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Single-photon detectors have achieved impressive performance, and have led to a number of new
scientific discoveries and technological applications. Existing models of photodetectors are semiclas-
sical in that the field-matter interaction is treated perturbatively and time-separated from physical
processes in the absorbing matter. An open question is whether a fully quantum detector, whereby
the optical field, the optical absorption, and the amplification are considered as one quantum sys-
tem, could have improved performance. Here we develop a theoretical model of such photodetectors
and employ simulations to reveal the critical role played by quantum coherence and amplification
backaction in dictating the performance. We show that coherence and backaction lead to trade-
offs between detector metrics, and also determine optimal system designs through control of the
quantum-classical interface. Importantly, we establish the design parameters that result in a ideal
photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for
next generation detectors.

Modern models of photodetectors and the photodetec-
tion process are rooted in pioneering work in quantum
optics and quantum electronics [1–5], and have not been
significantly modified or updated since. This is surprising
given the degree to which experimental photodetection
technology has progressed over the past century. Indeed,
single-photon photodetectors have been developed based
on a wide range of physical processes that span from
the photoelectric effect in semiconductors [6, 7] to super-
conductivity [8–10], and moreover, these photodetectors
have achieved impressive performance in terms of effi-
ciency, dark count rate, and jitter [11, 12]. Furthermore,
advances in materials science and nanoscale engineering
open up possibilities for not only tuning the microscopic
properties and dynamics of photodetectors, but also to
develop entirely new classes of photodetectors. Such
possibilities motivate a re-examination of photodetection
theory, with a view on understanding the fundamental
limits and tradeoffs. In particular, an open question is
whether a photodetector where the electromagnetic field,
light-matter interaction and amplification processes are
all captured within a single quantum mechanical system
could reveal new regimes of photodetector performance.
In this work we present such a re-examination of photode-
tection by developing a fully quantum mechanical mini-
mal model for photodetection and examining the funda-
mental limits that emerge from this model. Our approach
relies on recent advances in quantum optics theory and
quantum measurement theory.

The operation of most photodetectors can be viewed as
comprising three stages (see Fig. 1): (i) coherent interac-
tion between the electromagnetic (EM) field and a local-
ized system (usually some matter degrees of freedom), (ii)
evolution of the state created by the interaction with the
EM field according to the internal dynamics of the local-
ized system (this typically tends to localize information
about portions of the field state), and (iii) amplification
of the information in the internal state(s) of the localized
system to classical/macroscopic degrees of freedom.

Typically, it is assumed that the physical processes at
each of these stages operate at different timescales, and
thus are effectively noninteracting. Such an assumption
is implicit in the traditional theory of photodetection and
most subsequent treatments that treat the light-matter
interaction perturbatively. In this work, we develop a
model that makes as few timescale separation assump-
tions as possible, in order to describe and analyze the
photodetection process as an integrated whole. We aim
to understand the impact of different internal architec-
tures (i.e., stage (ii)) on the flow of information between
the EM field and the amplification process, and, ulti-
mately, the overall performance. This allows us to answer
several fundamental design questions, such as: What is
the best arrangement of internal states and couplings be-
tween them in order to maximize performance? Is a time-
scale separation between the light-matter interaction and
subsequent internal dynamics optimal?

I. MODEL

In order to simulate the dynamics of photodetection
we use an open quantum systems formalism [13], and
develop a master equation that explicitly accounts for the
EM field degrees of freedom, internal degrees of freedom
of the detector, and amplification of the detector state to
classical degrees of freedom.

We assume that the incoming field contains a sin-
gle photon with a Gaussian temporal profile |E(t)|2 =(

1
2πσ2

) 1
2 e−

t2

2σ2 of width σ = 1ns. This field is resonant
with an optically active transition in the detector, and
couples detector states |0〉 and |1〉. To model the response
of the detector to this single-photon wavepacket, we uti-
lize the formalism developed in Refs. [14, 15] that treats
the field-matter interaction non-perturbatively, which is
essential for accurate treatment of detection of such weak
field (since the detector dynamics strong modifies the
field degrees of freedom in this limit). The cost of this
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FIG. 1. Single-photon detection in a fully-coupled detector. a, Illustration of a photodetector where photon wavepackets
interact with the detector (matter) degrees of freedom. The optically coupled excited state can decay into a number of optically
inactive states. Information carriers, e.g., electrons, interact with the matter energy levels and scatter, causing a response
that can be monitored through a measurement. b, The conventional theory of photodetection assumes that the photon field,
the absorption process, and the amplification process occur at different timescales and can therefore be treated separately.
Alternatively, in this work we consider a fully coupled model where the three subsystems are treated as being part of one
quantum system.

