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We introduce the notion of adiabatic state-flip of a Floquet Hamiltonian associated with a non-
Hermitian system that it is subjected to two driving schemes with clear separation of time scales. The
fast (Floquet) modulation scheme is utilized to re-allocate the exceptional points in the parameter
space of the system and re-define the topological features of an adiabatic cyclic modulation associated
with the slow driving scheme. Such topological re-organization can be used in order to control the
adiabatic transport between two eigenmodes of the Floquet Hamiltonian. The proposed scheme
provides a degree of reconfigurability of adiabatic state transfer which can find applications in
system control in photonics and microwave domains.

PACS numbers:
I. INTRODUCTION

The adiabatic theorem of Hermitian physics is at the
heart of many phenomena with far reaching technological
applications. In simple terms it states that when a wave
system described by a (sufficiently) slowly varying Hamil-
tonian H (t) is initially prepared at a non-degenerate nor-
mal mode of H(t = tp), it will remain in the correspond-
ing normal mode of the instantaneous H(t) throughout
the evolution. Consequently a cyclic adiabatic change
in a multi-parameter space will return the system to its
initial state, with possible an overall phase modification
— the famous Berry phase. The latter turns out to be
insensitive to the specifics of the adiabatic motion and
depends only on the choice of the path in the parame-
ter space [I]. Although the theorem has been originally
derived in the framework of quantum mechanics, its ap-
plications were far reaching, covering areas ranging from
acoustics, to microwaves and optics [2H4].

The situation is richer when a non-Hermitian sys-
tem is driven adiabatically. In this case, the existence
of non-Hermitian spectral singularities known as excep-
tional points (EP) (simultaneous coalesce of eigenvalues
and eigenvectors) [5] can lead to a completely different
physics than the one predicted by the adiabatic theorem
of a Hermitian system. If the parametric variation of
the Hamiltonian around an EP occurs quasi-statically,
the instantaneous eigenstates transform into each other
at the end of the cycle with only one of them acquiring
a geometric phase [6HR]. If, however, the adiabatic evo-
lution around the EP is dynamical (but still slow) then
only one state dominates the output and what determines
this preferred eigenstate is the sense of rotation in the pa-
rameter space. This surprising effect has been recently
confirmed in microwave and optomechanical systems [9-
TT]. The growing attention to this chiral mode switching
(state-flip) has roots in its potential technological impli-
cations; specifically the robustness of the associated adi-
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abatic transfer against small fluctuations in the control
path [I2] is an asset for many practical applications. In
this work we focus on applications of the non-Hermitian
state-flip in the framework of classical waves.

Less effort has been devoted in proposing driving pro-
tocols that alter the dynamics by changing the topolog-
ical features of a fized (both in position and direction)
adiabatic control path by re-allocating the EP in the
parameter space. Here, we explore this viewpoint and
provide reconfigurable protocols that manipulate the rel-
ative position of an EP singularity, by placing it inside
or outside a fixed closed adiabatic control path. Then,
we harvest such topological re-organization in order to
control adiabatic state transfer between two states of a
non-Hermitian system. The scheme involves a Floquet
driving with a (fast) frequency which is rationally re-
lated to the inverse period needed for a cyclic adiabatic
variation associated with two other control parameters.
First we show that the Floquet driving re-allocates or
even creates/annihilates EPs in the parameter space in a
controllable manner. Then we introduce the Floquet sce-
nario of adiabatic state-flip. We show that the “Floquet”
EPs have the same topological features as the ones asso-
ciated with a static non-Hermitian Hamiltonian. Finally
we control an adiabatic state-flip from one Floquet eigen-
mode to another by re-allocating (inside or outside the
cyclic adiabatic path) the Floquet EP via management
of the Floquet driving.

The structure of the paper is as follows. In the next
Section II we discuss the general considerations and state-
ment of the Adiabatic State-Flip for Floquet systems.
Special attention is given to the preparation of the ini-
tial state and to the representation/observation of the
evolved state. Then in Section III we give two specific ex-
amples of Adiabatic State-Flip for Floquet systems. The
first example (subsection III.A) is analytically treated
and thus provides a clear understanding of the Adiabatic
State-Flip. The second example (subsection III.B) is
physically more appealing but it is not analytically solv-
able and has been treated only numerically. Nevertheless,
it reconfirms our statements for Adiabatical State-Flip.
Finally our conclusions are given at the last section IV.



