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Macroscopic realism (MR) per se specifies that where a system can be found in one of two
macroscopically distinct states (like a cat being dead or alive), the system is predetermined to be
in one or other of the two states. A minimal assumption of a macroscopic realistic theory therefore
is the validity of a hidden variable λM that predetermines the outcome (whether dead or alive)
of a measurement M̂ distinguishing the two states. Proposals to test MR generally introduce a
second premise to further qualify the meaning of MR. Thus, we consider a model, macroscopic
local realism (MLR), where the second premise is that measurements at one location cannot cause
an instantaneous macroscopic change δ to the predictions of a system at another. To provide a
practical test, we define the intermediate concept of δ-scopic local realism (δ-LR), where δ 6= 0
can be quantitified, but may not be macroscopic. By considering the amplification of quantum
fluctuations, we show how negation of δ-LR is possible using fields violating a continuous variable
Bell inequality. A Bell inequality is derived that tests δ-LR, and a quantitative proposal given
for experiments based on polarisation entanglement. In the proposal, δ is the magnitude of the
quantum noise scaled by an adjustable coherent amplitude α that can also be considered part of
the measurement apparatus. Thus, δ is large in an absolute sense, but scales inversely to the square
root of the system size, given as |α|2. We discuss how the proposed experiment gives a realisation
of a type of Schrodinger-cat experiment without problems of decoherence.

I. INTRODUCTION

In his essay of 1935, Schrodinger considered the quan-
tum interaction of a microscopic system with a macro-
scopic system [1]. After the interaction, the two sys-
tems become entangled. If the macroscopic system were
likened to a cat, then according to the standard inter-
pretation of quantum mechanics, it would seem possible
for the “cat” to be in a state that is “neither dead nor
alive”. In a simplistic analogy to Schrodinger’s system,
the quantum state describing the microscopic and macro-
scopic systems after the interaction can be written

|ψ〉 =
1√
2

(
|dead〉C | ↓〉S + |alive〉C | ↑〉S

)
(1.1)

Here | ↑〉 and | ↓〉 represent two distinct states of the
microscopic system S, and |dead〉 and |alive〉 symbolise
two macroscopically distinct states for the macroscopic
cat-system C. Different forms of cat-states have been
realised experimentally [2–7]. The interpretation of the
“cat” in the superposition state (1.1) is that it is “neither
dead nor alive” prior to measurement [1, 8]. This ap-
parent contradiction with macroscopic realism has mo-
tivated much research [9–19], including modifications of
quantum mechanics that aim to resolve the measurement
problem [20].

What constitutes a rigorous signature of a cat-state
and how such signatures can be interpreted as a falsifi-
cation of macroscopic realism is an important question.
This question was addressed by Leggett and Garg, who
proposed a model of macroscopic realism for dynamical
systems [9]. The Leggett-Garg inequalities allow a falsifi-
cation of the Leggett-Garg model and have motivated ex-
periments and proposals to test macro-realism, including

for superconducting flux quibits [21], solid state quibits
[22], cold atoms and Bose-Einstein condensates [23–25],
and mechanical oscillators [26].

Here, we consider an alternative approach for testing
macroscopic realism (MR), that does not involve assump-
tions about dynamics. To address the need for a strict
test of MR, Leggett and Garg defined macroscopic re-
alism in terms of a macroscopic hidden variable [9]. In
their model, the fundamental premise is as follows: where
a system can be found in one of two macroscopically dis-
tinct states (like a cat being dead or alive), the system
is predetermined to be in one or other of the two states.
A minimal assumption of MR therefore is the validity
of a hidden variable λM that predetermines the outcome
(whether dead or alive) of a coarse-grained measurement
M̂ , that distinguishes the two states. Leggett and Garg
referred to this assumption as macroscopic realism per
se (MRPS). The direct negation of the hidden variable
λM proves difficult, and a second premise is normally
introduced to qualify the meaning of MR. Leggett and
Garg introduced the additional assumption of macro-
scopic noninvasive measurability, to define a model now
called macro-realism. An analysis of the macroscopic re-
alism models tested by the Leggett-Garg inequalities has
been given recently by Maroney and Timpson [27].

In this paper, we consider a different model for macro-
scopic realism, where the second premise is the assump-
tion of macroscopic locality (ML). In this way, we con-
sider a model of MR called macroscopic local realism
(MLR). ML asserts that measurements at one location
cannot cause an instantaneous macroscopic change to the
system at another. By a macroscopic change to the sys-
tem, we mean a macroscopic change to the predictions of
that system. The ML assumption is that defined origi-
nally by Bell [28], except that small nonlocal changes to
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the system may be permitted. The combined premises
of MRPS and ML constitute the premise of MLR [29–
31]. In many contexts, MLR cannot be expected to fail
because of bounds placed on the predictions of quantum
mechanics in accordance with the uncertainty relation
[15, 19, 32].