non-perturbative treatment is that the evolution equa-
tion for the internal state of the detector degrees of free-
dom, represented by the density matrix %̂(t), involves
coupling to an auxiliary (unphysical) matrix, ρ̂(t). The
coupled evolution is explicitly, [14, 15]

˙̂%(t) =M%̂(t) +A%̂(t) +D[L]%̂(t)

+ E(t)
[
ρ̂(t), L†

]
+ E∗(t)

[
L, ρ̂†(t)

]
(1)

˙̂ρ(t) =Mρ̂(t) +Aρ̂(t) +D[L]ρ̂(t)

+ E∗(t) [L, %̂(0)] (2)

where D is the Lindblad superoperator, D[X]A ≡
XAX† − 1

2X
†XA − 1

2AX
†X, M represents the light-

independent system dynamics, which may include both
unitary and bath-driven evolution, and A represents the
impact of amplification and monitoring. The operator
L = γ |0〉 〈1| represents the field-matter coupling. We
assume γ = 1ns−1/2, which produces the near-maximal
absorption probability of ≈ 80% for an isolated and un-
monitored two-state system encountering a pulse of the
given width and shape[16]. In order to compare against
this base-case, we keep γ fixed at this value for most of
the paper (except in Sec. III). In the following we elab-
orate on the form of the superoperatorsM and A..

The optically active internal states of the detector are
coupled to a variable number of other states (that are
assumed to not interact with the EM field) either co-
herently or incoherently, see the schematic in Fig. 1(a).
These internal states could represent e.g., excitonic or
electronic states of a solid-state material, or even elec-
tronic or conformational states of molecules. This cou-
pling is captured byM, which describes the dynamics of

the internal states that effectively localizes a photoexci-
tation within the detector degrees of freedom and funnels
it away from the optically active state:

Mô(t) = −i[H, ô(t)] +
∑
k

D[Γk |eik〉 〈ejk |]ô(t). (3)

Here, and in the following, ô(t) ∈ {%̂(t), ρ̂(t)} since this
superoperator appears in Eqs. (1) and (2). H is the
Hamiltonian describing the energies of all internal states
in the device (denoted |el〉) and coherent couplings be-
tween them; Γ2

k is the incoherent transition rate from
state ejk to eik . Any incoherent transitions are a re-
sult of interactions with reservoirs, e.g., phonon degrees
of freedom; we do not explicitly model these here, and
instead capture their net effect on the essential internal
states of the detector.

For the systems under consideration, a designated final
internal state, |X〉, is continuously monitored, a process
modeled using a quantum measurement master equation
that can be derived from general principles [17–19]. This
monitoring effectively amplifies information about occu-
pation of that state by generating a classical measure-
ment record that depends on the population of the state.
The average effect of this amplification process is mod-
eled as:

Aô(t) =D[χ |X〉 〈X|]ô(t) (4)

where χ is the amplification strength. Such a Markovian
description of the amplification process is not universal,
but importantly, it captures the fact that any amplifica-
tion process must have an associated backaction on the
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system being amplified [20, 21]. In the Appendix we ex-
amine a proposed physical device for photodetection and
show how one can derive an amplification model like the
one used here from the underlying physical interactions.

An advantage to modeling the amplification process as
a continuous measurement is that we can utilize quan-
tum trajectory theory [19, 22] to “unravel” a measure-
ment master equation into a stochastic master equation
(SME) that enables simulation of individual photodetec-
tion records and associated dynamics, in addition to the
average dynamics given by Eq. (4). This is achieved by
adding to the evolution described by A, the nonlinear
term

H[χ |X〉 〈X|]ô(t)dW (t)

dt

≡ χ [|X〉 〈X| ô(t) + ô(t) |X〉 〈X| − 2x(t)ô(t)]
dW (t)

dt
,

(5)

where W (t) is a Wiener process [22] and x(t) =
〈X| %̂(t) |X〉. Note that this last expectation value, which
is what makes this equation nonlinear in the state of the
system, is always taken with respect to the physical den-
sity matrix %̂(t), even when ô(t) = ρ̂(t).