II. GENERAL CONSIDERATIONS AND
STATEMENT OF THE PROBLEM

We consider the following time-dependent non-
Hermitian system described by a Schrédinger-like equa-
tion:

ba(1))[¥(t)) (1)

where b,,(t) and bq(t) are two (complex) periodic time-
varying parameters with frequencies w and € respec-
tively. Below for simplicity we shall always assume that
the Hamiltonian H is a 2 x 2 matrix. Equation can
be understood, in the framework of coupled-mode the-
ory, as a way to describe two periodically-driven coupled-
modes. Such system describes two single-mode coupled
resonators or the (quasi-degenerate) modes of a single
resonator — as long as they are well separated from all
other modes. In our considerations below we assume
that the resonators are of mechanical (e.g. acoustic) or
electromagnetic nature. All parameters in Eq. are
dimensionless and written in arbitrary units.

Furthermore, we impose separation of time scales be-
tween the two driving schemes by requesting that w =
N where N > 1 is a positive integer. The adiabatic
variation of bq (¢) is ensured by the condition & — 0
while the Floquet (fast) driving of H(t) is controlled by
w and shall be used to manipulate the position of the
EP in the parameter space. During the time interval
tel0,Tqg = %’r] the parameter by defines a close path
in the Re(bq) — Im(ba) parameter space. A clockwise
(CW) motion along the parametric path occurs whenever
2 > 0. The case of counter-clockwise (CCW) evolution
corresponds to 2 < 0. At the end of the close path we
have that H (t + Tq) = H (t).

A. Preparation, Evolution and Representation for
a Floquet Adiabatic State-Flip Scenario

In the previous adiabatic cyclic schemes the empha-
sis of the analysis was given to the notion of instanta-
neous Hamiltonians and their corresponding eigenvalues
and eigenvectors [I3| [I4]. In contrast, in the presence
of Floquet (fast) driving, like in Eq. , the appropri-
ate description of the dynamics is done using the notion
of the Floquet Hamiltonian. In this case we shall as-
sume that the preparation and the representation of our
evolve state(s) occurs in the corresponding Floquet basis.
Therefore, any notion of state-flip via adiabatic encircle
of EPs has to be analyzed and examined with respect to
this basis. At the same time any notion of EPs has to
involve information about the Floquet quasi-energies.

To be specific, we consider a time period of H (t) (see
Eq. (1)) from ¢t = 0 to To = 25. We define the obser-
vation times ¢ to be integer multiples of 27 /w. We fur-
ther assume that, between two consequent observation
times, the slow varying parameter bg is approximately

a co nstant Then the corresponding evolution operator
U (t+ 22,t) is [15]

- 2
0§ (t—|— W,t) =T Hr, (2)
w

where Hp is the “instantaneous” Floquet Hamiltonian.
Its quasi-energies and eigenvectors will be defined as Ay
and |[AL) respectively.

The dynamics, in the limit of distinct time scales
N > 1, can be evaluated numerically by applying the
Floquet evolution matrix Eq. to the initial prepara-
tion |¥(t =Tq)) = l]igl U 2n(l 4 1)/w,2nl/w) |[¥(0))
[16]. Note that during the numerical evaluation one needs
to consider the variations in b between subsequent time
steps.

We define our adiabatic state-flip control protocols in
the following way. Assume that at ¢t = 0 we prepare the
system at a Floquet eigenstate |¥(t = 0)) = |A\x). Then
we evolve this initial state under Eq. where bq is
a slow-varying complex parameter that performs a fized
close path in the complex by parameter space. We want
to demonstrate that a controlled variation of w can lead
to evolved states |U(t)) at ¢ = T which are proportional
to the complementary (or the same) Floquet eigenstates

[A5) (1A£))-

B. Observables for a Floquet Adiabatic State-Flip
Scenario

For our analysis we have introduced the measure p(t)
which quantifies the relative weight with which each in-
stantaneous eigenvalue /eigenvector participate in the
evolution. Specifically p(t) is defined as

las (DA (8) + la— () PA- (1)
a4 ()2 + [a- (D)2
where the eigenvector populations a4 (t) are evaluated

via the decomposition of the evolved state |¥(¢)) in the
instantaneous Floquet basis |A1).

p(t) =

3)