To test a weaker hypothesis where the “dead” and
“alive” states of the system are not necessarily macro-
scopically distinguishable, but may be mesoscopically so,
it is useful to define the premise of δ-scopic local realism
(δ-LR). We consider a coarse-grained measurement M̂
that distinguishes the two states, by way of two distinct
outcomes. We suppose that the two distinct outcomes
have a difference of 2δ (Figure 1). The δ-LR premise
asserts firstly the validity of a hidden variable λδ to de-
scribe that the outcome of the measurement M̂ is pre-
determined, consistent with the system being predeter-
mined in one state or the other. The second premise of
δ-scopic locality asserts that a measurement made at a
different location to the system cannot cause an instan-
taneous change of greater than (or equal to) 2δ to the
outcome of the measurement M̂ .

The contribution of this paper is to derive modified
Bell inequalities that may be used to test δ-LR where out-
comes are not necessarily confined to a dichotomic spec-
trum (Figure 1), and to give a context in which negation
of δ-LR is predicted by quantum mechanics. Certainly,
violation of MLR occurs if one can demonstrate a vi-
olation of a Bell inequality for two spatially separated
entangled cat-systems where the outcomes of all rele-
vant measurements on the cat-systems are macroscopi-
cally distinct. Our main result is to give a potentially
workable proposal for testing δ-LR, where δ is “macro-
scopic” in an absolute rather than a relative sense, for
a scalable system. To do this, we consider polarisation
squeezing experiments [30, 31]. These experiments give
insight into the measurement process, by creating a tran-
sition from microscopic to macroscopic that is controlled
by a coherent field α [30, 31, 33–35]. In the transition,
the quantum fluctuations are amplified by the coherent
field as part of the measurement process. In the proposed
test, the meaning of “δ-scopically distinguishable” refers
to particle number differences δ that are large in an ab-
solute sense, but small (∼ 1/

√
N) compared to the total

number N of particles of the system.
We give a firm proposal to test local realism at a quan-

tifiable level, by deriving a Bell inequality, the violation
of which falsifies a δ-scopic local realism. The Bell in-
equality is then applied to a definite proposal where ex-
periments violate Bell inequalities for continuous variable
measurements [36–38]. The experiment is in one sense
“scalable”, being feasible for large systems, because the
usual severe limitations due to decoherence do not apply
when δ is below the quantum noise level (∼

√
N).

In the final section of this paper, we discuss the degree
of analogy between the “cat” superposition state consid-
ered in this paper and the entangled cat-state (1.1). A
state of type (1.1) is formed after a quantum measure-
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Figure 1. Testing δ-scopic LR using a Bell inequality: Here
P (n) is the probability of a obtaining a result n in a hypothet-
ical experiment. P0 is the probability of a result between −δ
and +δ. We consider experiments where the binned outcomes
of a measurement M̂A made on system A are distinct by an
amount 2δ. Similarly, we consider that the outcomes of a
measurement M̂B made on a second system B (spatially sep-
arated from the first) are distinct by 2δ. This is described in
the diagram with P0 = 0. An example of such an experiment
is illustrated in Figure 2, which introduces two adjustable
coherent fields with amplitude α. The outcomes n for mea-
surements JAθ , J

B
φ defined in Figure 2 are binned into one of

the regions 1, 0, 2. As α → ∞, P0 → 0 (for fixed δ). In that
case, the two outcomes given by n < −δ and n > δ are said
to be δ-scopically distinct, and are referred to as “dead” and
“alive” as δ → ∞. A method accounting for nonzero P0 is
given in Section IV.

ment. In that case, the system C represents the macro-
scopic pointer of a measurement apparatus. The “dead”
and “alive” outcomes for the cat-system (being correlated
with the spin being “up” or “down”) correspond to the two
positions (N+ andN−) on the measurement dial that give
the measurement outcome for spin. We emphasise that
the δ-LR tests proposed in this paper are not sufficient
to indicate that the measurement pointer is located “si-
multaneously at two distinct “positions” N+ and N− on
the dial”, or that there are nonlocal effects of the order
N+−N−. For the cat-state (1.1), the separation between
N+ and N− is well beyond the quantum noise level given
by α ∼ 1 (assuming α → ∞). The δ- LR tests however
may indicate nonlocality between a macroscopic pointer
and a second system, that manifests on the scale of “po-
sitions” with a spread

√
N±.

II. BELL INEQUALITIES FOR TESTING
δ-SCOPIC LOCAL REALISM

We consider two spatially separated cat-systems A and
B that at any given time can each be found (upon mea-
surement) to be in one of two macroscopically distin-
guishable states (“dead” or “alive). We suppose that the
two states can be distinguished by appropriate coarse-
grained local measurements M̂A and M̂B made on each
system (as discussed in the Introduction, with δ → ∞).
In this section, we consider a Bell inequality to test
macroscopic local realism.
Macroscopic local realism (MLR) asserts firstly the

minimal assumption of macroscopic realism, called
macroscopic realism per se (MRPS), that at any given
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time the result of the coarse-grained measurement on a
particular cat-system is predetermined, prior to measure-
ment. This implies the validity of a hidden variable that
describes which state (“dead” or “alive”) the system is in,
prior to the measurement. The hidden variables will be
denoted λAM and λBM for the cat-systems A and B re-
spectively, and will be referred to as the “macroscopic
hidden variables”. In such a model, the result of the
measurement M̂A made on system A is determined by
the value of the hidden variable λAM ; similarly the result
of the measurement M̂B at B is determined by the value
of λBM . In this paper we are careful to use only the min-
imal assumption of macroscopic realism (referred to as
MRPS), in which the meaning of “state” refers only to
the macroscopic state of the system, whether “dead” or
“alive”. This macroscopic meaning is defined with ref-
erence to the outcome of the coarse-grained measure-
ments M̂A/B , and therefore does not distinguish states
that have a microscopic difference in the predictions of
an observable.

