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Abstract 

A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or “flying,” focus 

in which the trajectory of the peak intensity decouples from the group velocity. In a 

medium, the flying focus can trigger an ionization front that follows this trajectory. By 

adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity 

along the optical axis. We present analytical calculations and simulations describing the 

propagation of the flying focus pulse, the self-similar form of its intensity profile, and 

ionization wave formation. The ability to control the speed of the ionization wave and, in 

conjunction, mitigate plasma refraction has the potential to advance several laser-based 

applications, including Raman amplification, photon acceleration, high harmonic 

generation, and THz generation.  

 

I. Introduction 

Several laser-plasma-based applications rely critically on the controlled formation and 

propagation of an ionization front. The speed of the ionization front can determine a 

phase matching condition, as in THz [1-3] or high harmonic generation [4-7]; the 

interaction distance, as in photon acceleration [8-10]; or the plasma conditions within an 

interaction region, as in Raman amplification [11-14]. Conventionally, a laser-produced 

ionization front is constrained to travel at the group velocity. This can severely limit the 

potential of the aforementioned applications.  

 Here we present a novel method for controlling the speed of an ionization front 

based on the recently demonstrated “flying focus” [15].  In its simplest implementation, 

the flying focus (FF) occurs when a chromatic lens focuses a chirped laser pulse [15,16]. 

In a region about the focus, the peak intensity of the laser pulse propagates at a speed that 

is decoupled from its group velocity. Figure (1) illustrates this schematically. The top row 

shows the chromatic focusing of a positively chirped pulse. The red-shifted frequencies 
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lead the blue-shifted frequencies in time and focus closer to the lens. The resulting 

intensity peak travels from left to right, copropagating with the pulse. The bottom row 

shows the opposite case of a negatively chirped pulse. The blue-shifted frequencies lead 

in time, but focus further from the lens than the red-shifted frequencies. The intensity 

peak now travels from right to left, counter-propagating with respect to the pulse. More 

generally, the velocity of the intensity peak, or focal velocity, can take any value, 

depending on the focal length of the chromatic lens and the bandwidth and chirp of the 

pulse. 

 In a medium, the intensity peak of the FF can trigger an ionization front that 

travels at the focal velocity. This allows for an ionization wave of arbitrary velocity 

(IWAV) by adjusting the chirp. Because the velocity can take any value, the IWAV has 

the potential to enable a wide range of applications currently limited or precluded by an 

inability to phase-match at the group velocity of the laser pulse. The simplicity of IWAV 

formation, requiring only a chirp and a chromatic lens, compares favorably to other 

schemes, for instance, using the intersection of two cylindrically focused femtosecond 

pulses [17]. Additionally, a FF pulse with negative focal velocity can create a contiguous 

IWAV relatively undisrupted by ionization refraction [18,19]. This property could aid in 

the extension of plasma filaments formed through a dynamic balancing of self-focusing 

and plasma refraction, complementing other schemes such as axicon focusing [20], 

variable wavefront distortion [21], or the use of short wavelengths [22].   

 We begin by reviewing the propagation characteristics of the flying focus, 

deriving expressions for the trajectory and velocity of the intensity peak. We show 

analytically that the FF pulse exhibits self-similar behavior, largely maintaining its 

spatiotemporal profile as it travels through the focal region. After discussing the FF 

propagation, we present self-consistent simulations of IWAV formation. The negative 

focal velocity pulses create a sharp ionization front by largely avoiding plasma refraction. 

For the parameters considered, the self-similar behavior persists in the presence of 

ionization. Finally, we show that modifications to the power spectrum of the FF pulse 

provide an additional avenue for tailoring the IWAV. As a specific example, we modify 

the power spectrum to create a plasma density profile modulated along the optical axis.  
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II. Flying Focus Propagation Model 

To model the propagation of a flying focus pulse, we employ a “modified” 

paraxial wave equation (MPE). The MPE evolves the spatiotemporal envelope of a laser 

pulse and is equivalent to solving the paraxial wave equation for each frequency 

component within the envelope. The MPE captures two relevant effects not accounted for 

in a monochromatic paraxial equation: temporal delays due to path length differences 

within a pulse and the frequency dependence of diffraction. Both of these effects play a 

significant role in the propagation of a FF pulse.  

