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We construct quantifiable generalisations of Leggett-Garg tests for macro/ mesoscopic realism
and noninvasive measurability that apply when not all outcomes of measurement can be identified
as arising from one of two macroscopically distinguishable states. We show how quantum mech-
anics predicts a negation of the LG premises for strategies involving ideal-negative-result, weak
and quantum non-demolition measurements on dynamical entangled systems, as might be realised
with Bose-Einstein condensates in a double-well potential, path-entangled NOON states and atom
interferometers. Potential loopholes associated with each strategy are discussed.

I. INTRODUCTION

In his paradox where a cat is apparently both dead and
alive, Schrodinger raised the possibility of an inconsist-
ency between macroscopic realism and quantum mechan-
ics [1]. Leggett and Garg (LG) suggested to test macro-
scopic realism by comparing the predictions of quantum
mechanics with those based on two classical premises [2].
The first premise is macroscopic realism per se (MRPS):
a macroscopic system with two macroscopically distin-
guishable states available to it will at all times be in one
or other of these states. The second premise is macro-
scopic noninvasive measurability (NIM): for such a sys-
tem, it is possible, in principle, to determine which of
these states the system is in, with arbitrarily small per-
turbation on the subsequent dynamics.

Leggett and Garg showed how the two premises (re-
ferred to as macro-realism) constrain the dynamics of
a two-state system. Considering three successive times
t3 > t2 > t1, the variable Si denotes which of the two
states the system is in at time ti, the respective states
being denoted by Si = +1 or −1. The Leggett-Garg
premises imply the LG inequality [2, 3]

LG ≡ 〈S1S2〉+ 〈S2S3〉 − 〈S1S3〉 ≤ 1 (1)

More recent work shows how the LG premises also imply
the “no disturbance” or “no signalling in time” condition
[4, 5]

dσ ≡ 〈S3|M̂2, σ〉 − 〈S3|σ〉 = 0 (2)

Here 〈S3|M̂2, σ〉 (and 〈S3|σ〉) is the expectation value of
S3 given that a measurement M̂2 is performed (or not
performed) at time t2, conditional on the system being
prepared in a state denoted σ at time t1. The LG in-
equality and no-disturbance conditions are predicted to
be violated for many quantum systems where the dy-
namics involves the formation of quantum superposition
states [2–17]. The work of Leggett and Garg represen-
ted an advance, since it extended beyond the quantum
framework to show how the macroscopic quantum super-
position state defies classical macroscopic reality.

The Leggett-Garg approach raised new ideas about
how to test quantum mechanics even at the microscopic
level [6, 8–11]. Failure of the inequalities implies no clas-
sical trajectory exists between successive measurements:
either the system cannot be viewed as being in a def-
inite state independent of observation, or there cannot
be a way to determine that state, without interference
by the measurement. Noninvasive measurability is “vex-
ing” to justify, however, because of the plausibility of the
measurement disturbing the system. Leggett and Garg
countered this problem by proposing an ideal negative
result measurement (INR): the argument is conditional
on the first postulate being true e.g. if a photon does
travel through one slit or the other, a null detection bey-
ond one slit is justified to be noninvasive [2, 9, 10, 14]. A
second approach is to perform weak measurements [18–
21] that enable calculation of the moment 〈S2S3〉 in a
limit where there is a vanishing disturbance to the sys-
tem [11–13, 20, 22]. A third approach is to test modified
LG inequalities that quantify the invasiveness of “clumsy”
quantum nondemolition (QND) measurements [4, 17, 23].
So far, experimental investigations have mainly focused
on superconducting circuits or small systems (e.g. single
atoms or photons). Recent developments include theor-
etical proposals for mechanical oscillators [16] and mac-
roscopic states of atoms [17].

An illuminating Leggett-Garg test would be for a meso-
scopic massive system in a quantum superposition of be-
ing at two different locations [24]. As of yet, there has
to our knowledge been no LG test involving a meso-
scopic system (of several particles or more) that is at
time t2 in a quantum superposition of being at two dif-
ferent locations. An example of such a superposition
is the path-entangled NOON state, written as |ψ〉 =
1√
2
{|N〉a|0〉b + |0〉a|N〉b} where |N〉a/b is the N -particle

state for two spatially separated modes a (b) [25–27]. In
this case the ideal negative result measurement can be
applied, and justified as noninvasive by the assumption
of Bell’s locality [28]. For massive systems, this is espe-
cially interesting [24]. A method is then given to negate
that the system must be located either “here” or “there”,
or else to conclude there is a disturbance to a massive
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system due to a measurement performed on a vacuum at
a different location.

In this paper, we show how such tests may be pos-
sible on a mesoscopic scale. As one example, in Sec-
tions II and III, we show that violations of Leggett-Garg
inequalities are predicted for Bose-Einstein condensates
(BEC) trapped in two separated potential wells of an op-
tical lattice. Here dynamical oscillation of large groups of
atoms to form NOON macroscopic superposition states
is predicted at high nonlinearities [29–35]. To date, there
has been no LG test based on matter-wave interference
with Bose-Einstein condensates, despite that these sys-
tems exhibit entanglement [36–43], have demonstrated
Josephson oscillation [29] and are likely candidates for
mesoscopic superpositions of states with a distinct centre
of mass [31].

A problem however for an experimental realisation
is the fragility of the macroscopic superpositions. Un-
der specific conditions, NOON states can be generated,
allowing an INR strategy. Otherwise, for less fragile mac-
roscopic superposition states, we derive in Section IV
modified s-scopic LG inequalities that can be used to
test LG premises for superpositions of the type |ψ〉 =
1√
2
{|N − n〉a|n〉b + |n〉a|N − n〉b} (n < N). These super-

positions deviate from the ideal NOON superposition by
allowing mode population differences not equal to −N or
N . The modified LG inequalities are thus useful where
outcomes are not always constrained to being “dead” or
“alive”, and allow a quantification of the degree of realism
that is being tested. In the proposals of this paper, the
relevant measure of macroscopicity is the mass difference
given by smA (in each mode) of the two states forming
the superposition, mA being the mass of each atom.

The ideal negative result measurement may be difficult
to apply where there are residual atoms in both modes,
and we thus develop (in Sections III.B and III. C) QND
and weak measurement strategies for testing the Leggett-
Garg premises and demonstrating mesoscopic quantum
coherence in this case. This opens the way to test meso-
scopic realism and demonstrate mesoscopic quantum co-
herence in the experiments of Albiez et al [29], that ob-
serve oscillation of the relative populations of two weakly-
linked BECs across the two wells of a double-well poten-
tial created in an optical lattice and separated by ∼ 5µm.

The strategies and inequalities developed in this pa-
per are applicable to atom and photonic interferometers
involving multiparticle bosonic states. In Section IV, we
show how to test the Leggett-Garg premises where meso-
scopic states are created at the time t2 within the interfer-
ometer, and a subsequent measurement is made at time
t3 of the population difference after passage through the
interferometer. This approach can be applied to either
nonlinear atom interferometers where the bosons are sub-
ject to nonlinearity due to a medium, or to linear interfer-
ometers that use only beam splitters, conditional meas-
urements and phase shifts. In this context, we discuss
violations of the s-scopic Leggett–Garg in which the two
premises of macroscopic realism per se (MRPS) and non-

invasive measureability (NIM) are asymmetrically quan-
tified, being specified by two different parameters s2 and
s3.

For linear interferometers, while violation of meso-
scopic LG inequalities may be difficult, it is nonetheless
possible in principle to test the Leggett-Garg premises as
applied to individual atomic trajectories. This provides
an avenue for a Leggett-Garg test using matter waves
passing through an atom interferometer, that would
demonstrate the no-classical trajectories result for atoms.
By exploiting different spatial separations and atomic
species, such tests would complement the Leggett-Garg
test of Robens et al that shows violation of a Leggett-
Garg inequality for a Cesium atom performing a quantum
walk, where the spread in distance of the atomic wave
function is ∼ 2µm [10].

To conclude, in Section V we give a discussion of po-
tential loopholes for each of the strategies that have been
presented in this paper, as see from the perspective of a
macro-realist committed to the premises of Leggett-Garg.
Loopholes arise from the need to make a measurement at
the time t2 in order to evaluate the two-time correlation
functions 〈S2S3〉 and 〈S1S3〉 correctly. For each of the
three strategies, there are additional assumptions that
justify that the measurement employed in the experiment
will give the same correlation functions for the Leggett-
Garg inequality as the non-invasive measurement (NIM)
defined in the Leggett-Garg premise. These additional
assumptions imply that for each strategy a somewhat
different model for macro-realism is tested.