The second assertion of macroscopic local realism
(MLR) is macroscopic locality , that the measurement M̂
on one system cannot bring about an immediate macro-
scopic change to the system at the other location. By
a macroscopic change in this context, we mean a transi-
tion of the macroscopic hidden variable λM being +1 to
being −1 or vice versa i.e. a transition between “dead”
and “alive” states. The premise of macroscopic locality
asserts that a measurement cannot make a macroscopic
change to the other system, but we cannot exclude that
microscopic changes may occur.

We consider local measurements M̂A
θ and M̂B

φ that
can be made on each system A and B. Here θ and
φ are measurement settings and we consider two mea-
surement choices θ, θ′ and φ, φ′ for each system. We
suppose that the measurements M̂A

θ , M̂A
θ′ and M̂

B
φ′ , M̂B

φ
each give macroscopically distinct binary outcomes which
are denoted +1 and −1 (corresponding to “alive” and
“dead” regimes 2 and 1 shown in Figure 1). If we assume
macroscopic local realism, the following Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality will hold [31, 39]

〈M̂A
θ M̂

B
φ 〉 − 〈M̂A

θ M̂
B
φ′〉+ 〈M̂A

θ′M̂
B
φ 〉+ 〈M̂A

θ′M̂
B
φ′〉 ≤ 2

(2.1)

The MLR model is an example of an LHV model. The
derivation of (2.1) follows as for the CHSH Bell inequality
that applies to all LHV models where the measurements
have binary outcomes [28, 39]. The violation of (2.1) will
imply failure of MLR.

Violations of Bell inequalities for cat-states have been
predicted and observed experimentally [6, 7, 38]. How-
ever these do not involve macroscopic distinct binary out-
comes for all measurements θ, θ′, φ and φ′ and hence
do not violate (2.1). We mention that similar hybrid
inequalities based on the combined premises of macro-
realism and Bell locality have been derived and tested
experimentally for small systems [40]. These inequali-
ties are however different to those above. Applying to

a single experimental ensemble with fixed analyser set-
tings and requiring weak measurements for their viola-
tion, they test a different model of macroscopic realism.

As might be expected, the possibility of violating the
inequality (2.1) depends on how we interpret “macro-
scopic”. To quantify the meaning of “macroscopic” in
a given situation, we generalise the definition of MLR by
defining δ-scopic local realism (δ-LR). The δ-LR is de-
fined in the Introduction. The model of δ-scopic LR is
falsified where the separation between the binary (“dead”
and “alive”) outcomes for the measurements M̂A

θ , M̂A
θ′

and M̂φ′ , M̂B
φ is greater than or equal to 2δ (Figure 1).

We next examine scenarios where it is possible to falsify
δ-scopic local realism for some quantifiable δ that can
be made large by an amplification that occurs as part of
a measurement process, in analogy to a Schrodinger-cat
gedanken experiment.

III. AMPLIFICATION OF NONLOCAL
CORRELATIONS

A. Amplification of the quantum noise

We now consider in detail proposals for violating δ-
scopic local realism using field quadrature phase ampli-
tude observables. Here, the measurement of the field
amplitudes takes place via an amplification process that
involves a second field, so that the final measurement is
of a Schwinger spin [30, 31]. The relevant uncertainty
principle for spin is

∆ĴAX∆ĴAY ≥ |〈ĴAZ 〉|/2 (3.1)

It is possible to create a situation where the quantum
noise level given by |〈ĴAZ 〉|/2 corresponds to a very large
photon number difference (field intensity). This allows
consideration of changes of order δ where δ is large in
the absolute sense of particle number (intensity), but
small compared to the quantum noise level |〈ĴAZ 〉|/2. The
highly non-classical mesoscopic effects that are predicted
can then be understood as a property of amplified quan-
tum fluctuations.

