we definitely have no count
in the set ρ consisting of Q different channels, and we
don’t care where the other counts are except that there
are N single counts in total. Define S(ρ)

N as the set of all
N channel combinations that exclude the channels from
the set ρ.

Similarly to the previous section, we have

Ĉ
(ρ)
N |M =

∑
σ∈S(ρ)

N

∏
j∈σ

n̂j .

Consider the modified correlation polynomial, defined for

j = 0, . . .M −Q− 1:

D̂
(ρ)
j =

∏
k=1...M, k/∈ρ

[
1 + eijδQ n̂k

]
,

with δQ ≡ 2π/ (M −Q). The Fourier transform is given
by:

F̂
(ρ)
k =

1

M −Q

M−Q∑
j=1

e−ijkδQD̂
(ρ)
j .

And as before, for N−th order multinomial terms, the
phase factors cancel, giving us the required correlation:

F̂
(ρ)
N ≡ Ĉ(ρ)

N |M .

Similarly to the previous section, the probabilistic for-
mula for the expectation value of Ĉ(ρ)

N |M can be found to
be

〈Ĉ(ρ)
N |M 〉 =

1

M −Q

M−Q∑
j=1

e−ijNδQ ×

〈

(
N∏
m=1

ym

) ∏
k=1...M, k/∈ρ

[
1 + eijδQmk

]〉.
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