II. DYNAMICS OF A MESOSCOPIC
TWO-STATE OSCILLATION

The Hamiltonian HI for an N -atom condensate con-
strained to a double well potential reveals a regime of
macroscopic two-state dynamics. The two-well system
has been reliably modelled by the Josephson two-mode
Hamiltonian [29–39, 41–44]

HI = 2κĴx + gĴ2
z (3)

Here Ĵz = (â†â − b̂†b̂)/2 , Ĵx = (â†b̂ + b̂†â)/2, Ĵy =

(â†b̂ − b̂†â)/2i are the Schwinger spin operators defined
in terms of the boson operators â†, â and b̂†, b̂, for the
modes describing particles in each of the wells, labelled
a and b respectively. The κ represents interwell hopping
and g the nonlinear self-interaction due to the medium.
For high interaction strength (Ng/κ� 1), regimes exists
where a mesoscopic two-state oscillation (of period TN )
takes place (Fig. 1) [30, 33]. If the system is prepared in
|N〉a|0〉b, then at a later time t′ the state vector is to a
good approximation (apart from a phase factor)

|ψ(t)〉 = cos(t)|N〉|0〉+ i sin(t)|0〉|N〉 (4)

where t = E∆t
′/~ and E∆ is the energy splitting of the

energy eigenstates |N〉|0〉±|0〉|N〉 underHI . In one state,
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|N〉a|0〉b, all N atoms are in the well a and in the second
state, |0〉a|N〉b, all atoms are in the well b [33]. The
interaction HI also describes Josephson effects in super-
conductors [45], superfluids [46] and exciton polaritons
[47].
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Figure 1. Two-state NOON dynamics: (a) The probability
P (n) of n atoms in well a at times 0, TN/6, TN/3. Here N =
100, g = 1. TN is the two-state oscillation period. The system
undergoes oscillation between two states, where all atoms are
in one or other well. The probability of obtaining results other
than n = 0 or 100 is negligible. The Leggett-Garg inequality
(1) is violated with LG = 1.5 for states distinct by s = 100
atoms in each well. (b) P (n) versus time t for the system
described in (a). (c) An upper bound on the backaction δ due
to the ideal negative result (INR) measurement that can be
tolerated for an LG violation. Here δ is plotted versus N , the
total number of atoms in the system.

The quantum solution (4) predicts a violation of the
LG inequality [34]. Here, we denote the sign of the out-
come Jz of the spin measurement Ĵz at time ti by Si
(Si = 1 if Jz ≥ 0; Si = −1 if Jz < 0). The two-time
correlation 〈SiSj〉 = cos [2(tj − ti)] is independent of the
initial state, whether |N〉|0〉 or |0〉|N〉. Choosing t1 = 0,
t2 = π/6, t3 = π/3 (or t3 = 5π/12), the quantum predic-
tion is LG = 1.5 (1.37) which gives a violation of (1) [2].
We have solved the Hamiltonian (2) for N = 100 and
g = 1 (Figure 1) confirming the ideal correlations that
give violation of the LG inequality in this regime.

The oscillation times TN however are impractically
high for proposals based on Rb atoms [29, 33, 48]. The
fragility of the macroscopic superposition state and the
measured decoherence times for a BEC suggest such an
experiment to be infeasible [49]. It is known however
that practical oscillation times can be obtained using a
different initial state |N − nL〉|nL〉 (0 < nL < N), where
initially there are atoms in both wells [29, 33]. The dy-
namical solution presented in Fig. 2 with nL = 10 reveals
a two-state oscillation over reduced time scales, mimick-
ing the experiment of Albiez et al [29] for N = 1000
atoms where coherent oscillations were observed over mil-
liseconds.

The objective of this paper is to propose strategies
for testing LG inequalities in such experiments. There
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Figure 2. Mesoscopic two-state oscillations: Here N = 100,
g = 1. The initial state has 90 atoms in mode a. The s-
scopic LG inequalities (12) are violated with LGs = 1.2 for
s2 = s3 = 80 using a non-clumsy QND measurement M̂ at
time t2, as described in the text.

are two questions to be addressed. The first is how to
perform (or access the results of) the noninvasive meas-
urement (NIM), assuming it exists. The second is how
to test macro-realism when (as in Fig. 2) the values of
Si do not always correspond to macroscopically distinct
outcomes.

III. STRATEGIES FOR ACCESSING THE
RESULT OF THE NIM

The first question has been discussed quite extensively
in the literature [2]. The measurement at t1 can be made
noninvasively by the preparation of a fixed number of
particles in each of the modes. The 〈S1S2〉 and 〈S1S3〉
can hence be inferred using deterministic state prepara-
tion and projective measurements at t2 and t3, based on
the LG premise that the system was in a state with def-
inite S at time ti, and that the projective measurement
will reveal which state the system was in (and hence the
value of Si). [2]. To measure 〈S1S3〉 no intervening meas-
urement is made at t2, based on the assumption that the
NIM at t2 will not affect the subsequent statistics. For
〈S2S3〉, S3 is measured projectively but the evaluation
of S2 is difficult, since with any practical measurement
it could be argued that a measurement M̂ made at t2 is
not the NIM, and does indeed influence the subsequent
dynamics. Three strategies may be used to counter this
objection: (1) ideal negative result (INR) measurements;
(2) QND measurements; and (3) weak measurements.

A. Ideal negative result measurement (INR)
strategy

A strong test is possible if the two modes of the NOON
superposition (3) correspond (at time t2) to spatially sep-
arated locations. In this case, the idea negative result
(INR) strategy outlined by LG can be applied. A meas-
urement apparatus at time t2 couples locally to only one
mode a, enabling measurement of the particle number na.
Either na = 0 or na = N . Based on the first LG premise,
if one obtains na = 0, it is assumed that there were prior
to the measurement no atoms in the mode a. Hence the
measurement that gives a negative result is justified to
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be noninvasive. The 〈S2S3〉 can be evaluated using only
negative-result outcomes, as described in Leggett-Garg’s
original paper [2]. In such an experiment, there is impli-
cit the assumption of locality: that there is no change to
one mode because of measurement on the other.

It might be argued (based on experiments that con-
firm violation of Bell’s inequality) that the measurement
at mode a (b) can induce a nonlocal back-action effect on
the macroscopic state of the other mode, so that there
may be a change of the state of mode b (a) of up to δ
particles, where δ ≤ N . The change δ may be micro-
scopic, not great enough to switch the system between
macroscopic states at t2, but might alter the subsequent
dynamics, to induce a macroscopic change at t3. If we
assume quantum states at t2, then changes to the dy-
namics can be established within quantum mechanics, to
give a range of prediction for 〈S2S3〉. We have performed
this calculation and plot the effect of δ for various N in
Fig. 1c, noting that a moderately small backaction δ to
the quantum state of one mode will destroy violations of
the LG inequality even for large N .

B. Non-clumsy QND measurement strategy

A second strategy constructs a measurement M̂ that
can be shown to give a negligible disturbance to the sys-
tem being measured, if it is indeed in one of the two mac-
roscopically distinguishable states [4, 17]. This strategy
is useful if the modes are co-located or both modes are
occupied at t2 (as in the experiment of [29]).

Suppose the state at time t2 is a superposition

|ψ〉 = c−|ψ−〉+ c+|ψ+〉 (5)

of states |ψ+〉 and |ψ−〉 that give, respectively, outcomes
S = ±1. Here c± are probability amplitudes. The first
LG premise asserts that the system is in a state of either
positive or negative S, at any given time. The second
premise assumes there is no change to the value of S3 at
t3, due to the noninvasive measurement (NIM) at t2.

According to quantum mechanics, an appropriately se-
lected QND measurement M̂ of S will not change the
state of the system at time t2 (and hence not change the
outcome at time t3), if the system at time t2 is indeed in
one of the states |ψ+〉 and |ψ−〉 (which are eigenstates of
S). Such a measurement is referred to in this paper as a
“non-clumsy” measurement of S. The INR measurement
discussed in Section III.A is an example of a non-clumsy
measurement of S, for systems prepared in the NOON
state. The QND strategy requires a control experiment,
in order to experimentally establish that states with def-
inite value of S are indeed unchanged by the QND meas-
urement [4, 23]. The noninvasiveness of the measurement
is then justified by the first LG premise, that the system
is in a state of either positive or negative S.

In fact, for any realistic “clumsy” measurement, a small
change may arise, which can be experimentally measured.