The system we consider comprises two spatially sepa-
rated modes at A and B (Figure 2). We denote the modes
initially prepared at A and B by the symbols a1 and b1,
and define the boson operators, â1 and b̂1, respectively.
A second mode pair a2 and b2 is defined similarly. These
modes are prepared in an entangled state (see next sec-
tion). At each location, the mode a1 (or b1) is combined
with a second mode a2 (or b2) respectively, these second
modes being prepared in independent coherent states |α〉
(where α → ∞). The combination can occur through
a 50/50 beam splitter (or equivalent). The outputs at
each location are rotated modes with boson operators
â+ = (â1 + â2)

√
2 and â− = (−â1 + â2)/

√
2 for A, and

b̂+ = (b̂1 + b̂2)/
√

2 and b̂− = (−b̂1 + b̂2)/
√

2 for B. This
amplification is similar to the homodyne detection used
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Figure 2. Two entangled cat-systems are created as part of a
measurement process: The modes a1 and b1 are prepared in
an microscopic entangled state |ψ〉. The modes a2 and b2 are
independent intense coherent states |α〉. The fields a1, a2 and
b1, b2 are combined at each location A and B to create mode
pairs a± and b±. For α→∞, these form two cat-systems at
A and B. Final measurements of the number differences n, m
given by JAθ = (N+−N−)/2 and JBφ = (N+−N−)/2 are made
using a polariser beam splitter at each detector. This gives
an amplified readout of the quadrature phase amplitudes xθ
and xφ of the fields a1 and b1. Whether the cat-systems are
considered “dead” or “alive” is determined by the sign of JAθ
and JBφ . For a small fixed δ, we define the outcomes JA/Bθ,φ to
be “dead” if JA/Bθ,φ < −δ and “alive” if JA/Bθ,φ > δ. As α→∞,
the probability P0 of a result −δ ≤ J

A/B
θ,φ ≤ δ becomes zero

(Figure 1). This is true for any large δ, provided α � δ.
Thus, the dead and alive outcomes become macroscopically
distinguishable as α→∞.

in experiments that measure a squeezing of the quantum
fluctuations of modes a1 and a2 [33].

The mode pairs that are created at A and B have a
large total occupation number, because of the large co-
herent fields α. In Figure 2, these systems are called
“cat A” and “cat B”. At each location an experimentalist
makes a measurement of a number difference N̂+ − N̂−
that defines a Schwinger spin measurement. These mea-
surements are made on the cat-systems, and (as we will
see) enable a distinction to be made between “dead” and
“alive” states of the mode-pairs. At location A, we define
the outcome of the measurement ŜAθ to be ±1 according
to the sign of the outcome JAθ (ϕ) of the measurement
ĴAθ (ϕ), where

ĴAθ (ϕ) = (N̂+ − N̂−)/2 = (ĉ†+ĉ+ − ĉ†−ĉ−)/2 (3.2)

Here ĉ+ = â+ cos θ + eiϕâ− sin θ and ĉ− = −â+ sin θ +

eiϕâ− cos θ. This measurement ĴAθ (ϕ) could be carried
out using a phase shift ϕ and polarising beam splitters
rotated to θ with the modes a+ and a− as inputs. With
suitable choice of θ and ϕ, the measurement (3.2) corre-
sponds to a measurement of a Schwinger spin observ-
able for the operators â1 and â2. These are defined
ĴAX = (â†2â1 + â†1â2)/2, JAY = (â†2â1 − â†1â2)/(2i) and
ĴZ = (â†2â2 − â†1â1)/2. We see that ĴAX = ĴA0 (π/2),
JAY = Ĵπ/4(π/2) and ĴAZ = ĴAπ/4(0). The outcome of a
measurement ŜBφ on cat B is defined to be ±1 according
to the sign of the spin observable

ĴBφ (γ) = (d̂†+d̂+ − d̂†−d̂−)/2 (3.3)

where d̂+ = b̂+ cosφ + eiγ b̂− sinφ and d̂− = −b̂+ sinϕ +

eiγ b̂− cosϕ. With suitable choice of φ and γ (as above),
this measurement corresponds to a Schwinger observable
at B, defined as ĴBX = (b̂†2b̂1 + b̂†1b̂2)/2, ĴBY = (b̂†2b̂1 −
b̂†1b̂2)/(2i) and ĴBZ = (b̂†2b̂2 − b̂†1b̂1)/2.

It is well-known that in the limit of α → ∞, the
measurements ĴAθ (ϕ) and ĴBφ (γ) are also measurements
of the quadrature phase amplitudes x̂, p̂ of the origi-
nal modes a1 and b1 [30]. This is because the fields
a2 and b2 are (to a good approximation) intense clas-
sical fields of amplitude α (which we take to be real)
[33, 41]. In that limit, we can simplify: ĴAX = α

√
2x̂A,

ĴAY = α
√

2p̂A, 〈ĴZ〉 → α2/2 where x̂A = (â†1 + â1)/
√

2

and p̂A = i(a†1 − a1)/
√

2 are the quadrature phase am-
plitudes of a1. The Heisenberg uncertainty relation (3.1)
reduces to ∆x̂A∆p̂A ≥ 1/2 for the quadratures. In fact,
more generally, defining ĴAθ = ĴAθ (π/2) we see that

ĴAθ = α
√

2x̂A2θ (3.4)

where x̂θ = x̂ cos θ+ p̂ sin θ. The ĴAθ (π/2) is thus a mea-
surement of the amplified quadrature phase amplitude
α
√

2x̂A2θ. A similar result holds for the quadrature phase
amplitudes x̂B = (b̂†1 + b̂1)/

√
2 and p̂B = i(b̂†1 − b̂1)/

√
2

defined at B. ĴBφ = ĴBφ (π/2) gives the amplified quadra-
ture amplitude α

√
2x̂B2φ.