III. THEORETICAL ANALYSIS AND SPECIFIC
EXAMPLES OF ADIABATIC STATE-FLIP IN
FLOQUET SYSTEMS

We provide below two example cases of Adiabatic
State-Flip in Floquet systems. The first example, al-
though artificial, is analytically treatable and provides
us with appropriate insight of the Adiabatic State-Flip.
Although it can be solved exactly by employing the ro-
tating frame, we have instead used the Floquet language
(see Section II) in order to make transparent the general
statements for Floquet Adiabaric State-flip. The second
example, is treated numerically but it is physically more
appealing. For example it can describe, in the frame of
coupled mode theory, two periodically driven modes of an



optomechanical system [9, [T0]. Alternatively it can de-
scribe two resonant modes of two coupled LC resonators
in the UHF range [25], whose capacitive coupling and LC
impedance of the individual resonators are periodically
modulated in time.

A. Example 1

We start our analysis with an analytically solvable sys-
tem described by the time-dependent Hamiltonian

a by (t
H0= [ ot "4 | (4)

where bo(t) = e*¥ and b, (t) = ™! are the two com-
plex time-varying parameters. During the time-interval
t € [0,Tq] the parameter by defines a unit circle cen-
tered around the origin of the Re(bg) — Zm(bg) param-
eter space. For simplicity we assume that the constant a
is a real number. The associated instantaneous Floquet
Hamiltonian is

=t )

with corresponding quasi-energies and eigenvectors given
by

2
A CarN R e R O

where n = a + §.  When by is considered time-
independent, the eigensystem Eq. has an EP degen-
eracy at b = —n? = —(a + w/2)?. Depending on the
value of the Floquet frequency w, the Floquet EP can be
inside (|n| < 1), close (|n| £ 1) or far (Jn| > 1) away from
the adiabatic unit circle that is defined by the variation
of the complex parameter bq(t).

In the limit of distinct time scales N > 1, the eval-
uation of |¥(t =Tg)) can be done, in principle, using
Eq. and following the general description presented
above. However, for the specific Hamiltonian Eq. the
evolved state |¥(t)) can be analytically evaluated. This
analytical treatment will allow us to get some confidence
on the general statements about adiabatic state-flip in
Floquet systems.

1. Dynamics

We want to evaluate the evolution of the state |¥(t))
at integer multiples of 27 /w (within the adiabatic cy-
cle t € [0,Tq]), and specifically its form at the end of
the adiabatic circle. First, using a time-depended trans-
formation U(t), we eliminate the Floquet driving from
Eqgs. and simplify the original Egs. dramati-
cally. The (non-unitary) transformation U () is:

wt

s (1 + %) etz
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U(t) = l B ] (7)
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FIG. 1: Overview of the instantaneous Floquet eigenvalue
surfaces A+ versus the adiabatic complex parameter b for the
system of Eq. . The eigenvalue surfaces correspond to the
real part of A+ for two different Floquet driving frequencies
w = 0 (inner red and orange surfaces) and w = 6 (outer
blue and gree surfaces). The solid red line represents the
real part of p(t), see Eq. . The direction of the fized
adiabatic cyclic variation of bq is chosen in a way that we
have state-flip for w = 0. When w = 6 the EP is re-allocated
(see black arrow) outside the adiabatic cycle and the system
remains at the same instantaneous Floquet state as the initial
preparation. In both case |U(t =0)) = |A+(¢ =0)) and the
parameter a = 0. In addition, we shift A+ in Eq. @ by a real
constant so that A+ = 0 at the EPs.

Egt])stituting [U(t)) = U (t)|e(t)) in Egs. (1H) we get

l%lw(t» =Hesplp(t)), Hepp = {bg Jornz (1)] (8)

where Hcyy involves the Floquet (fast) frequency w as a
parameter. Below, without loss of generality, we assume
that n > 0. For completeness, we also find the instanta-
neous eigenvalues and eigenvectors of Heyy:

1
EX (¢ > = [ } . (9
eff (t) Eétf s (t) 9)
These eigenvectors are related with the Floquet eigen-
vectors Eq. @ via the time-dependent transformation
Eq. (H), ie., U(t) Ej;f(t)> o |A£(t)), when ¢ is an inte-
ger multiple of 27 /w (observation times). Similarly the
instantaneous modes Eq. @[) have the same EP singular-

ity as the instantaneous Floquet eigenvalues.
Let us first discuss the CW variation of bg,. The general

solution of Eq. can be easily expressed in terms of
modified Bessel functions as [I§] :