One can experimentally quantify this change, if the sys-
tem is indeed in one or other of the two macroscopically
distinguishable states at t2, by preparing the system in
one or other state, and measuring any change to the dy-
namics at time t3 as a consequence of the measurement
[4, 17, 23]. Hence, the QND strategy is to measure the
probabilities P± for the outcomes S2 = ±1 respectively.
The prediction is P± = |c±|2. Then one prepares the
system in the state |ψ+〉 at time t2, measuring S3 at the
later time t3, without the measurement M̂ being made
on the state at t2. This allows measurement of the mo-
ment 〈S2S3〉+ where the system at time t2 is indeed in
the state |ψ+〉 at time t2. Similarly, one prepares the
system in the state |ψ−〉 to measure 〈S2S3〉−. If the LG
premises are correct, then the conclusion is that

〈S2S3〉 = P+〈S2S3〉+ + P−〈S2S3〉− (6)

and this is the same result for 〈S2S3〉 that is measured us-
ing the non-clumsy measurement M̂ . The measurement
of 〈S2S3〉 is repeated, but this time with the measurement
M̂ being made on the prepared state |ψ±〉 at the time t2
(prior to the evolution to the later time t3), to give a mo-
ment that we call 〈S2S3〉MC . If the measurement M̂ is
non-clumsy, then ε ≡ 〈S2S3〉MC − 〈S2S3〉 = 0. A clumsy
measurement can therefore change the value of LG by ε,
but not by more than ε. The change due to a clumsy
measurement can be quantified and thus be accounted
for, through extra terms in the inequalities [4, 17, 23].
This type of experiment has been carried out recently for
superconducting circuits [4]. Fig. 2 gives predictions of
LG violations using such a QND measurement approach,
for the two-well system.

It could be argued that this approach is limited to test
a modified LG assumption, that the system is always in
a quantum state with definite S at the time t2. This
is given the difficulty of proving that all hidden variable
states with definite outcome of S are not changed by the
QND measurement, and is related to the difficulty of pre-
paring all such states. The individual quantum states
|ψ±〉, on the other hand, can be prepared accurately,
and the effectiveness of preparation verified by quantum
tomography. An analysis of the different models tested
by the LG inequalities is given by Maroney and Timpson
[50]. Regardless, if the LG inequalities are violated, the
QND measurement strategy rigorously demonstrates the
quantum coherence between the states |ψ+〉 and |ψ−〉.
This is because the LG inequalities cannot be violated if
the system is in, at time t2, a probabilistic mixture of the
two states |ψ±〉.

We now consider a specific quantum model for such a
QND measurement that applies to the two-well atomic
system. The QNDmeasurement (labelled M̂) is modelled
by the Hamiltonian

HQ = ~GĴzn̂c (7)

that for atomic spin describes a measurement of Ĵz based
on an ac Stark shift [51]. An optical “meter” field c is pre-
pared in a coherent state |γ〉 and coupled to the system
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for a time τ0. The meter field is a single mode with boson
operator ĉ and number operator n̂c = ĉ†ĉ. The quantum
model for this measurement is given in more detail in the
Refs. [22, 51]. Writing the state of the atomic system at
time t2 as

∑N
m=0 dm|m〉a|N − m〉b (dm are probability

amplitudes), the output state immediately after meas-
urement is (setting τ0 = π/2NG)

|ψ〉 =

N∑
m=0

dm|m〉a|N −m〉b|γeiπ(N−2m)/2N 〉c (8)

Homodyne detection on the optical system enables meas-
urement of the meter quadrature phase amplitude p̂ =
(ĉ − ĉ†)/i. For γ large, the different values of Ĵz (and
hence S2) are measurable by outcomes for p̂ and the
atomic system after the homodyne measurement col-
lapses to a state of definite Jz. Unless the atomic system
is initially in a NOON state, this is a “clumsy” measure-
ment of S2. The non-clumsy measurement of S2 leaves
eigenstates of S2 (the sign of the atomic spin Jz) un-
changed. The non-clumsy QND measurement thus dis-
criminates only the sign of p̂ and collapses the superposi-
tion state at time t2 into one or other state, |ψ+〉 or |ψ−〉.
For the case of Figure 2, LG violations are predicted, with
γ large, for the non-clumsy measurements.

C. Weak measurement strategy

The limit γ → 0 of the QND measurement (7) enables
the weak measurement (WM) strategy [11–13, 19, 21].
Here, the entire quantum state of the system at t2 is
undisturbed by the measurement. If the system at time
t2 is in a NOON state (3) then the relation

〈S2S3〉 = − 1

2γ
〈pS3〉 (9)

holds for all γ. This relation is derived in Ref. [22] and
can be experimentally verified for the purpose of a LG
test. Although in the weak measurement limit there is
no clear resolution of the value S2 (values can exceed the
eigenvalue range [18], a phenomenon known as quantum
weak values), the value of 〈S2S3〉 as given by the pro-
jective measurement can be obtained by averaging over
many runs [11, 12]. The term weak measurement is here
used in the sense of the measurements defined by Ahar-
onov, Albert and Vaidmann, that yield quantum weak
values [18, 20]. This contrasts with QND measurements
weak in the sense that they couple only to a small part
of a large system, such as coupling only to one of many
modes, but nonetheless are projective measurements that
collapse the system into a definite eigenstate [2, 7, 52].

The weak measurement strategy enables an interest-
ing and important LG test, since one can experimentally
demonstrate (independently of the quantum prediction)
the noninvasiveness of the weak measurement, by show-
ing the invariance of 〈S1S3〉 as γ → 0 when the measure-
ment is performed at t2. This implies a zero disturbance

as γ → 0

dσ ≡ 〈S3|M̂2, σ〉 − 〈S3|σ〉 = 0 (10)

where dσ is defined in the Introduction. Different to the
previous strategies, the three measurements can there-
fore be carried out in a time-ordered sequence for each
given run: the preparation at time t1, the weak measure-
ment at time t2, and the final projective measurement at
t3. This sequence yields for each run the values of the
spin products S1S2, S1S3 and S2S3 required for the LG
inequality. The moments 〈SiSj〉 are evaluated by aver-
aging over all runs. However, the weak measurement is
not an actual measurement of S2 (because it does not
yield the value of S2 being either +1 or −1) and one is
surmising that the measured 〈S2S3〉 is that of the actual
non-invasive measurement (NIM), which exists according
to the LG premises.

Experiments that violate LG inequalities or else eval-
uate the moment 〈S2S3〉 using weak measurements have
been carried out for systems of a single photon and for
superconducting circuits. Violation of the LG inequal-
ity using this strategy is linked to the observation of
quantum weak values and occurs only in the weak meas-
urement limit where γ is small. The detailed study of
quantum weak values for this system has been given in a
different paper [22]. This strategy is useful where gener-
alised NOON states are generated at time t2, and where
an INR measurement cannot be performed.

For γ sufficiently large, the weak measurement be-
comes a projective measurement, and the violation of
the LG inequality is lost, if one uses the WM strategy of
three successive measurements. This is clear, since the
projective measurement will at any time yield the result
of either 1 or −1, thus ensuring LG ≤ 1. The Refs. [3, 22]
calculate the threshold γ > 0.52 for the loss of the LG
violation. For projective measurements, the violation of
the LG inequality is achieved using the QND or INR ap-
proaches, where 〈S2S3〉 and/ or 〈S1S3〉 is inferred, based
on the validity of the LG premises, as described in the
previous Sections III.A and III.B.

The violation that is possible using projective meas-
urements in one case (QND or INR strategies), but not
the other (WM strategy), strengthens the argument for
failure of the LG premises. The interpretation is that the
projective measurement “collapses” the wave function at
the time t2, because, immediately prior to the measure-
ment at time t2, the system cannot be regarded as being
in one state or the other. For systems where the quantum
state at time t2 can be shown to be in a classical mixture
of the two states |ψ+〉 and |ψ−〉, this difference between
the two cases does not occur, and there is no violation of
the LG inequality.
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IV. LG TESTS USING INTERFEROMETERS
AND THE s-SCOPIC LG INEQUALITIES

LG tests can be carried out using a nonlinear or linear
interferometer. This is depicted schematically in Figure
3a. Predictions for violations of Leggett-Garg inequalit-
ies using a linear interferometer are given in Figures 3b
and c. Figures 2 and 4 shows violations using a nonlinear
interferometer. In Figure 3a, the input state at time t1 is
a two-mode state with N bosons in one mode (implying
S1 = 1). The two-mode state undergoes a unitary trans-
formation BS1 realised as either a beam splitter (with
transmission intensity given by cos2 θ), or as the non-
linear beam splitter given by the nonlinear Josephson
Hamiltonian HI (Eq. (3)). After the interaction BS1,
at time t2, the sign S2 of the mode population difference
Ĵz may be measured, by the measurement we label M̂ .
Subsequently, the two-mode system evolves according to
a further unitary transformation. This is realised as a
second nonlinear Josephson interaction HI , or else as a
second beam splitter (BS2, with transmission intensity
given by cos2 φ). The unitary interaction BS2 may also
be realised as a phase shift φ followed by a 50/50 beam
splitter. At the output of the interferometer, the popula-
tion difference Ĵz (and hence S3) is measured at the final
time t3. A nonlinear interferometer of this type has been
realised for atoms in the BEC experiments of Gross et al,
based on the interaction HI [37]. Figure 3b (solid blue
and red dashed curves) plots predictions for LG tests in
the linear case, where HI = 0.