The increase in α also amplifies the total number of
particles at each site. The nature of the amplification
is evident by the uncertainty relation (3.1) for the spin
measurements which reduces to

∆ĴAX∆ĴAY ≥ |α|2/4 (3.5)

since α is taken to be very large. The amplification that is
crucial to creating the macroscopic states at the locations
A and B is also an amplification of the quantum noise
level, and there is no amplification relative to this level
[29–31].

We envisage an experiment similar to the optical and
atomic polarisation entanglement experiments reported
in Refs. [33–35, 41]. In those experiments, at site A, the
experimentalist can measure a particular ĴAθ . Each Ĵ

A
θ is

a measurement of a particle number difference according
to (3.3), and is also a measurement of quadrature phase
amplitude according to (3.4). Similar measurements are
made at B. Different to other experiments that measure
quadrature fluctuations however, the choice of measure-
ment angle θ is made after the combination of the mode
a1 with the strong field a2. With the definition of the
“dead” and “alive” outcomes given in Figure 2 (see next
Section), the binned measurements ŜAθ and ŜBφ of ĴAθ and
ĴBφ defined above are analogous to the measurements M̂A

and M̂B defined in the Introduction. The measurements
ĴAθ and ĴBφ are macroscopic, in the sense that if one con-
siders a change δθ in the quadrature phase amplitude x̂θ,
then one can define an amplified change δ = α

√
2δθ for

the particle number difference measured by Ĵθ. We will
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Figure 3. Signature of the cat-state created by the apparatus
of Figure 2: The number differences JA/Bθ/φ = (N+ − N−)/2

at the sites A and B are denoted n and m respectively,
and are binned to the values SA/Bθ,φ = 1 or −1 according
to sign as described in text. Left: The expectation values
E = 〈SAθ SBφ 〉− 〈SAθ SBφ′〉+ 〈SAθ′SBφ 〉+ 〈SAθ′SBφ′〉 generated when
modes a1 and b1 are prepared in the state |ψ〉 given by eq.
(3.7) will violate the Bell inequality (3.6) for all α → ∞.
Right: A contour graph of the probability for joint outputs
n and m (here θ = φ). The absolute values of the number
difference outputs n, m increase with α.

see in the next Section that this allows us to define dead
and alive outcomes for the cat-system that in the limit
of α → ∞ are, in an absolute sense, mesoscopically or
macroscopically distinguishable (Figures 1 and 2).

B. Violation of continuous variable Bell inequalities

We now discuss experiments to falsify a δ-scopic local
realism. For some states, the correlations obtained for
the quadrature phase amplitude measurements x̂Aθ and
x̂Bφ at each site are predicted to violate a Bell inequality
[36–38]. The outcome of the measurement x̂ at each site
can be binned into regions of non-negative and negative
values. We define an observable ŜAθ whose value is +1

if xAθ ≥ 0 and −1 otherwise. A similar observable ŜBφ is
defined at B, based on the quadrature phase amplitude
x̂Bφ . It has been shown that for certain states |ψ〉 and for
certain angles φ, φ′, θ′ and θ, the following Bell inequality
is violated [37, 38]

E = 〈SAθ SBφ 〉 − 〈SAθ SBφ′〉+ 〈SAθ′SBφ 〉+ 〈SAθ′SBφ′〉 ≤ 2 (3.6)

thus negating the possibility of an LHV model describing
the results of those measurements.

Since we can also write ĴAθ = α
√

2x̂A2θ and ĴBφ =

α
√

2x̂B2φ, this inequality is also violated if we redefine ŜAθ
as the observable with value +1 if JAθ ≥ 0 and −1 other-
wise; and ŜBφ as the observable with value +1 if JBφ ≥ 0
and −1 otherwise. The violation implies that there is
no predetermined (local) hidden variable description for
the sign of the number differences JAθ , J

B
φ [30]. Because

we can increase α, this gives a situation where one can
falsify local hidden variables for noisy measurements of
particle number difference. An example of |ψ〉 is the pair

coherent state or “circle” state

|ψ〉 =
er

2
0

2π
√
I0(2r20)

ˆ 2π

0

|r0eiζ〉|r0e−iζ〉dζ (3.7)

(I0 is the modifed Bessel function, r0 = 1.1) that is gen-
erated near the threshold of nondegenerate parametric
oscillation [37, 38]. These states are generated using non-
degenerate parametric oscillation [42]. The predictions
for the violation of the Bell inequality (3.6) for this state
are given in Figure 3.

As α increases, it is argued that the +1 and −1 out-
comes for ŜAθ ultimately become “macroscopically” dis-
tinct (in the absolute sense discussed above). Similarly
the +1, −1 outcomes for ŜBφ become macroscopically dis-
tinct. The measurements ŜAθ and ŜBφ are then examples
of macroscopic measurements M̂A

θ and M̂B
φ and the vi-

olation of (3.6) is a violation of (2.1). In this limit we
would violate “macroscopic local realism”.