The associated measurement current, which this
stochastic evolution is conditioned on, is given by

It =

∫ t

t−tm
χ2%XX(t′)dt′ + χdW (t′).

where tm is the integration time window, and %XX(t) is
the population of the X state given by the physical den-
sity matrix for the detector internal degrees of freedom,
%̂(t). In our calculations, we chose tm values that result
in optimal performance for a given χ.

In the following, we numerically integrate the above
dynamical equations using the order (2.0,1.5) stochastic
Runge-Kutta algorithm proposed in Ref. [23].

II. TWO INTERNAL CONFIGURATIONS

In this section we study two possible configurations for
the detector’s internal degrees of freedom. Configuration
1, with the final monitored state, |X〉, being the same as
the optically active state |1〉 (Fig. 2(a)), and Configu-
ration 2, with |X〉 being a long-lived dark state, |C〉, to
which the optically active state incoherently decays (Fig.
2(b)). In the latter configuration we assume that |1〉 and
|C〉 are sufficiently separated in energy so that thermally
excited population transfer from |C〉 to |1〉 can be ne-
glected. Such a thermal effect can be modeled but would
only yield a trivial decrease in efficiency of this configu-
ration. In the following, we study both of these configu-
rations using the dynamical model described above and
quantify detector performance in terms of efficiency, dark
count rates, and jitter.

FIG. 2. The two configurations under consideration. In both
cases, we consider a single-photon Gaussian wavepacket (left)
incident on a two-level system, creating a resonant excita-
tion. A quantum measurement element (vertical purple line)
couples to the internal states and amplifies the signal to the
classical domain (right). In a, the quantum measurement el-
ement directly couples to the excited state and so |X〉 → |1〉,
while in b, the population in the excited state may decay into
a third, optically inert state to which the quantum measure-
ment element is coupled, and so |X〉 → |C〉.

A. Configuration 1

For configuration 1, the dynamical equations, Eqs. (1),
can be written in component form as

ρ̇01 = −iω01ρ01 − γE(t)− γ2 + χ2

2
ρ01; ρ(0) = 0,

%̇00 = 2γE(t)ρ01 + γ2%11; %00(0) = 1,

%̇11 = −2γE(t)ρ01 − γ2%11; %11(0) = 0,

with all other elements zero throughout.
The generation of the coherence between states |0〉 and
|1〉 is damped by both the spontaneous emission back into
the photon mode and decoherence due to backaction from
the amplification of |1〉; this restricts the development of
the excited state population. Solving the equations for
different values of χ makes this concrete; stronger am-
plification noticeably reduces the excitation probability
(Fig. 3a), a manifestation of the Zeno effect [24, 25].

Simulating individual trajectories reveals additional
aspects of the tradeoff between information gain and dis-
turbance. Figure 3b shows the excitation population and
associated detector output for sample trajectories. For
weak amplification, Fig. 3b, the individual trajectories
are similar to the averaged case. Unfortunately, due to
the weak coupling the current cannot be readily distin-
guished from the background noise. Stronger amplifi-
cation significantly alters population evolution and pro-
duces trajectories that either completely miss or com-
pletely absorb the photon. In this case the current un-
ambiguously distinguishes photon absorption events, but
at the price of reduced efficiency due to significant per-
turbation of the absorption probability.

A more complete picture of impact on photodetec-
tion performance emerges after compiling the results over
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FIG. 3. Detection events and performance for Configuration 1. a, The averaged population dynamics for Configuration 1
with amplification strengths χ = 0, χ = 1.0ns−1/2, and χ = 3.0ns−1/2 . The instantaneous current is proportional to χ2ρ11.
b, Sample trajectories and current outputs for χ = 0.333ns−1/2 (top panel) and χ = 3.33ns−1/2 (bottom two panels). The
horizontal dashed lines are examples of current thresholds used to calculate the ROC curves. c, ROC curve and jitter vs. false
positive rate, for several amplification strengths obtained by computing each for varying current thresholds for detection. The
dashed line is the result for “detectors” that simply record random hits at varying rates, giving equal true positive and false
positive rates. In the inset, the efficiency for a false positive rate of 0.01 is plotted as a function of χ; optimal detection efficiency
is obtained for intermediate amplification strength for a modest rate of false positives and strong amplification strength for
minimal false positives. Stronger coupling also reduces jitter, which increases with the false positive rate.