The LG inequalities might also be tested when meso-
scopic superposition states are created at a time t2 as
heralded states, produced conditional on a certain out-
come being obtained for a preparation measurement P̂ .
For example, the macroscopic Hong-Ou-Mandel tech-
nique passes N bosons through a beam splitter BS1 (of
transmission intensity cos2 θ) [26]. A QND measurement
is made of Ĵz at the time t0, and an output state |ψ∆〉 is
then heralded on the result Jz being |Jz| > ∆/2 (here ∆
is an integer, ∆ < N). This creates at t2 a mesoscopic
superposition

|ψ∆〉 = c−|ψ−〉+ c+|ψ+〉 (11)

of two states |ψ+〉 and |ψ−〉 that are distinct by ∆+1 (or
more) particles in each arm of a two-mode interferometer
[53]. Here c± are probability amplitudes. In this case, the
time t1 that is needed for the LG test is the time t0, that
of the preparation outcome |Jz| > ∆/2. For the heralded
state, this outcome is deterministic. Hence S1 is specified
+1 if the result of the measurement P̂ is |Jz| > ∆/2, and
−1 otherwise. For the heralded state, S1 is always +1.
We note that for ∆ = N−1, the generalised NOON state
(3) with θ = τ is created at time t2 using this method.

Figures 2, 3b, 3c and 4 show predictions for LG viola-
tions where a mesoscopic superposition |ψ∆〉 (or a NOON
state) has been created at time t2, either by the condi-
tional method or by the dynamicsHI . In Figures 2 and 4,
it is supposed that subsequently, after the measurement
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Figure 3. LG tests using multiparticle interferometers: In (a)
N bosons pass through an interferometer. A measurement M̂
(purple shading) is made on the state created at t2 and the
outgoing fields are combined across a beam splitter BS2 with
transmission intensity cos2 φ. Jz of the outputs at time t3 is
measured. Plots (b) and (c) show results for the case of a
simple linear interferometer where the bosonic modes are not
coupled by the Josephson nonlinear interaction HI . The blue
solid curve and red dashed curve of (b) plot LG given by (1)
for optimal angles θ, φ where the state at time t2 is created
by a simple beam splitter BS1 (transmission intensity cos2 θ).
The red dashed curve of (b) shows LG for odd N where M̂
is a non-clumsy measurement of S2. The blue solid curve is
where M̂ measures Ĵz and hence the number of particles in
arm c. This is a non-clumsy measurement of S2 only when the
number of particles in each arm is fixed. The green dotted-
dashed curve shows the disturbance dσ = 2 for optimal angles
and N odd, where mesoscopic superposition states |ψ∆〉 are
created at t2 by conditioning on |JZ | > ∆/2, as described in
the text. Here M̂ is a non-clumsy measurement of S2. The
green dotted-dashed curve shows the disturbance dσ for all
values of ∆ ≤ N−1, including where a NOON state is created
at t2. Fig (c) shows LG where a NOON state is created at
t2, and where the final BS2 represents a phase shift φ and
a 50/50 BS2 (for optimal τ = θ). Here M̂ is a non-clumsy
measurement of S2.

M̂ , the system evolves according to the Josephson non-
linear interaction HI . A measurement Ĵz is then made
at t3. This gives an LG test using a nonlinear interfer-
ometer. In Figures 3b (dotted-dashed green curve) and
Figure 3c, it is supposed that between t2 and t3, HI = 0,
which corresponds to a linear interferometer.

With these different strategies, however, the outcomes
for Ĵz at the times t3 are not always restricted to ±N/2
(Figure 4a). Before discussing the implications of the LG
violations shown in Figures 2, 3 and 4, and to fully ex-
plore the possibilities for LG tests using interferometers,
we address this case by deriving modified LG inequal-
ities. To do this, we expand on previous work [2, 54].
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Figure 4. Violation of s-scopic LG inequalities: The NOON
state (3) is created at time t2 (N = 5, τ = π/6) and evolves to
time t3 according to HI with nonlinearity g. (a) Schematic of
the probability distribution for results 2Jz at t3. (b) Contours
show regimes for violation of the s-scopic inequality (12) with
s = s2 = s3, where (dark to light) s = 4, 2, 0.

A. The s-scopic LG inequalities

We consider a measurement Ĵz made on the system at
time ti and define three regions of outcome: region “1”,
Jz < −si/2; region “0”, −si/2 ≤ Jz ≤ si/2; and region
“2”, Jz > si/2. Where the probability P0 for a result in
region 0 is zero, the regions 1 and 2 are distinct by si.
The premise of si-scopic realism (siR) asserts that the
system at time ti (prior to measurement) is either in a
state with an outcome in region “1”, or in a state with
outcome in region “2”.

Generalising to P0 6= 0 (Fig. 4a), the meaning of siR
is that the system at time ti is in one or other of two
overlapping states: the first that gives outcomes in re-
gions “1” or “0” (denoted by S̃ = −1); the second that
gives outcomes in regions “0” or “2” (denoted by S̃ = 1)
[2, 54]. This premise adequately describes quantum su-
perpositions of states that give outcomes of Ĵz different
by up to si, but not (necessarily) superpositions of states
with greater separations. The premise allows for an inde-
terminacy in the predetermination of the result of a meas-
urement of Ĵz by an amount up to ∼ si, since any such
indeterminate state can be described as either S̃ = 1 or
S̃ = −1. Macroscopic superpositions where there is the
possibility of interpretation that the system would not
comply with this restricted indeterminacy are not con-
sistent with the premise. This approach was suggested
originally by Leggett-Garg [2] and has been developed
to provide tests of mesoscopic quantum coherence and
mesoscopic Bell nonlocality [54, 55].

A measurement Ĵz gives the value of S̃ for regions 1 and
2, there being ambiguity only in the region 0. The second
LG premise is generalised to (s2,s3)-scopic noninvasive
measurability ((s2, s3)-NIM). This premise asserts that
such a measurement can be made at t2, without chan-
ging the result Jz at time t3 by an amount s3 or more.
Any change or back-action due to the measurement by
an amount up to s3 will not alter the recorded value S̃
at time t3, provided the experimenter takes into account
that results in the region 0 cannot be distinguished as
being either S̃ = +1 or S̃ = −1. Combined, we will refer
to the siR and (s2, s3)-NIM premises as the s-scopic LG

premises.
The s-scopic LG premises imply a quantifiable inequal-

ity, because any effects due to the ambiguous region are
limited by the finite probability of observing a result
there. Defining the measurable marginal probabilities of
obtaining a result in region j ∈ {0, 1, 2} at the time tk
by P (k)

j , the s-scopic premises are violated if

LGs ≡ P (2)
2 − P (2)

1 + 〈S2S3〉

−(P
(3)
2 − P (3)

1 )− 2P
(3)
0|M − P

(3)
0 > 1 (12)

where P (3)
j|M (P (3)

j ) is the probability with (without) the
measurement M performed at t2. The details of the de-
rivation are given in the Appendix A. We have assumed
that the system is prepared initially in region 2 and re-
strict to scenarios satisfying P (2)

0 = 0. The 〈S2S3〉 is
to be measured using a noninvasive measurement at t2,
as described in Section III. The P (k)

j are measurable by
projective measurements. A similar modification can be
given for the disturbance inequality.

B. Nonlinear interferometer

Figures 2 and 4b show violations of the s-scopic LG
premises for nonzero s, using the nonlinear interaction
HI . Figure 2 is the nonlinear interferometer where the
parameters N , g are selected to maintain a mesoscopic
superposition throughout the evolution. Oscillations of
this type have been realised in the experiments of Albiez
et al based on BEC with Rb atoms [29]. A relevant meas-
ure of macroscopicity in this case is the mass difference
given by smA (in each mode) of the two states forming
the superposition, mA being the mass of each atom. Fig-
ure 4b shows the violation of the s-scopic LG inequalities
for smaller N , where the NOON state (N = 5) is created
at time t2, followed by evolution according to the nonlin-
ear Hamiltonian HI until time t3. Here, the state created
at t3 need not be a NOON state, depending on the value
of g.

C. Linear interferometer

LG tests are also possible where HI = 0 (Figure 3).
First we consider the simplest case depicted by the dia-
gram Figure 3a, where an N -boson state at time t2 is
created by the simple beam splitter BS1 (transmission
intensity cos2 θ), or equivalently a polariser beam splitter
rotated at angle θ. Here, it is possible to test the hypo-
thesis of individual classical trajectories for the bosons
travelling through the linear interferometer.