To understand the argument, we define a region of
measurement outcome x for ĴAθ where the result falls
between −δ and +δ for some δ 6= 0 (see Figure 1). We
call this region 0, and also define the region of outcomes
x ≥ δ as region 2, and the region of outcomes x ≤ −δ as
region 1. For any (arbitrarily large) fixed δ, the probabil-
ity P0 of a result in the region 0 becomes zero as α→∞.
Yet the violation of the Bell inequality is unchanged with
α (Figure 3a). Hence, violation of the inequality (2.1) is
possible for the two outcomes +1 and −1 that for suffi-
ciently large α can be justified as separated by a region
of width 2δ, with P0 → 0. Hence, by taking δ large, there
is a prediction for a violation of mesoscopic/ macroscopic
local realism.

For a realisation of the experiment, however, δ is finite,
and there will be a small nonzero probability P0 6= 0 for a
result in region 0. We would also prefer in an experiment
to quantify precisely by number the level δ for which local
realism is violated, since the labelling of “macroscopic” or
“mesoscopic” is subjective. This is explained in the next
Section.

IV. PRACTICAL QUANTIFIABLE δ-SCOPIC
LOCAL REALISM TESTS

A. The modified Bell-CHSH inequalities

We now consider the case where there is a continuum
of outcomes, meaning that P0 6= 0, as defined in Fig-
ures 1 and 4. The meaning of macroscopic realism per se
(MRPS) for the more general case where P0 6= 0 is ex-
plained in the paper of Leggett and Garg [9] and in Refs.
[24, 25, 43]. The MR premise for this generalised case is
that the system be described as a probabilistic mixture
of two overlapping states: the first gives outcomes in re-
gions “1” or “0”; the second gives outcomes in regions “0”
or “2”. The MRPS assumption excludes the possibility
that the system can be in a quantum superposition of
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n

P0

δ

dead

P0

P (n)
region 2
alive

region 1

−δ 0

region 0

Figure 4. Practical method for testing δ-scopic LR using a
Bell inequality: The outcomes of each measurement ĴAθ , Ĵ

B
φ

indicated in Figure 2 are binned into one of the regions 1, 0, 2.
As α→∞, P0 → 0. A method for testing δ-scopic LR where
P0 6= 0 is given in Section IV. This involves considering that
the system is probabilistically in one of two states, that have
overlapping outcomes. The first state is defined as producing
an outcome in the combined regions 1 or 0; the second state
is defined as producing an outcome in regions 0 or 2.

two states, one that gives outcomes in region 1 and the
second that gives outcomes in 2. It does not however ex-
clude quantum superpositions of states with outcomes in
region 1 and 0, or quantum superpositions of states with
outcomes in regions 0 and 2. Where δ is finite and not
necessarily macroscopic, we use the term δ-scopic realism
(per se) to describe the premise that is used.

We follow the approach of Refs. [24, 25, 43], and denote
the hidden variable state associated with the outcomes
in regions “1” or “0” for the system at A by the hidden
variable value S̃A = −1. Similarly, the hidden variable
state that generates outcomes in regions “0” and “2” is
denoted by the hidden variable value S̃A = 1. We define
the variable S̃B similarly. The δ-scopic locality assump-
tion asserts that the measurement at one location cannot
change the result at the other in such a way that the sys-
tem changes value of S̃ from +1 to −1, or vice versa. We
define P+ and P− as the probabilities that the system is
in the state with S̃ = +1 or S̃ = −1, respectively. Then
we note that the δ-LR assumptions (which are δ -scopic
realism per se and δ-scopic locality combined) predicts
the Bell inequality

〈S̃Aθ S̃Bφ 〉 − 〈S̃Aθ S̃Bφ′〉+ 〈S̃Aθ′ S̃Bφ 〉+ 〈S̃Aθ′ S̃Bφ′〉 ≤ 2

(4.1)

However, the moments Kθφ = 〈S̃Aθ S̃Bφ 〉 are no longer
directly measurable, because an outcome between−δ and
+δ could arise from either state, S̃ = −1 or +1. Nonethe-
less, following a method similar to that given in Refs.
[25, 43] we conclude that

P1 ≤ P− ≤ P1 + P0 (4.2)

and

P2 ≤ P+ ≤ P2 + P0 (4.3)

where P1, P2 and P0 are the probabilities of obtaining
a result in regions 1, 2 and 0 respectively. These prob-
abilities are experimentally measureable. The relations

(4.2) and (4.3) are made clear on examining the depiction
of the regions as given in Figure 4. From the relations,
we establish bounds on the correlations assuming δ-LR,
where P0 6= 0. It is straightforward to see that δ-scopic
local realism will imply

Klower
θ,φ −Kupper

θφ′ +Klower
θ′φ +Klower

θ′φ′ ≤ 2 (4.4)

where Klower
θφ and Kupper

θφ are lower and upper bounds to
Kθφ i.e.