many trajectories. Figure 3c shows the Receiver Operat-
ing Characteristics (ROC) curve obtained from simulat-
ing 1000 trajectories with a photon and 1000 trajectories
without a photon, for each value of χ. The true positive
rate (TPR) corresponds to the fraction of trajectories
when the detector output exceeds a pre-defined thresh-
old in the presence of a photon in the field, while the false
positive rate (FPR) is when the detector output exceeds
the threshold without a photon being incident on the de-
tector. Each point on the ROC curve is for a different
value of the threshold, which decreases from left to right.
For large thresholds, both the TPR and the FPR are low,
while for low threshold both the TPR and the FPR are
high. We find a clear tradeoff between TPR and FPR
regardless of the threshold used.

We also show in the inset of Fig. 3c the efficiency as a
function of the amplification strength χ for a fixed FPR
of 0.01. As might be anticipated from the average dy-
namics, the efficiency is maximized for intermediate am-
plification strength: too weak and the signal cannot be
reliably separated from the noise, too strong and excita-
tion is suppressed. Calculation of the RMS jitter (Fig.
3c) reveals no tradeoff with dark counts: a low FPR is as-
sociated with low jitter. Unfortunately this occurs when
the TPR (efficiency) is low. At the higher efficiency lev-

els, where intermediate coupling maximizes efficiency, we
find that the same intermediate coupling also gives the
lowest jitter.

Ultimately, we find that directly amplifying the opti-
cal excitation interferes with the excitation itself, creat-
ing a tradeoff between increasing the signal-to-noise ra-
tio and avoiding amplification-induced decoherence. See
also Ref. [26] for a similar analysis in a different physical
context.

B. Configuration 2

In the case where the excited state decays to a dark
state (Fig. 2b), the matrix equations become

ρ̇01 = −iω01ρ01 + γE(t)− γ2 + Γ2

2
ρ01; ρ01(0) = 0,

%̇00 = 2γE(t)ρ01 + γ2%11; %00(0) = 1,

%̇11 = 2γE(t)ρ01 − (γ2 + Γ2)%11; %11(0) = 0,

%̇CC = Γ2%11; %CC(0) = 0,

with all other elements zero throughout. Γ2 is the inco-
herent decay rate from |1〉 to |C〉. We note that the am-
plification strength appears nowhere in these equations;
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FIG. 4. Detection events and performance for Configuration 2. a, Average population dynamics for different values of the
incoherent transfer rate Γ2. b, Sample trajectories and detector output for χ = 0.5ns−1/2 (top panel) and for χ = 2.0ns−1/2

(bottom two panels) where the photon is not absorbed and when the photon induces an excitation. The horizontal dashed lines
are examples of current thresholds used to calculate the ROC curves. c, ROC curve and jitter vs. false positive rate for several
amplification strengths. Very high detection efficiency is obtained for strong amplification at essentially no cost in terms of
dark count rate or jitter. The efficiency is plotted against the parameter of relaxation into the dark state Γ (inset). There is a
clear maximum; faster transfer collects excitation more efficiently but inhibits the excitation process.

since the transfer from 1 to C is already fully incoherent,
no decoherence due to amplification occurs. Thus, in con-
trast to Configuration 1, the average dynamics exhibit no
influence from amplification strength and backaction. In-
stead, the coupling to the decay state introduces decoher-
ence in a similar fashion as the amplification in Config-
uration 1. As such, it produces a similar tradeoff: there
is an optimal value for the decay rate into this state. As
seen in Fig. 4a, a slow decay rate allows for high exci-
tation probabilities but low population of the measured
state, while fast decay rates convert more of the excited
population into the measured-state population, but re-
duce the excitation probability through decoherence.

Despite the average dynamics being insensitive to the
amplification strength, the relationship between informa-
tion gain and disturbance is still affected by the details
of the amplification. In Eq. (5) the normalization term
applies a scalar correction to the entire density matrix;
this will condition all density matrix elements on the
prior record, resulting in a nontrivial impact on the dy-
namics of each record, as is clearly manifested by the the
individual trajectories (Fig. 4b). The strong amplifica-
tion yields currents that unambiguously signal absorption
or non-absorption. Moreover, in this configuration, the
long lifetime of the |C〉 state results in a persistent cur-
rent when the photon has been absorbed. Interestingly,
although the amplification cannot influence the average
populations (and hence there is no Zeno effect according
to traditional definitions [25]), the amplification does ef-

fect the variance in the populations – larger χ yields a
larger variance in population statistics at a fixed time.