The proposed experiment is as follows: After t1, the
N bosons pass through the polariser beam splitter (or
equivalent) (BS1) rotated at angle θ. For the evaluation
of 〈S2S3〉, a measurement M̂ of Jz is made at time t2.
The number difference Jz indicates the value of Jθ (and
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hence S2) at t2. The spin Si is defined as in Section
II at each time ti to be the sign of Jz. The outgoing
particles are then incident on a second polariser beam
splitter BS2 at angle φ (or equivalently, a beam splitter
with transmission intensity cos2 φ) whose output number
difference Jz gives Jφ and hence S3 at t3. We invoke
the LG premise, that the system is always in a state
of definite Jz immediately prior to the measurement M̂
at t2. This is based on the hypothesis that each atom
(boson) goes one way or the other, through the paths of
the interferometer. A second LG premise is invoked, that
a measurement M̂ could be performed of Jz at t2 that
does not disturb the subsequent evolution. The second
premise can be supported by experiments that create a
spin eigenstate, and then demonstrate the invariance of
the state after the QND number measurement M̂ . If the
premises are valid, the LG inequalities (1) will hold, but
by contrast are predicted violated by quantum mechanics
(Fig. 3b (blue solid curve)). We assume fixed number
inputs, achievable for photons [11] and likely in the future
for atoms given the recent demonstration of quantum
correlated atomic beams [27, 56].

We note that for this case the violation is given only
for s = 0, and that NOON states are not created at the
time t2. While not the macroscopic LG envisaged, this
nonetheless allows a test of the “classical trajectories” hy-
pothesis that can be applied to atoms in a two-mode
interferometer [37, 38, 49]. The violation of the LG in-
equality demonstrates the absence of individual classical
trajectories, as in each atom passing through one arm
or mode of the interferometer. Potential loopholes as-
sociated with the second premise are as for the QND
measurement strategy, discussed in Section III.B and in
the Conclusion, Section V. The details of the calculations
are given in Appendix B, which includes a Table of the
angles θ and φ required for the maximum violation.

The same experiment can be performed with a non-
clumsy measurement (M) of S at time t2. This corres-
ponds to detecting the sign of the outcome for Ĵz at time
t2, without projecting the state into individual eigen-
states of Ĵz. Rather, the system after measurement is col-
lapsed into the one of the states |ψ〉+ or |ψ−〉 which have
a non-negative or negative outcome for Ĵz respectively.
Such an experiment tests the following LG premises: the
system is at any given time in one of the states |ψ+〉
or |ψ−〉 prior to measurement, and the measurement M
does not influence the dynamics to the extent that the
state of the system is changed from |ψ+〉 to |ψ−〉 (vice
versa) at the time t3. We see from the results plotted by
the red dashed curve of Figure 3b that LG violations are
possible (for s = 0). Here, the two states |ψ±〉 are not
mesoscopically distinct, except in the limit of N → ∞
where the violation is vanishes (LG → 1). Violations of
s-scopic LG inequalities with s > 0 are not given in this
case.

Where a NOON state is prepared at time t2 and there
is a spatial separation of the two trajectories at that time,
stronger LG tests are possible. This is because the as-

sumption of non-invasiveness of the measurement M̂ at
time t2 can be strengthened by using an ideal negative
result (INR) method (refer Section II). Violations of the
Leggett-Garg inequality are shown for this case in Figs.
3b and c. The green dashed curve of Figure 3b shows
dσ = 2. This implies violation of the disturbance equal-
ity (2), where the mesoscopic superposition |ψ∆〉 of Eqn.
(11) is created at time t2, and where the measurement
at time t3 is of Jφ, defined in the first paragraph of this
Section. The detailed calculations are given in Appendix
C. Similar violations are possible for the LG inequality
(1), with the calculations also given in Appendix C. We
see from those calculations that the violations of LG in-
equality (1) are enhanced where a NOON state is created
at the time t2, and increase with N, for odd N . Figure
3c shows violations of the LG inequality where a NOON
state is created at time t2, but where the measurement
at time t3 is replaced with the phase shift φ followed by
a beam splitter. Violations are obtained with s2 = N .
All violations shown in Figure 3 are however for s3 = 0.
Details of the calculations are provided in Appendix D.

V. CONCLUSION

In this paper, we have developed strategies for tests
of Leggett-Garg’s mesoscopic realism using multi-particle
interferometers, based on the nonlinear Josephson inter-
action model HI . By deriving modified inequalities that
apply where not all outcomes are mesoscopically distinct,
we find the tests are enhanced over a wider range of para-
meter values. The interactionHI is fundamental not only
to Bose-Einstein condensates but describes Josephson ef-
fects in superconductors [45], superfluids [46] and, more
recently, exciton polaritons [47]. We have also proposed
tests of LG realism at a microscopic level, that apply to
multi-particle linear interferometers where HI = 0.

Finally, to conclude the paper, we summarise potential
loopholes for the strategies outlined in this paper. For the
ideal negative result (INR) and QND strategies given in
Sections III.A and III.B, the violation of macro-realism
arises because the value of 〈S1S3〉 depends on whether
the measurement M̂ is made at time t2. Specifically, the
disturbance dσ defined by Eq. (2) is nonzero. These tests
are therefore only convincing when the measurement M̂
that is used to evaluate the 〈S2S3〉 can be justified as
macroscopically non-invasive. The macro-realist, who
believes the system is always in one of two macroscopic-
ally distinguishable states ψ+ and ψ−, will challenge this
justification.

For the QND strategy of III.B, the non-invasiveness of
M̂ is justified by preparing the system in the states ψ±
and demonstrating no-disturbance dσ = 0 in each case.
Assuming the quantum states |ψ±〉 can be reliably pre-
pared, this is a convincing demonstration that the system
is not in one or other of quantum states |ψ±〉 at the given
time. The experiment thus demonstrates macroscopic
quantum coherence: the system is not in a classical mix-
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ture of the states |ψ±〉. However, the macro-realist is
not restricted to quantum mechanicsand would be ready
to consider alternative descriptions of ψ± that are con-
sistent with macro-realism. The macro-realist may argue
that alternative (non-quantum) realisations of the states
ψ± exist, the measurement M̂ being invasive for such a
realisation. A related loophole is the difficulty of pre-
paring all realisations of the macroscopic state ψ±, this
being a manybody state for which there can be many
microscopically different realisations possessing the same
value for a macroscopic parameter. The macro-realist
may also argue that the system at time t2 is in a state
microscopically different to either |ψ+〉 or |ψ−〉, the meas-
urement M̂ being microscopically invasive for this state
(causing the collapse to |ψ+〉 or |ψ−〉). The microscopic
change at time t2 brought about by M̂ may lead to a
macroscopic change at time t3, thus explaining the viola-
tion of the LG inequality in a way that is consistent with
macro-realism. In short, the macro-realist would want
to be convinced that the experimentalist can prepare all
relevant quantum (and non-quantum) states for the test
of non-clumsiness of the measurement.

The weak measurement (WM) strategy III.C has the
advantage that justification of non-invasiveness is not re-
quired, the disturbance dσ being zero. The dσ = 0 is
verifiable experimentally. There is no need to assume
anything about the nature of the state at time t2 to
demonstrate the non-invasiveness. Rather, the test of
macro-realism uses the LG inequality for 3 sequential
measurements. The spins S1, S2 and S3 are measured
consecutively for each run, and the moment 〈S2S3〉 is
verifiable as that given by strong measurements. The
macro-realist is left to argue that, being an ineffectual
measurement of S2 (that does not yield a value of +1 or
−1 for a given run), the weak measurement is not the
NIM implied by the LG premises.

In our view, the ideal negative result (INR) strategy
given in III.A, based on a spatial separation of the
modes, provides the strongest test of macro-realism. This
strategy does not rely on the re-creation of the states
ψ± for demonstrating non-invasiveness. Rather, the as-
sumption of non-invasiveness is based on the assumption
of locality. However, local realism has been shown to
fail for microscopic systems and the macro-realist would
likely argue that the measurementM does indeed cause a
nonlocal microscopic change to the system at the second
location. The macro-realist would argue that this micro-
scopic change a time t2 leads to a macroscopic change at
time t3, thus explaining the violation of the LG inequal-
ity in a way that is consistent with macro-realism. The
realist’s argument however relies on more macroscopic
aspects of nonlocality for atomic systems that have not
yet been verified.
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APPENDIX

Appendix A: Derivation of s-scopic LG inequalities

According to the premise sR, the system can be de-
scribed by a model in which the system is in one of the
states S̃ = −1 or S̃ = +1 at each ti. We denote the
probability of the system being in state S̃ = +1 (−1)

at a given time by P̃+ (P̃−), noting that P̃+ + P̃− = 1.
This defines a sequence of values S̃i such that the val-
ues are unchanged by the sNIM. Following the origi-
nal derivation of LG inequality (1), this leads to −3 ≤
S̃1S̃2 + S̃2S̃3 − S̃1S̃3 ≤ 1. Thus, where Kij = 〈S̃iS̃j〉, the
inequality K12 −K13 +K23 ≤ 1 of the form (1) holds.