Klower
θφ ≤ Kθφ ≤ Kupper

θφ (4.5)

Correct upper and lower bounds are given by

Klower
θφ = P2,2(θ, φ) + P1,1(θ, φ)

−P10,20(θ, φ)− P20,10(θ, φ) (4.6)

and

Kupper
θφ = P20,20(θ, φ) + P10,10(θ, φ)

−P1,2(θ, φ)− P2,1(θ, φ) (4.7)

Here we have introduced the notation that PIJ,LM is the
joint probability for an outcome of JAθ in regions I or J
and an outcome of JBφ in regions L or M (see Figure 4).
Accordingly, PI,L is the joint probability for an outcome
of JAθ in region I and an outcome of JBφ in regions L.

To emphasise the dependence on δ, the modified CHSH
Bell-inequality (4.4) that follows from the assumption of
δ-LR can be rewritten as Eδ ≤ 2 where

Eδ = Klower
θ,φ −Kupper

θφ′ +Klower
θ′φ +Klower

θ′φ′ (4.8)

Each term is measurable experimentally by dividing the
regions of outcome into three binned regions as sketched
in Figure 4, where the size of the middle region is de-
termined by δ. The probabilites for obtaining outcomes
in each region enables evaluation of the Eδ. Violation of
the inequality Eδ ≤ 2 is sufficient to confirm a violation
of δ-LR. This gives a practical means to demonstrate a
violation of an δ-scopic local realism for a finite δ where
there is a nonzero probability P0 of an outcome in the
region defined by −δ < x < δ. A similar inequality has
been derived for Leggett-Garg experiments [25].

Rigorous Bell tests for continuous variable measure-
ments are likely to be carried out in the future. The
method we describe could be applied to any such exper-
iment. For realistic tests based on current experiments,
the shifts δ may not be macroscopic, but nonetheless of-
fer a route to test local realism beyond the single particle
level considered in most experimental tests of Bell non-
locality so far.

B. Analysis of feasibility

For an indication of what might be feasible in practice,
let us assume the value of E = 2.2 given in Figure 3 could
be achieved as predicted by quantum mechanics, with a
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coherent field value α0. Calculations given in Ref. [30]
show that violations of the quadrature phase amplitude
Bell inequality (3.6) are obtained with Gaussian noise
added to the outcomes n, provided the noise standard
deviation σ satisfies σ . 0.2. This suggests that a full
calculation of Eδ may give violations (Eδ > 2) for δ ∼
0.1α0. The noise effectively adds a coarse-graining to the
measurements.

The papers of Kofler and Brukner explain how ulti-
mately macroscopic realism will be obtained through the
coarse-grained measurements [16]. In the current pa-
per, the violations of macroscopic local realism tolerate
a “macroscopic” level of noise as α0 → ∞, but the noise
remains of order 1/α0 relative to the overall system size
given by |α0|2.

We establish a conservative estimate for the value δ at
which δ-LR might be falsifiable by deriving a less sensi-
tive version of the modifed CHSH Bell inequality (4.4),
given by Eδ ≤ 2. Suppose Pu0 is an upper bound on the
value of P0, for either site and for any of the relevant
angle values. Then it is true that

PI,M ≤ PI0,M0 ≤ PI,M + 2Pu0 (4.9)

Hence

Klower
θφ ≥ 〈SAθ SBφ 〉 − 4Pu0

Kupper
θφ ≤ 〈SAθ SBφ 〉+ 4Pu0 (4.10)

A modified CHSH-Bell inequality based on the premise
of δ-scopic local realism is then seen to be

〈SAθ SBφ 〉 − 〈SAθ SBφ′〉+ 〈SAθ′SBφ 〉+ 〈SAθ′SBφ′〉 ≤ 2 + 16Pu0
(4.11)

Let us assume the value of E = 2.2 given in Figure 3 is
achieved in the experiment. Then from this inequality,
we see that we will certainly obtain a violation of the
δ-scopic realism for regions of width 2δ about the origin
that correspond to a total probability of occupation of
Pu0 < 0.01. One such region derived on the basis of the
distributions for the current example (see Figure 3) has
a width δ ∼ 0.01α0.

The value of α0 is determined by the amplitude of the
field modes indicated by a2 and b2 in Figure 2. These
we sometimes refer to as the local oscillator fields. The
treatment of these fields as well-defined modes is however
simplistic. Examination of the experiments detecting po-
larisation and continuous variable entanglement reveals
that the local oscillators are either the intense pulsed or
continuous-wave output of a laser. Pulsed experiments
are more in keeping with nonlocality tests. The experi-
ment of Julsgaard et al [41] quotes 1013 photons in the
0.45ms 5mW pulse used to entangle two atomic ensem-
bles. The fibre squeezing and EPR entanglement exper-
iments cited in the review [44] use local oscillator pulses
of a similar intensity. These figures suggest α0 ∼ 106 to
be possible, indicating values of δ ∼ 104 photons.