Again, we can summarize the influence of various pa-
rameters by aggregate performance statistics (Fig. 4c).
The detection efficiencies are significantly higher than for
Configuration 1; moderate amplification is sufficient to
guarantee optimal efficiency with negligible dark counts
and no tradeoff must be negotiated. Indeed, Fig. 4c
shows that for high threshold values, the TPR exceeds
0.8 while the FPR is 0.001. Similarly, jitter is much less
sensitive to the detection threshold. In contrast to Con-
figuration 1, amplification does not adversely affect opti-
cal excitation; no tradeoff exists, and both efficiency and
jitter are optimized by stronger rather than intermediate
amplification.

III. AN IDEAL DETECTOR

In the above, we have taken the optical coupling, γ, to
be in the regime that provides optimal excitation prob-
ability for the isolated two state system [16]. This opti-
mum occurs due to the tradeoff between excitation rate
and emission rate. However, the introduction of an am-
plification mechanism adds both additional decoherence
and protects against emission back into the field mode.
This suggests that the detector may be able to take ad-
vantage of strong optical coupling. In addition, since our
results indicate that relaxation into the |C〉 state should
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FIG. 5. The average dynamics of Configuration 2 with
γ2 = Γ2 = 0.1ps−1. Strong optical coupling means that ex-
citation occurs rapidly compared to the pulse duration, and
a matched rate of incoherent transfer converts excited state
population to dark state population as soon as the former de-
velops. Consequently, regardless of the strength of the quan-
tum measurement, the measured state |C〉 attains 100% prob-
ability and the excited state |1〉 is nearly unoccupied through-
out.

occur at a similar rate as the excitation, increasing the
optical coupling means that the relaxation rate ought to
be increased as well, further enhancing decoherence and
providing protection against emission. Indeed, we find
that, in contrast to the un-monitored system, the opti-
mal optical coupling is arbitrarily high; the detector can
actually achieve near perfect efficiency if both γ2 � 1/σ
and γ = Γ, as shown in Fig. 5. Essentially, the pulse
is absorbed as quickly as possible and the resulting ex-
cited state population is shunted to the dark state as
soon as it develops, preventing re-emission. Addition-
ally, the amplification can be made arbitrarily strong,
since the coherent field-matter interaction is decoupled
from its backaction by the incoherent decay process, so
that dark counts can be essentially eliminated. Perform-
ing 50,000 simulations with and without a photon using
γ2 = Γ2 = 0.1ps−1, we find that a wide range of thresh-
olds yield 50,000 hits, 0 dark counts, and 1.05ns of jitter,
where 1.0ns jitter is the lower limit set by the wavepacket
width, σ. Furthermore, almost perfect detection is pos-
sible for a wide range of single-photon pulse widths –
e.g., for the value γ2 = Γ2 = 0.1ps−1, such ideal perfor-
mance holds for pulses as short as 100ps (see Appendix
for additional trajectories). For shorter pulses, efficiency
is reduced (Fig. 5), as absorption no longer occurs rapidly
enough to collect the entire pulse.

This demonstrates that tradeoffs in photodetection can
be circumvented through detector design, and that an
ideal detector is in principle possible.

IV. DISCUSSION

At the most general level, the two models discussed
here represent all detectors of the kind presented in Fig.
1. Configurations that are complicated by adding in-

termediate states that are coherently coupled to the ab-
sorbing system and the amplification process will exhibit
qualitatively similar behavior to Configuration 1; the co-
herent nature of the couplings will ensure that amplifica-
tion backaction will be propagated back to the absorbing
system, limiting performance in the fashion shown for
Configuration 1, as well as exposing all states to the im-
pact of spontaneous emission. For Configuration 2, ad-
ditional states in the relaxation pathway will not impact
the absorption process since the absorbing system will be
insulated from the effects of any amplification dynam-
ics after the first incoherent decay. Furthermore, pro-
vided all final states are amplified and monitored, multi-
ple decay states and/or extended decay pathways will not
qualitatively alter the results. However, for any config-
uration, the presence of decay processes to unmonitored
states (e.g., additional spontaneous emission back to the
ground state) will obviously and straightforwardly limit
performance.