However, the moments 〈KiKj〉 are not directly measur-
able, because an outcome between −s/2 and +s/2 could
ambiguously arise from either state, S̃ = −1 or +1. Re-
gardless, P1 ≤ P̃− ≤ P1 + P0 and P2 ≤ P̃+ ≤ P2 + P0,
where P1, P2 and P0 are the measurable probabilities of
obtaining a result for Jz in regions 1, 2 and 0 respectively.
Hence, we are able to establish bounds on the two-time
moments if the P0 are measured. The modified inequality
is

LGs = Klower
12 +Klower

23 −Kupper
13 ≤ 1 (A1)

HereKlower
ij is a lower bound toKij , andK

upper
ij is an up-

per bound to Kij . We see that suitable such bounds are
given byKlower

ij = P2,2(ti, tj)+P1,1(ti, tj)−P10,20(ti, tj)−
P20,10(ti, tj) and Kupper

ij = P20,20(ti, tj) + P10,10(ti, tj)−
P1,2(ti, tj)− P2,1(ti, tj). We introduce the notation that
P20,10(t1, t2), for example, is the joint probability of an
outcome Jz in regions 2 or 0 at time t1, and an outcome
of Jz in regions 1 or 0 at time t2.

It is assumed that a measurement has been made of
the moment 〈S2S3〉 where Sj is determined by the sign
of Jz at time tj . For example, the moment 〈S2S3〉 can be
measured using a weak measurement at time t2. Alter-
natively, the moment might be evaluated using the ideal
negative result (INR) method. We wish to express the
inequality (A1) in terms of this moment. We proceed by
noting the following relations

Klower
23 = 〈S2S3〉 − 2P

(2)
0 − 2P

(3)
0|M

Kupper
13 = P

(3)
0 + P

(3)
2 − P (3)

1

Klower
12 = P

(2)
2 − P (2)

1 − P (2)
0 (A2)
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Here P (k)
j is the probability of an outcome for Jz in re-

gion j (j = 0, 1, 2) at the time tk. We denote P (3)
0|M (P (3)

0 )
as the probability for a result in the region 0 at t3 if the
measurement M is performed (or not performed) at t2.
We note that the P (3)

0 and P (3)
0|M can be evaluated exper-

imentally for a particularM . For the weak measurement
as γ → 0 the difference between P (3)

0 and P (3)
0|M becomes

zero.
Using the above results and the LGS inequality defined

by Eq. (A1), we obtain

LGs ≡ P (2)
2 − P (2)

1 − (P
(3)
2 − P (3)

1 )

+〈S2S3〉 − 3P
(2)
0 − 2P

(3)
0|M − P

(3)
0 ≤ 1 (A3)

which reduces to Eq. (12) of the paper. The proof is
given below.
Proof: First we prove Klower

23 = 〈S2S3〉−2P
(2)
0 −2P

(3)
0 .

We note K23 = P (+,+) +P (−,−)−P (+,−)−P (−,+)
where P (i, j) is the joint probability the system is in state
i and j at times t2 and t3 respectively, and + and − are
the states with S̃ = +1 and −1. Hence

K23 = P2,2 + P0|+,0|+ + P0|+,2 + P2,0|+

+P1,1 + P0|−,1 + P1,0|− + P0|−,0|−

−P1,2 − P0|−,2 − P0|−,0|+ − P1,0|+

−P2,1 − P2,0|− − P0|+,0|− − P0|+,1 (A4)

Here P2,2 is the joint probability for a result in region
2 at times t2 and t3. P0|+,1 is the joint probability for
an outcome at time t1 in the region 0, given the system
is in the state + (at time t1), and an outcome in region
+1 at time t3. The remaining probabilities are defined
similarly. Defining 〈S+

2 S
+
3 〉 = P2,2 + P1,1 − P1,2 − P2,1

and simplifying we obtain

K23 ≥ 〈S+
2 S

+
3 〉 − P0|−,2 − P0|−,0|+ − P1,0|+ − P2,0|−

−P0|+,0|− − P0|+,1

≥ 〈S+
2 S

+
3 〉 − P

(2)
0|− − P

(2)
0|+ − P

(3)
0|+ − P

(3)
0|−

≥ 〈S+
2 S

+
3 〉 − P

(2)
0 − P (3)

0 (A5)

Here P (k)
0|(±) is the probability for an outcome in the region

0 given the system is in the state (±) at time tk. P
(k)
0

is the probability for an outcome in region 0 at time tk.
Now we note that the measurable moment is

〈S2S3〉 = P2,2 + P0+,0+ + P0+,2 + P2,0+

+P1,1 + P0−,1 + P1,0− + P0−,0−

−P1,2 − P0−,2 − P0−,0+ − P1,0+

−P2,1 − P2,0− − P0+,0− − P0+,1 (A6)

where P0+,0+ is the probability of a positive outcome
in region 0 for both times. The other probabilities are

defined similarly. Then we simplify

〈S2S3〉 = 〈S+
2 S

+
3 〉+ P0+,0+ + P0+,2 + P2,0+ + P0−,1

+P1,0− + P0−,0− − P0−,2 − P0−,0+ − P1,0+

−P2,0− − P0+,0− − P0+,1

≤ 〈S+
2 S

+
3 〉+ P0+,0+ + P0+,2 + P2,0+ + P0−,1

+P1,0− + P0−,0−

≤ 〈S+
2 S

+
3 〉+ P

(2)
0+ + P

(3)
0+ + P

(2)
0− + P

(3)
0−

≤ 〈S+
2 S

+
3 〉+ P

(2)
0 + P

(3)
0 (A7)

Hence, we obtain the result K23 ≥ 〈S2S3〉−2P
(2)
0 −2P

(3)
0

where P (k)
0 is the probability for an outcome in region 0

at time tk. From this we obtain that Klower
23 = 〈S2S3〉 −

2P
(2)
0 −2P

(3)
0|M where we have inserted the |M to remind us

that the marginal probabilities for a result in the regions
at time t3 in this case are taken after the measurement
M at time t2.

We next consider K13. Here we wish to prove that
Kupper

13 = P
(3)
0 +P

(3)
2 −P (3)

1 . This can be done using pro-
jective measurements. We see from above that Kupper

ij =

P20,20(ti, tj)+P10,10(ti, tj)−P1,2(ti, tj)−P2,1(ti, tj). Here
Kupper

13 = P20,20(t1, t3) + P10,10(t1, t3) − P1,2(t1, t3) −
P2,1(t1, t3) which reduces to

Kupper
13 = P

(3)
0 + P

(3)
2 − P (3)

1 (A8)

where we have used that the system at t1 is initially pre-
pared in region 2, so that P (1)

2 = 1. Here we infer that
the measurement at time t3 is made without the mea-
surement M at t2.

Similarly, we next consider K12. We have from above
that Klower

ij = P2,2(ti, tj) + P1,1(ti, tj) − P10,20(ti, tj) −
P20,10(ti, tj) which implies Klower

12 = P2,2(t1, t2) +
P1,1(t1, t2)−P10,20(t1, t2)−P20,10(t1, t2) This reduces to

Klower
12 = P

(2)
2 − P (2)

1 − P (2)
0 (A9)

Thus, using the above results, and applying the LGs in-
equality given in Eq. (A1) we obtain the required result
(A3).

Appendix B: N bosons through a linear
interferometer

We give details of the proposal of Figure 3a where re-
sults are shown by blue solid curve of Fig. 3b. In this
case, there is no nonlinear Hamiltonian evolution. The
particles travel through two successive polariser beam
splitters (PBS). The first beam splitter is set at angle
θ. A measurement can then be made of the two mode
number difference, defined as

Jθ(t2) = (ĉ†ĉ− d̂†d̂)/2 = JZ cos 2θ + JX sin 2θ (B1)

The normalised S2 = Jθ(t2)/(N/2) gives the value of the
Leggett-Garg observable S2. The polariser beam splitter
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measurement can be realised by different physical means,
including using a polariser beam splitter (with phase
shifts) followed by a photon difference measurement, or,
for atom interferometers, as a Rabi rotation followed by
an atom number difference measurement [37, 57, 58].
Here Jz and Jx are defined in terms of the initial modes â
and b̂ (e.g. Jz = (â†â− b̂†b̂)/2) and the rotated operators
are given by

ĉ = â cos θ + b̂ sin θ

d̂ = −â sin θ + b̂ cos θ (B2)

The measurement M of the number difference = (ĉ†ĉ −
d̂†d̂)/2 is made at time t2 after the rotation denoted by θ
(achieved by the polariser beam splitter). In terms of the
Leggett-Garg inequality, the rotation denoted by θ in the
linear proposal plays the role of the evolution denoted
by t2 in the nonlinear proposal. A subsequent similar
rotation (denoted φ) and number measurement at time
t3 gives the outcome S3 = Jφ(t2)/(N/2) as illustrated in
Figure 3a.