EZ () =+ v/bo + n%;

e =0 | [ re| 0|

where C7 and Cs are arbitrary constants determined by
the initial conditions, I, (vz) and K, (vz) are the v(=



211)-th order modified Bessel function of the first and
second kind, I} (vz) (K], (vz)) is the derivative of I, (vz)
(K, (vz)) with respect to the argument and z = v/bq /n,
7 =1Qt/2. Note that the general solution in Eq. is
not a periodic function since the modified Bessel function
I, and K, are multivalued functions.

We are mainly interested in the form of Eqs. at the
beginning ¢t = 0 and at the end t = Tq of the adiabatic
circle. For ¢ = 0, and under the adiabaticity condition
Q — 0T (corresponding to v = 2 — 400), we can easily
show that appropriate choice of C, Cs leads to the forms

Ee_ff(O) when Ch, =1;C5 =0

ET (0))when O =0;Cy =1 an
eff 1 s &2

where we have taken into account that I}, (£) /I, (%) ~
V1+n? and that K], (£) /K, (£) ~ —V1+n? [18].

Next we evaluate the evolved state Eq. . at
the end of the adiabatic circle t = To. Using the
identities I, (ze"™™) = €¥™7],(z) and K, (z"™™) =
e~ Mt K, (z) — amwsin (vmr) ese (vm) I, (2) (m is an ar-
bitrary integer) [I8], Eq. can be written, at ¢t = Tq,
as

o)) = (Cre™ — e | L5 |

—wn | K (%) }
+ Cye [ “wo(2) |- (12)
In the adiabatic limit © — 0T, we can approximate
both I, (%) and I/ (%) using their asymptotic forms
which are dominated by the exponential factor e*” [I§].
Similarly K (%) and K}, (£) are dominated by the factor
e ¥ [18]. Inall cases n = /14 1/n2—In (n + V1 + n?).
Most importantly, its sign is controlled by the magnitude
of the Floquet driving frequency w via the parameter n.
At this point, it is important to remind that n also defines
the position of the Floquet EPs (see Eq. @ and discus-
sion below). We find that the transition from positive
definite 7 to negative n-values occurs at ng ~ 1.51.

For n > 0, corresponding to n < nc, we get that irre-
spective of the initial conditions Eq. . ) the final state
lo(Tq)) is dominated by the first term in Eq. (12) [19].
Taking into account that I, (£) /I, (%) ~ V1 + n? [18]

we eventually have that |p(Tq)) ’Eeff (O)>

When n < 0, corresponding to n > n¢c, one needs
to distinguish between two cases for the general solution
Egs. . When C; =1 and Cy = 0 (corresponding

to |p(t = O)) x ‘Eeff (O)>, see Eq. ), we have that
lp(t = Tq)) x ’Eeff (0)> If on the other hand C; =0
and Cy = 1 (corresponding to |p(t = 0)) ‘Eeff 0)>

), then we have that |p(Tq)) ‘Eeff >

Comparison with Egs. . lead us to the conclusion
that, whenever n > n¢, we always come back at the

see Eq.

initial instantaneous state at the end of the adiabatic
circle.

The case of counter-clockwise (CCW) variation of b
corresponds to the limit of 2 — 0~ and can be treated
in a similar manner. Redefining v to be —2n/Q) and
performing the same analysis as above we arrive at the
following conclusions: when n < n¢, irrespective of the

initial preparation Eq. , we get |o(Tq)) ‘ e >

when n > ng we always come back, at the end of the
circle t = Tq, to the initial Floquet eigenstate.

2. Floquet state-flip protocols

The chiral state-flip has been recently predicted the-
oretically [12| [I3] 20] and demonstrated experimentally
[0, T1] for adiabatic cyclic variations of non-Hermitian
Hamiltonians which encircle an EP— though these investi-
gation have been performed in the absence of any Floquet
driving i.e. w = 0. In fact, these studies underplay (or
even disregarded) the fact that a state-flip can also occur
in the case that the EP is outside, but still in the vicinity,
of an adiabatic cyclic variation — as indicated by our anal-
ysis above. Along these lines we also point out the study
of Ref. [12] (corresponding to w = 0) which considered
the state-flip scenario for an oscillatory motion along a
straight path located in some distance away from the EP
(see also recent publication [22]). In fact Hamiltonian Eq.
can be considered a starting point for the analysis of
a state-flip due to an adiabatic encircling of an EP as-
sociated with a non-Hermitian Hamiltonian without any
Floquet driving. Therefore all our conclusions apply in
the latter framework as well. It is therefore tempting
to speculate that the constraint n? = |bET| < |bg| = 1
is very restrictive (a sufficient condition) i.e. under this
condition one necessarily has state-flip. In fact a less re-
strictive condition is that |n| < |n¢|, (where in our case
1< |ncl).