We express the electric field of the pulse as a plane wave modulating an envelope: 

E = 1
2 E0(r,ξ , z)ei(k0z−ω0t ) + c.c., where ξ = ct − z  is the moving frame coordinate, 0ω  is the 

central frequency, 0 0 /k cω= , and c  is the speed of light in vacuum. In vacuum, the 

transverse components of the envelope, E⊥ , evolve according to  

2 ik0 − ∂
∂ξ

⎛
⎝⎜

⎞
⎠⎟

∂
∂z

+ ∇⊥
2⎡

⎣
⎢

⎤

⎦
⎥E⊥ = 0.  (1) 

The ξ -derivative, which is absent in the monochromatic paraxial equation, accounts for 

spatiotemporal delays and the frequency dependence of diffraction. We note that the 

approximations used to derive Eq. (1) break down for focusing geometries where the f-

number, f # , ~ 4 or less. In these situations, a non-paraxial wave equation is required 

[23]. Accordingly, we limit this investigation to f # > 6. With a solution of Eq. (1), the 

approximate axial field can be found from ∇ ⋅E ≈ 0. For the parameters considered here 

E0 ≈ E⊥ . 

 The initial condition of Eq. (1), E⊥ (r,ξ ,0) , represents the envelope just after 

passage through the chromatic lens. For specificity, we use a diffractive lens, which 

produces a longitudinally extended chromatic focus while minimizing other aberrations 

[15]. A diffractive lens has a radially varying groove density G = k0r / 2π f , where f  is 

the focal length for the wavenumber k0 . This imparts a phase φDL = −k0r
2 / 2 f  to the 
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pulse. Defining the envelope just before the diffractive lens as El (r,ξ ,0) , we have 

E⊥ (r,ξ ,0) = El (r,ξ ,0)e− ik0r2 /2 f .  

 The diffractive lens phase, φDL , while similar to that imparted by an achromatic 

lens, differs in several important features. First, only the central frequency, ω 0 , will focus 

at the location z ≈ f . The lower and higher frequency components will focus earlier and 

later respectively, an essential element of the flying focus. Second, the diffractive lens 

does not pre-compensate for the path length difference between ‘rays’ starting at the 

transverse edge of the pulse and those starting at the center. This causes the pulse to 

acquire an intensity curvature as it approaches focus similar to that discussed in Ref. [24]. 

From simple geometric considerations, the temporal delay as a function of radius in the 

diffractive lens plane is δξ(r) = ( f 2 + r 2 )1/2 − f . The delay increases with decreasing f-

numbers and causes a larger relative distortion for a short pulse than for a long pulse.  

Given E⊥ (r,ξ ,0) , one can calculate the envelope at any axial location using the 

integral solution of Eq. (1) in the spectral domain (i.e. the modified Fresnel integral): 

Ê⊥ (r,δω , z) =
kω

2π iz
exp

ikω

2z
(r − ′r )2⎡

⎣
⎢

⎤

⎦
⎥Ê⊥ ( ′r ,δω ,0)d∫ ′r , (2) 

where the caret denotes a Fourier transform with respect to ξ  with conjugate variable 

δω / c  and kω = k0 + δω / c . Equivalently, one can perform the ξ -domain integral 

E⊥ (r,ξ ,z) = −
(ik0 − ∂ξ )

2π z
exp

ik0

2z
(r − ′r )2⎡

⎣
⎢

⎤

⎦
⎥E⊥ ( ′r ,ξ − |r− ′r |2

2z ,0)d ′r∫ . (3)   

Equation (3) can be interpreted as follows. The field in the transverse plane at any z  

results from the superposition of light emitted from a collection of point sources in the 

plane z = 0.  The first factor in the integrand (the propagator) accounts for the diffraction 

of the light emitted from the point sources. The initial condition E⊥ ( ′r ,ξ ,0) determines 

their amplitudes, phases, and time-dependence. The translation of the ξ  argument by 

| r − ′r | /2z  accounts for the difference in time it takes light from point sources displaced 

transversely in the z = 0 plane to reach a particular location in the z = z  plane.   
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 In the following, we will analyze Eqs. (2) and (3) for a FF pulse with a transverse 

Gaussian profile and a quadratic spectral phase (i.e. a chirp). Specifically,  

Ê⊥ (r,δω ,0) = Êa exp − r 2

w0
2 + 1

4
iητ 2δω 2 −

ik0r
2

2 f
⎡

⎣
⎢

⎤

⎦
⎥ , (4) 

where w0  is the initial spot size, τ  is a measure of the transform-limited pulse duration, 

η  is the chirp parameter, and Êa = Êa ( 1
2 τδω )  is the real, frequency-dependent spectral 

amplitude. While a different transverse profile may better represent a particular laser 

system, the Gaussian greatly simplifies analytic calculations using Eqs. (3) and (4), and 

illustrates the salient physics. The simulations in Section V will consider a different 

transverse profile.  