We suppose the initial state is the two-mode number
state |N〉a|0〉b. The output state at time t2 after the first
beam splitter with rotation θ is

|N〉a|0〉b →
N∑
n=0

cn|n〉c|N − n〉d (B3)

where

cn =

√
N !

n!(N − n)!
cosn θ(− sin θ)N−n (B4)

After the second beam splitter with rotation φ, the out-
put state in the ê and f̂ modes is (assuming no measure-
ment M is made at t2)

|N〉a|0〉b →
N∑
n=0

cn

N∑
p=0

c(n)
p |p〉e|N − p〉f (B5)

where

c(n)
p =

min(N−n,p)∑
k=max(0,p−n)

√
n!(N − n)!

√
(N − p)!

√
p!

(p− k)!(n− p+ k)!k!(N − n− k)!

× (−1)
n−p+k {cos(N−n+p−2k) φ sin(n−p+2k) φ}

(B6)

Calculation gives

〈S1S2〉 =

N∑
n=0

sgn (2n−N) c2n

〈S1S3〉 =

N∑
p=0

sgn (2p−N)

(
N∑
n=0

cnc
(n)
p

)2

〈S2S3〉 =

N∑
n=0

sgn (2n−N) c2n

N∑
p=0

sgn(2p−N)
(
c(n)
p

)2

(B7)

0 20 40 60 80 100
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φ/π

Figure 5. The optimal angles θmax (solid blue line) and φmax
(dashed red line) that maximize the Leggett-Garg inequality
for different values of N .

where sgn(x) = 1 if x ≥ 0 and −1 of x < 0. The calcula-
tion of 〈S2S3〉 assumes the collapse of the wavefunction
at time t2 due to the projective measurement of Jz at
t2. The moment is then calculated as the weighted aver-
age of the individual moments based on all the possible
projected eigenstates of Jz (number), which are then the
initial states for the second polariser beam splitter.

Using the above results, we maximize the Leggett-Garg
inequality violation and obtain the corresponding opti-
mal angles θmax and φmax. Results are shown in Fig. 3b
(blue solid curve) and Fig. (5).

To understand the nature of the LG violations in the
linear case, we plot the probability distributions for the
outcome Jz at the different times t. We assume the
measurement of S is made as a QND measurement of
Jz. The measurement if made at time t2 thus collapses
the state into the associated two-mode number state.
For N = 50 the optimal angles are θ = 0.14518π,
φ = 0.14522π. After the rotation BS1 with θ, the
state created at time t2 has the number distribution
plotted in the top graph of Figure 6. This corresponds
to 〈S1S2〉 = 1. After the rotation with θ + φ, the state
created at time t3 has the number distribution plotted
in the middle graph of Figure 6. This corresponds to
〈S2S3〉 = −0.927. After the QND measurement at
t2, the resulting collapsed state is passed through the
interferometer with angle φ. The number distributions
at time t3 for the three different collapsed states are
plotted in the lower graph. Here we take the three
most likely measurement results at time t2 (n = 41 is
the most likely, as shown in the top figure). The cor-
relations for the three cases are: n = 40, p(n) =
0.139022426845, 〈S2S3〉 = 0.39867944914;
n = 41, p(n) = 0.140876075688, 〈S2S3〉 =
0.440046798966; n = 42, p(n) =
0.125419972345, 〈S2S3〉 = 0.442832855968. Here,
p(n) is the probability of the result n at the time t2.
The total correlation averaged over all outcomes is
〈S2S3〉 = 0.434 and the LG violation is LG = 2.361.
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Figure 6. Plots of the probability distributions of number
n = Jz+N/2 at the time t2 (top), and at t3 if a measurement
is made at t2 (lower) or if not (middle). Here N = 50 (the
total particles in the interferometer), and n is the number of
particles in one arm. The lower graph plots the distributions
given that at time t2 a QND measurement of n is performed
with the outcome n = 40 (dashed green line), n = 41 (solid
blue line) or n = 42 (dash-dotted red line).

Appendix C: Mesoscopic superposition at time t2 in
a linear interferometer

We suppose we create at time t2 a superposition of
two states |ψ+〉 and |ψ−〉 mesoscopically distinct (at
time t2), using, for example, a macroscopic Hong-Ou-
Mandel effect. This effect uses a conditional measure-
ment to create a mesoscopic superposition. We first eval-
uate the output state as created from the beam split-
ter BS1. We write the output state as a superposition
ψ =

√
P−|ψ−〉+

√
P0|ψ0〉+

√
P+|ψ+〉 of three states de-

fined by a positive parameter ∆ that specifies a middle
region of Jz of width ∆ and centred about 0. Here |ψ±〉
has outcomes Jz in region Jz > ∆/2 and Jz < −∆/2
respectively, and |ψ0〉 is a central state where outcomes
for Jz satisfy |Jz| ≤ ∆/2. Here

|ψj〉 =
1√
Pj

∑
n∈Rj(∆)

cn|n〉c|N − n〉d (C1)

where j ∈ {−,+, 0}, Pj =
∑
n∈Rj

|cn|2, and the regions
are defined as R− (∆) = {2n < N−∆}, R+ (∆) = {2n >
N + ∆}, R0 (∆) = {N − ∆ ≤ 2n ≤ N + ∆}. The co-
efficients cn are given in Eq. (B4). Before time t2 (at a
time we call t1) a measurement is made that determines
whether |Jz| is in the central region or not. We assume
this is a non-clumsy measurement, in the sense that the
superposition state

|ψ∆〉 =
1√

P− + P+

(
√
P−|ψ−〉+

√
P+|ψ+〉) (C2)

is prepared at the time t1, by conditioning the future
evolution on an outcome |Jz| > ∆/2 at time t1. With this
preparation, the result for S1 is always 1. Note the time
t1 is defined differently to the above proposals, where
the time t1 refers to the preparation of N particles in the
interferometer and no other conditional measurements
are made.

a. Evaluation of the LG inequality

First, we evaluate

〈S1S2〉 =
P+ − P−
P+ + P−

(C3)

A second QND measurement of S2 at time t2 is made
on the state |ψ∆〉, to determine whether the system is in
state |ψ+〉 or state |ψ−〉 (according to the LG premise).
The non-clumsy QND measurement of S2 corresponds to
a QND measurement at t2 that measures S2 but does not
resolve the precise number. To perform the calculation
of 〈S2S3〉, we consider the system has collapsed to either
|ψ+〉 (if the result at t2 is S2 = +1) or |ψ−〉 (if the result
at t2 is S2 = −1). At time t3 the outcome state for each
of the functions |ψ〉± is given by

|ψ(t3)〉j =
∑

n∈Rj(∆)

cn√
Pj

N∑
p=0

c(n)
p |p〉e|N − p〉f (C4)

Here the coefficients c(n)
p are given in Eq. (B6). Using

these values we find

〈S2S3〉 =
P+

P+ + P−
〈S2S3〉+ +

P−
P+ + P−

〈S2S3〉−

=
P+

P+ + P−
〈S3〉+ −

P−
P+ + P−

〈S3〉− (C5)
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Figure 7. The top graph shows the violation of the LG in-
equality (1), as described in the text, for odd N and for the
optimal choice of ∆ and of the angles θ and φ. The optimal
violation is achieved when the NOON state is created at time
t2. The lower graph shows the LG value for N = 15, versus
∆.

where 〈S3〉± is the expectation value of S3 at the time t3
after the passage through the second BS2 set at angle φ,
given the input state to the second beam splitter BS2 is
|ψ〉±. We note that

〈S2S3〉 =
1

P+ + P−

(
N∑
p=0

( ∑
n∈R+(∆)

cnc
(n)
p

)2

−
N∑
p=0

( ∑
n∈R−(∆)

cnc
(n)
p

)2
)

Here R− (∆) = {2n < N−∆}, R+ (∆) = {2n > N+∆},
R0 (∆) = {N −∆ ≤ 2n ≤ N + ∆}.

The moment 〈S1S3〉 is evaluated without the measure-
ment S2 at t2, based on the superposition |ψ∆〉 created
at time t1. This means we evaluate the expectation value
of S3 after a rotation given by beam splitter BS2 set at
angle φ, for the full input state |ψ∆〉.

The violation of the LG inequality (1) with no con-
ditioning (∆ = 0) is shown by the red dashed curve of
Figure 3. The violations improve for non-zero ∆. Figure
7 shows the violation versus N for the optimal choices of
angles θ and φ, and for the optimal value of ∆ = N − 1.
The violation is maximised by selecting ∆ = N−1 which
corresponds to a NOON state at time t2. The Table I
shows the values, including the optimal angles, for the
case N = 11. For N = 15, Figure 7 shows the violation
versus ∆.