The lesson then from studying these systems is that
any system where the amplification acts on the absorb-
ing subsystem, directly or via a coherent chain, will nec-
essarily face a compromised absorption process, sharply
limiting the performance, and answering the question of
whether preserving coherence up to amplification yields
any improvements. Additionally, if irreversible decay oc-
curs from the optically active subsystem to an optically
inactive subsystem, as in Configuration 2, one can de-
couple the amplification process from the light-matter
interaction and achieve performance arbitrarily close to
ideal. However, in this case one has to engineer the rate
of the first relaxation process to match to the optical cou-
pling strength, which itself must be high compared to the
inverse of the pulse durations one desires to detect.

Finally, we believe that current high-performance
single-photon detectors are operating in regimes that are
close to the one described by Configuration 2. Both
avalanche photodiodes and superconducting detectors
rely on rapid incoherent decay from an optically excited
coherent state to optically inert intermediate states be-
fore amplification. Our results clearly show why these
types of detectors offer the superior performance they are
known for, and suggest that in principle this class of de-
tectors may be tuned to operate perfectly. Moreover, re-
cent proposals and prototypes of single photon detectors
in the microwave regime operate using internal detector
structure that is very similar to Configuration 2 [27, 28].
Thus the fundamental tradeoffs and limiting mechanisms
we have identified can provide design principles for guid-
ing future efforts to engineer new photodetector types
regardless of the underlying physical mechanisms.
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APPENDIX I: EXAMPLE DERIVATION OF
MASTER EQUATION FROM PHYSICAL

SYSTEM

In this section we derive a stochastic master equa-
tion representing a concrete physical system to illustrate
the general formalism presented in the main text. Fig.
6 shows a schematic of the “device" for which we will
write a dynamical model. It consists of a photoactive
molecule positioned near a short-channel ((e.g., 10nm)
carbon nanotube (CNT) connected to leads. There are
three relevant states in the molecule: the ground state
|0〉, an excited state |1〉 optically connected to the ground
state, and an optically dark state |C〉 that represents the
state of the molecule after photon absorption, such as
can arise from photoisomerization. The static dipole of
the molecule is different (in magnitude and direction) in
states |1〉 and |C〉 and this change induces a change in
the electrostatic potential of the CNT and as a result,
the current across it. Such systems have been previously
studied experimentally [29].

CNT

molecule
|0i

|1i

|Ci

trans cis

Optically	connected
�1!C

FIG. 6. A schematic of a molecular photodetection device.
Photons are absorbed by the molecular system (internal struc-
ture shown), and the detection event is amplified by electronic
transport in the carbon nanotube. A quantum measurement
master equation for the dynamics of this device is developed
in this section.

In order to develop a model for this device, we will
approximate the transport of electrons across the nan-
otube as a tunneling process, which is justified by the
short channel length. The tunnel barrier is set by the
energy levels in the nanotube. Given this simplifica-
tion, we can model the system using a Hamiltonian H =
Hf+Hf−m+Hm+Hm−CNT +HCNT , whereHf , Hm and
HCNT are the bare electromagnetic (EM) field, molecule
and CNT Hamiltonians, respectively. Hf−m is the field-
molecular interaction, and Hm−CNT is the molecule-

CNT interaction. Explicitly, these Hamiltonians are:

Hm = ~ω0 |0〉 〈0|+ ~ω1 |1〉 〈1|+ ~ωC |C〉 〈C|
HCNT =

∑
k

(~ωLk a
†
LkaLk + ~ωRk a

†
RkaRk

+
∑
k,q

(Tkqa
†
LkaRq + T ∗qka

†
RqaLk)

Hm−CNT =
∑
k,q

|C〉 〈C| (χkqa†LkaRq + χ∗qka
†
RqaLk). (6)

We will leave Hf and Hf−m unspecified at this point. In
the above, ~ω0, ~ω1, ~ωC are the energies of the respective
states of the molecule. ~ωLk and ~ωRk are the energies
of left and right reservoir/lead states at wavenumber k,
and aLk, aRk are (fermionic) annihilation operators for
these states. Tkq is the tunneling matrix element between
states k and q in the left and right reservoir, and χkq
is the perturbation to this element due to the molecule
being in state |C〉. Note that this effectively means that
the tunneling amplitude goes from Tkq to Tkq+χkq when
the molecule is in the |C〉 state.