Let us finally demonstrate that the ability to engineer
the topological features of an adiabatic circle via Flo-
quet frequency w-variations can be utilized for the con-
trolled manipulation of state-flip between the two “in-
stantaneous” Floquet eigenstates |Ay(t = 0)). In Fig.
we report the real part of the instantaneous Floquet
eigenmodes Ay (upper two surfaces) and A_ (lower two
surfaces) in the complex bg-parameter space for two
different Floquet driving frequencies w when a = 0.
Specifically, the red-orange (inner) surfaces correspond to
w = 0 while the blue-green (outer) surfaces correspond
to w = 6. The projection of the real part of p(t) in
this space is also shown with red (blue) lines for w = 0
(w = 6). Finally the corresponding EP are indicated with
filled red (blue) circles respectively. We see that the Flo-
quet driving has re-allocated the position of the EP in
the b parameter space. Specifically, while for w = 0 the
EP is inside the adiabatic cyclic path, it is re-allocated
far away from the circle when the Floquet frequency is



w = 6. In both cases the variation of by (both varia-
tion rate and direction of variation of control parameters
Re(ba) — Im(bg)) has been kept fixed. The direction
of the adiabatic circle has been chosen in such a way
that the system undergoes a state-flip at w = 0. When
the Floquet frequency has been reconfigured to the value
w = 6 the EP has been re-allocated outside the adiabatic
circle — thus enforcing the system to evolve to the initial
state at the end of the adiabatic cycle t = Tq,.

B. Example 2

The above scheme is not specific to the toy model Eq.
. To further confirm its validity, we now perform
simulations with a driven Hamiltonian which describes
two (evanescently) coupled resonators. We note that the
same model Eq.[L3] can be also realized in the framework
of optical coupler [23]. The Hamiltonian takes the form

€1 — 5 K
H(t) = /<;2 e+ 9|’

(13)
where k is the coupling strength between the two res-
onators, €1, eo are the eigenfrequencies of each resonator,
and ~ is the gain (loss) parameter that describes the loss
(gain) at first (second) resonator. We further assume that
the resonant frequencies of each of these resonators are
periodically modulated as €1 (t) = —ea(t) = —& sinwt—r.
The “fast” (Fourier) variation with period w can be
achieved via modulation of the permittivities (say via
a current injection) of the resonators. The parameters
r and k represent two additional variables that vary
slowly in time (adiabatic parameters). A possible way
to achieve this slow modulation is by bringing in the
vicinity of the resonators a mechanical cantilever which
oscillates with a slow frequency 2 < w. In the frame-
work of Eq. one can now identify b, (t) = sin(wt),
Re(ba(t)) = ra(t) and Zm(ba(t)) = ka(t). In our numer-
ical calculations, below, we shall use rq(t) = 7o sin()
and kq(t) = ko + K1 cos(Qt).

Following the same analysis as previously, we first
identify the instantaneous Floquet eigenstates and quasi-
energies, that will be used for the preparation and obser-
vation of the evolved state. The associated “instanta-
neous” Floquet Hamiltonian Hp at times which are mul-
tiples of 27/w, and in the w — oo limit and F' ~ O (w),
is [24]

HF%|: —re

— 3 ke () 6’5] (14)
kado g) e’ ’

TQ"’%

where Jj is the 0-order bessel function of the first kind.
The instantaneous Floquet eigenvalues are evaluated as