∆ N θopt φopt LGmax

1, 2 3 0.578973 0.495912 2.33291

1, 2 5 0.628767 0.33428 2.11778

1, 2 7 0.655977 0.254457 1.9855

1, 2 9 0.673675 0.206237 1.89226

1, 2 11 0.68629 0.17377 1.82165

1, 2 13 0.695819 0.150344 1.76568

3, 4 5 0.619339 0.475729 2.67167

3, 4 7 0.649188 0.356205 2.51489

3, 4 9 0.667305 0.287775 2.39912

3, 4 11 0.680023 0.24249 2.30743

3, 4 13 0.689619 0.210043 2.23205

5, 6 7 0.64078 0.465008 2.83173

5, 6 9 0.662639 0.36856 2.73091

5, 6 11 0.676442 0.3087 2.6466

5, 6 13 0.686464 0.266797 2.57372

7, 8 9 0.654105 0.458346 2.91181

7, 8 11 0.671783 0.376633 2.84982

7, 8 13 0.683173 0.323265 2.79288

9, 10 11 0.663216 0.45379 2.95311

9, 10 13 0.678323 0.382401 2.91581

Table I. Maximum values of the violation of the Leggett-Garg
inequalities on optimising the choice of angles θ and φ, for
fixed ∆ and N .

b. Evaluation of the disturbance inequality

We now outline the calculation of the disturbance in-
equality. To evaluate 〈S3|M̂, σ〉 we calculate the expec-
tation of S3 given that a projective (QND or INR) mea-
surement is made at time t2, with the state preparation
at time t1 as above for the macroscopic Hong-Ou-Mandel
effect. Specifically

〈S3|M̂,σ〉 =
P+

P+ + P−
〈S3〉+ +

P−
P+ + P−

〈S3〉−

=
P+

P+ + P−
〈S2S3〉+ −

P−
P+ + P−

〈S2S3〉−

(C6)

where 〈S3〉± are the expectation values for the states de-
fined as |ψ±〉. To evaluate 〈S3|σ〉, we find the expectation
of S3 without the measurement at time t2. From the cal-
culations for the LG inequality

〈S3|σ〉 = 〈ψ∆|S3|ψ∆〉 (C7)

Applying the above results, we obtain that dσ = 2 for
N = 3, . . . , 13 and ∆ = N − 1, using the values of the
optimal angles. We also evaluate dσ for N = 13, 11 and
any value of ∆ and we have obtained that dσ = 2. The
results are consistent with a violation of this inequality:
dσ 6= 0.
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Appendix D: NOON state at time t2 in a linear
interferometer with phase shift

We consider where a NOON state is created at time t2,
either by dynamical evolution or using conditional meth-
ods as described above. The NOON state with spatially
separated modes enables an ideal negative (INR) result
measurement M̂ at time t2. In Fig 3c, we give results
for the scheme where, after the measurement at time
t2, the system passes through the linear interferometer
modelled by a phase shift φ followed by a 50/50 beam
splitter. The transformations differ from the linear inter-
ferometer described above, which is based on a polariser
beam splitter.

At time t2 we suppose therefore that the state has
evolved to a NOON state given by

|ψ(t2)〉 = α|N〉c|0〉d + β|0〉c|N〉d (D1)

where α and β are normalization coefficients. We take
α = cosϑ and β = sinϑ. We note that the NOON state
can in principle be prepared using the conditional ap-
proach described in Appendix B and in the text, in which
case ϑ is determined by the beam splitter angle θ. We
also comment that phase factors associated with β can
change depending on the method of preparation, as seen
on comparison with eq. (4). If necessary, such phase
factors can be manipulated after the initial state prepa-
ration using phase shifts. At t3 the output state is in ê
and f̂ modes as given by

|ψ(t3)〉 =
1√
2N

N∑
m=0

√
N !√

m!(N −m)!

×
(
α+ βeiNφ(−1)N−m

)
|m〉e|N −m〉f

(D2)

The probability of detecting m photons at mode e and
N −m photons at d is

Pm,N−m =
1

2N

(
N

m

)(
1 + 2αβ(−1)(N−m) cos(Nφ)

)
(D3)

We obtain

〈S1S2〉 = α2 − β2 = cos 2ϑ

〈S1S3〉 =

N∑
m=0

sgn(2m−N)Pm,N−m (D4)

For even N , 〈S1S3〉 = 0. Noting that

N∑
m=0

sgn (2m−N)
1

2N

(
N

m

)
(−1)

N−m
= XN (D5)

where

XN =
(−1)

(N−1)/2
Γ (N/2)√

πΓ ((N + 1) /2)

N LGmax ϑopt φopt

3 1.11803 −0.231824 π/3

5 1.068 0.179385 π/5

7 1.04769 −0.151442 π/7

9 1.03671 0.1333456 π/9

11 1.02984 −0.120649 π/11

13 1.02513 0.110936 π/13

15 1.0217 −0.103244 π/15

19 1.01705 −0.0916934 π/19

21 1.0154 0.0872034 π/21

51 1.00628 −0.0559035 π/51

101 1.00316 0.0397109 π/101

Table II. Maximum values of the violation of the Leggett-Garg
inequalities on optimising the choice of angles ϑ and φ.

5 10 15 20

N

1

1.03

1.06

1.09

1.12

L
G

Figure 8. Violation of the Leggett-Garg inequality up to N =
19, for the optimal values of ϑ and φ as given in Table II.

we can simplify the correlation to (since αβ = 1
2 sin 2ϑ)

〈S1S3〉 = XN sin 2ϑ cosNφ (D6)

The final correlation is obtained by evaluating the
weighted average where |N〉|0〉 and |0〉|N〉 are taken to
be the initial state. This is based on the prediction for
a non-clumsy projective measurement that collapses the
state at time t2, to either |N〉|0〉 or |0〉|N〉. Thus

〈S2S3〉 = α2
N∑
m=0

sgn(2m−N)
∣∣∣h(N)

∣∣∣2
−β2

N∑
m=0

sgn(2m−N)
∣∣∣h(0)

∣∣∣2 (D7)

where

h(N) =
1√
2N

√
N !

m!(N −m)!

h(0) =
1√
2N

√
N !

m!(N −m)!
eiNφ(−1)N−m (D8)

We find that for all values of N , 〈S2S3〉 = 0. For example
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N LGmax ϑopt

3 1.06066 −0.169918

5 1.03456 0.1296

7 1.02412 0.108738

9 1.01852 −0.0954964

11 1.01503 −0.0861447

13 1.01264 0.0790904

15 1.01091 0.0735252

19 1.00856 −0.0652016

21 1.00773 0.0619757

51 1.00315 −0.0396122

101 1.00158 −18.8214

N LGmax ϑopt

3 1.08875 0.159386

5 1.0457 −0.107283

7 1.02943 0.0817553

9 1.02113 −0.0663958

11 1.01618 0.0560665

13 1.01295 −0.0486131

15 1.01068 0.0429661

19 1.00776 0.0349518

21 1.00877 0.139267

51 1.00622 −0.0610179

101 1.00302 0.031722

Table III. The Table on the left gives the maximum violation
of the Leggett-Garg inequalities where ϑ is optimised at ϑopt
for the fixed angle φ = π/4. The Table on the right gives the
maximum violation of the Leggett-Garg inequality where the
angle ϑ is optimised at ϑopt, given the constraint φ = ϑ.

for N = 3

|3〉|0〉 → 1√
8

(
|0〉|3〉+

√
3|1〉|2〉+

√
3|2〉|1〉+ |3〉|0〉

)
|0〉|3〉 → ei3ϕ√

8

(
−|0〉|3〉+

√
3|1〉|2〉 −

√
3|2〉|1〉+ |3〉|0〉

)
Hence

〈S2S3〉 =
α2

8
(1 + 3− 3− 1) +

β2

8
(1 + 3− 3 + 1) = 0

For N even, there is no violation of the Leggett-
Garg inequality (1) since 〈S2S3〉 = 0 and 〈S1S3〉 = 0.
Thus the Leggett-Garg inequality for even N reduces
toLG = 〈S1S2〉 = cos 2ϑ < 1. For odd N , the Leggett-

Garg correlation is

LG = cos 2ϑ−XN sin 2ϑ cosNφ (D9)

It is possible to obtain violations of the Leggett-Garg
inequality. The angles ϑopt and φopt that maximise the
value of LG are

ϑopt =
1

2
arctan [XN ]

φopt = π/N (D10)

Substituting this into the expressions for 〈S1S2〉 and
〈S1S3〉, we obtain for the maximum value

LG =
√

1 +X2
N (D11)

Table II indicates the maximum violation as plotted in
Figure 3c and the optimal values of φ and ϑ.

It is also possible to get violations of the Leggett-Garg
inequality for fixed choice of angle φ. Here we select
φ = π/4 and find the optimal choice for ϑ is given by

ϑopt = −1

2
arctan

[
XN cos

(
πN

4

)]
(D12)

With these values we get the maximum violation

LG =

√
1 +

X2
N

2
(D13)

The corresponding values are given in the Table III. We
also consider the case where ϑ = φ. Here, we obtain
violations of the Leggett-Garg inequality for a suitable
choice of φ as given in the Table III. The Figure 3c
gives a summary of the violations of the Leggett-Garg
inequality that are possible.
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