In addition to these coherent dynamics, the different
conformational states |1〉 and |C〉 are connected by an in-
coherent rate Γ2

1→C (and we assume the backward tran-
sition rate Γ2

C→1 is negligible).
This model for the CNT and molecule-CNT interaction

are similar to the model used for quantum point contact
based measurement in Ref. [30]. Following that refer-
ence, we can now derive a master equation describing
the dynamics of the molecule and light degrees of free-
dom only by integrating out the continuum of reservoir
states:

%̇(t) = − i
~ [Hf +Hf−m +Hm, %] + Γ1→CD[|C〉 〈1|]%(t)

+D[T+ + X+ |C〉 〈C|]%(t)

+D[T ∗− + X ∗− |C〉 〈C|]%(t)

≡ − i
~ [Hf +Hf−m +Hm, %] + Lt% (7)

where % is the density matrix for the molecular and field
degrees of freedom only. In this equation, D is a super-
operator defined as:

D[A]ρ = AρA† − 1
2 A

†Aρ− 1
2 ρA

†A (8)

Before specifying the coefficients T± and X± we repeat
from Ref. [30] all the assumptions that go into deriving
this master equation:

1. The left and right reservoirs/leads are thermal equi-
librium free electron baths.

2. Weak coupling between molecule and CNT, which
effectively means that we can restrict ourselves to
a second order expansion in χkq, Tkq.

3. The transport through the channel (CNT/QPC) is
in the tunnel junction limit – i.e., low transmmi-
tivity.
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4. The initial state of the molecule and CNT are un-
correlated/factorizable.

5. Fast relaxation of the reservoirs – i.e., the degrees
of freedom in the reservoirs relax to equilibrium
much faster than any system timescales.

6. Markovian approximation of the reservoir.

7. If eV is the external bias applied across the trans-
port channel, and µL, µR are the chemical poten-
tials in the left and right reservoirs (i.e., eV =
µL − µR), then |eV |, kBT � µL(R).

8. Energy independent tunneling amplitudes and den-
sity of states over the bandwidth max(|eV |, kbT ).

Under these approximations, the dynamics of the sys-
tem is described by the above master equation, with the
coefficient determined by

|T±|2 = 2πe
~ |T00|2gLgRV±

|T± + X±|2 = 2πe
~ |T00 + χ00|2gLgRV±, (9)

where T00, χ00 are the energy-independent tunneling am-
plitudes near the average chemical potential, gL, gR are
the energy-independent density of states in the left and
right reservoirs, respectively. The finite temperature ef-
fective external bias is:

eV± ≡
±eV

1− exp
(
∓eV
kBT

) (10)

At first approximation, we can work in the limit of
low temperature and ignore the thermally activated cur-
rent in the reverse direction, and set V− = 0, which will
effectively remove the third term in Eq. (7).

Eq. (7) can be interpreted as a measurement master
equation giving the averaged dynamics when the popula-
tion in the state |C〉 is continuously monitored [30]. Con-
ditioned dynamics, based on particular values of the cur-
rent can also be derived from the corresponding stochas-
tic master equation [22]:

d%(t) = − i
~ [Hf +Hf−m +Hm, %]dt+ Lt%dt

+H[T+ + X+ |C〉 〈C|]%(t)dW+(t)

+H[T ∗− + X ∗− |C〉 〈C|]%(t)dW−(t),

where H[A]% ≡ A% + %A† −
〈
A+A†

〉
%
%, and dW+(t)

and dW−(t) are Wiener increments. Increments in the
forward and reverse current consistent with this evolution
are given by:

dI+(t) = 〈T+ + X+ |C〉 〈C|〉% dt+ dW+(t),

dI−(t) =
〈
T ∗− + X ∗− |C〉 〈C|

〉
%
dt+ dW−(t),

APPENDIX II: QUANTUM TRAJECTORIES
FOR IDEAL DETECTOR

In this section we present additional trajectories for
the "ideal photodetector" for different values of the pho-
ton wavepacket width. Figure 7 shows that for pulse
widths ranging from 100ps to 1ns the collection efficiency
is 100%.
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FIG. 7. The average dynamics of the three state system with γ2 = Γ2 = 0.1ps−1 for wavepackets of widths a, 1ns, b, 500ps, c,
250ps, and d, 100ps. We see that in all cases the photon is collected 100% of the time.