We stress that while the value of δ is amplified in ab-
solute terms by this factor α0, in this proposal the value

δ is always small relative to the magnitude |α0| which
determines the quantum noise level in Eq. (3.5), and to
|α0|2 which determines the overall size of the system. In
fact the ratio δ/|α0|2 decreases with increasing α0. The
argument can therefore be made that the value of δ be
considered microscopic, in this sense. Certainly this is
the viewpoint taken in standard squeezing and EPR en-
tanglement experiments, where the local oscillator phase
and hence the choice of measurement is selected prior the
the amplification of system size that occurs as part of the
measurement process.

In the proposed experiments, however, the system is
amplified prior to the selection of the phase that deter-
mines the choice of measurement. This time order has
been carried out in the polarisation squeezing and en-
tanglement optical experiments [33], and in the atomic
experiments of Julsgaard et al and Gross et al [41] where
two large ensembles of atoms are entangled. Similar in-
terpretations may be possible in other experiments [45].
It is these latter cases that give the arguable interpre-
tation presented in this paper, that the fluctuation δ be
regarded as mesoscopic (in fact δ-scopic) in an absolute
sense.

V. THE MACROSCOPIC POINTER

The cat-system C of the entangled state (1.1) models
the pointer of a measurement apparatus that measures
the value “up” or “down” of the spin of system S. It is
clear from (1.1) that the outcome of the measurement M̂
on the pointer (whether dead or alive) is correlated with
the value of spin.

An interesting question that we discuss in this sec-
tion is whether falsification of the macrosopic realism
(MR) test proposed in this paper gives evidence that
the pointer is simultaneously in two “states” (locations)
i.e. both “dead and alive” [8]? By definition, the macro-
scopic hidden variable λM predetermines the “dead” or
“alive” outcome for the macroscopic measurement M̂ ,
without further assumptions about underlying predeter-
mined states [9]. Its direct negation could therefore po-
tentially suggest the macroscopic paradox of the cat-
system being “both dead and alive”, analogous to the
pointer being in two places at once. For the models
of macro-realism considered or referenced in this paper,
there is however a second premise also assumed. There-
fore, logically, the falsification of these models need not
suggest failure of the validity λM , but could be explained
by failure of the second premise.

The cat-signature of this paper is based on the sec-
ond premise being the assumption of a δ-scopic locality.
There is thus a range of positions ∆m ∼ δ over which
one pointer might potentially be interpreted as paradox-
ically “being simultaneously in both places”, based also
on the notion that nonlocality cannot be excluded over
this range. This value of δ is however restricted to be
less than |α|, the level of quantum fluctuation according



8

to eq. (3.5). This is different to the standard realisation
of the entangled state (1.1) given by [2, 3, 7]

|ψ〉 =
1√
2

(
|α〉| ↓〉S + | − α〉C | ↑〉S

)
(5.1)

where the “dead” and “alive” states are considered distinct
by several orders of α.

We also emphasise that the cat-signature of this pa-
per does not imply a falsification of a macroscopic real-
ism model for the pointer-state of (1.1). The differences
are as follows: In the experiment of Figure 2, the two
cat-states at A and B act as two “pointers” for the mi-
croscopic quadrature phase amplitudes of the original en-
tangled field modes denoted a1 and b1. However the orig-
inal modes are destroyed in the formation of the pointer
states. We also see from Figure 3 [37] that the “positions”
m and n of the two pointers are not well-correlated at the
quantum noise level i.e. one pointer does not measure the
“position” of the other to a precision beyond the quantum
noise level. Put another way, the uncertainty in any such
measurement is of order ∆m ∼ |α|.

If the predictions of quantum mechanics were to be
verified for the experiment proposed in this paper, the
simplest interpretation of the pointers is consistent with
a hybrid classical/ quantum model of a macroscopic
pointer discussed in Ref. [19]. This model specifies
that any lack of predetermination of the “position” of
the pointer is constrained to be over “distances” of size δ
bounded by the quantum noise level.

VI. CONCLUSION

In this paper, we ask how to test macroscopic or meso-
scopic realism in a way that could not be explained by

a theory allowing some degree of microscopic nonlocal-
ity. In this context, we define the distinction between
“microscopic” and “macroscopic” in terms of a particle or
photon number difference. To quantify the arguments,
a Schwinger observable is introduced as the difference in
occupation number for two modes. We show that tests of
a δ-scopic local realism model may be possible, where δ
can be regarded as macroscopic, provided by “macroscop-
ically distinguishable outcomes” we mean outcomes that
have a large absolute separation δ of the two-mode num-
ber difference. For the examples that we consider in this
paper, however, the separation δ is very small relative
to the total number of particles of the system. To allow
quantifiable tests, we use the word δ-scopic and consider
separations δ that allow a transition between microscopic
and macroscopic.

Using this meaning of “δ-scopic”, we outline a proposal
to test δ-scopic local realism where two cat-systems are
generated using two entangled field modes. The modes
are prepared in a state that violates a continuous vari-
able Bell inequality. The cat-systems are created using
an amplification process brought about by local coher-
ent fields. This amplification can be interpreted as part
of a measurement process, in analogy to Schrodinger’s
original gedanken experiment. A practical method for
testing δ-scopic local realism is developed that involves a
quantifiable δ-scopic Bell inequality.
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