Ar = :l:\/[KJQJO (g)f +[rq +1y/2]>. The instanta-

neous EPs occurs at (Tgp,ﬁgp) = (O,i 1 ) The

370 (/o)
corresponding eigenvectors are denoted as |Ay(t)). Their
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FIG. 2: The evolution, during one adiabatic cycle, of the
instantaneous Floquet eigenvalues and the associated p(t) for
the system described by Eq. (13). Upper row reports the
real part of these quantities while the lower row reports their
corresponding imaginary part. (a,d) The Floquet frequency
is w = 50 and it is chosen in a way that the adiabatic cyclic
variation of 7o and kg encloses an instantaneous Floquet EP;
(b,e) The Floquet frequency is w = 52 and it is chosen in a
way that the EP is in the vicinity of the the adiabatic cyclic
variation of rq and kq; (c,f) The Floquet frequency is w = 80.
In this case the EP is far away from the parameter domain
where the adiabatic cyclic variation of rq and ko occurs. In
all cases the fixed adiabatic parameter variations ro and kg
are To(t) = rosin(Qt) and ko(t) = ko + k1 cos(Q2t) where
ro = 0.1, 2 = 0.01, ko = 4 and k1 = 2. The other parameters
are v =1 and F' = 100.

expressions are rather complicated and we do not give
them here. Below, we have evaluated them numerically
for each observation time ¢ during the evolution, via a
direct diagonalization of the Hamiltonian Eq. .

In Fig. |2 we report the evolution of eigenvalues Ay ()
(red lines) and A_(t) (black lines) together with the evo-
lution of the corresponding p(t) (red circles and black di-
amonds) for three different values of the Floquet driving
frequency w = 50,52 and 80. The upper row corresponds
to the real part of these quantities while their imaginary
part is reported in the lower row. The parameters used in
these simulations are v = 1 and F' = 100, while the slow
varying parameters rq, ko have been chosen to change
as ro(t) = rosin(Qt) and ka(t) = Ko + K1 cos(Qt) where
ro = 0.1, Q = 0.01, kK9 = 4 and Kk, = 2. For all w—values
presented in Fig. 2] the rate and the direction of evolution
of the adiabatic circle remains the same. In Figs.[2h,d the
EP is inside the circle while in Figs. 2b,e is in the proxim-
ity of it. In both cases, we find a state-flip as predicted
from the analysis of the theoretical model Eqs. (L}f4]).



In contrast, in Figs. 2k,f the Floquet frequency w is such
that it has re-allocate the EP far away from the adiabatic
circle. In this case we do not observe a state-flip. Instead
the system remains at the same state as the original one
at the end of the cycle at t = Tq.

IV. CONCLUSIONS

We consider the state evolution of a non-Hermitian
system which is exposed to two driving schemes with
strong time-scale separation. We have introduced the
notion of Floquet state-flip due to adiabatic encircling of
instantaneous Floquet EP singularities. Then we have
used the extra degree of freedom that the Floquet driv-
ing is offering in order to re-organize the position of EP
with respect to an adiabatic cycle associated with a slow
variation of two additional parameters of the Hamilto-
nian. This EP re-organization leads to a tailoring of the
topological features of the adiabatic cycle and allow us a
state-flip reconfigurability.

Let us finally comment on the experimental realization
of the proposed Floquer protocol using existing platforms
[10, 25]. Specifically, the authors of the recent experi-
mental work [I0] have already demonstrated chiral en-
ergy transfer between two highly non-degenerate modes

in cavity optomechanical system driven by two drivings
schemes with freqeuncy separation. Essentially they real-
ized an effective Hamiltonian, resembling Eq. , which
describes the dynamics in the presence of both a fast and
a slow Floquet driving. These authors have indicated the
existence of virtual EPs i.e. parameter values for which
the system respond as if it is in the neighborhood of
a parameter domain where eigenvalues and eigenvectors
coalesce. However, because they did not use the Floquet
picture, they were not able to identify any EP degen-
eracy which naturally emerges from the analysis of the
quasi-modes of the instantaneous Floquet Hamiltonian.
In this respect, our work provides the appropriate math-
ematical framework for the analysis of such type of sys-
tems. Instead, they have speculated the existence of the
EPs by observing the chiral mode flipping effect. Clearly
the new concept of Floquet EPs opens up possibilities to
understand more complicated driving scenarios. Some of
them, will be further investigated in the future using the
experimental platform of PT-circuitry [25].

Note added: During the referee process of this paper we
became aware by a referee of the recent paper [26]. This
study investigates the effects of a Floquet exceptional
point at a multi-period evolution of a one-frequency time-
periodic Hamiltonian.
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