 

III. Analysis of Flying Focus Pulse Propagation 

 Equation (2), with the initial condition in Eq. (4), admits exact solutions. Each 

frequency component undergoes standard Gaussian optics diffraction with a slight 

modification. To obtain the spot size, curvature, Guoy phase or amplitude for each 

frequency, one simply applies the transformation z → (k0 / kω )z  to the monochromatic 

result.  Of particular note is the spotsize: 

  

wω = w0

2z
kω w0

2

⎛

⎝⎜
⎞

⎠⎟

2

+ 1−
k0z
kω f

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1/2

. (5) 

Equation (5) shows that each frequency has a different focal length . For a 

power spectrum of width ∼ 4 / τ , this spreads the focal region over a distance 

∼ 4(ω0τ )−1 f . The effective focal length, (kω / k0 ) f , and angular width, ~ 1/ kω w0 , 

increase and decrease with frequency, respectively. The two exactly offset such that each 

frequency has the same minimum spot size—the diffraction-limited spot of the central 

wavenumber, wmin = (2zω / kω w0 ) = (2 f / k0w0 ).     

 In addition to focusing at different locations, each frequency can focus at a 

different time. The focal time for each frequency, tω , consists of two contributions. The 

first results from the chromatic focusing of the diffractive lens and is simply the focal 
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length of the frequency divided by the speed of light, zω / c . The second results from the 

chirp and corresponds to the relative time of the frequency within the pulse. Denoting the 

spectral phase as φs , the relative time is ∂δω φs = 1
2 ητ 2δω . Using δω = ω0(zω / f −1)  and 

summing the two contributions provides ctω = zω [1+ηcτ 2ω0 / 2 f ]− 1
2 ηcτ 2ω0 . Upon 

taking the derivative with respect to tω , we arrive at the focal velocity  

v f

c
= 2 f

ηcτ 2ω0

⎛

⎝⎜
⎞

⎠⎟
1+ 2 f

ηcτ 2ω0

⎛

⎝⎜
⎞

⎠⎟

−1

.  (6) 

The chromatic focusing of the diffractive lens and the temporal separation of frequencies 

results in a focal position that moves in time with the velocity v f . An alternative, 

approximate derivation of Eq. (6) appears in Appendix A.  

 Figure (2) displays the focal velocity as a function of chirp and pulse duration for 

the parameters found in Table I. For a positive chirp, the red-shifted frequencies lead the 

blue-shifted frequencies in time. Because the red frequencies focus closer to the lens, 

they will necessarily focus earlier in time than the blue (see Fig. 1). The peak intensity, 

therefore, moves with positive velocity from the red to the blue focal points. As the chirp 

increases, the red and blue frequencies become more separated in time. This leads to an 

increase in time between their foci and a decrease in the focal velocity. For negative 

chirp, the blue-shifted frequencies lead the red. Depending on the value of the chirp, the 

blue frequencies can focus later or earlier in time than the red frequencies. The crossover 

point occurs when the time separation (multiplied by c) of the frequencies within the 

pulse equals the separation of their focal points, i.e. η = −2 f / cω0τ
2 . At the crossover 

point, all of the frequencies focus simultaneously producing a line focus. This is similar 

to an axicon “focus,” with two important exceptions: all of the light comes to the line 

focus simultaneously, and the focal spot is that of a standard lens. Because of the 

crossover, negative chirps allow a wider range of focal velocities and provide greater 

versatility.  

 To aid in the conceptualization of a negative focal velocity, Fig. (3) displays 

intensity isocontours of a FF pulse with v f = −c / 3. The figure comprises three snapshots 

of the intensity in the laboratory frame, with time increasing from top to bottom. The 
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spatial advance of the green and blue contours with time show that the pulse energy 

generally propagates in the forward direction (left to right). The peak intensity, on other 

hand, travels backwards at v f = −c / 3 
as traced out by the solid grey line. This illustrates 

the principal feature of the flying focus: the peak intensity travels at v f , not the group 

velocity. The simulations used to generate the isocontours are described in Section V and 

Appendix C.   

 Unfortunately, exact analytic solutions to Eq. (3) exist only for either trivial, e.g. a 

monochromatic Gaussian beam, or limiting cases. In Appendix B, for instance, we 

present an exact, but unwieldy, expression for the on-axis field of the flying focus pulse. 

For the remainder of the manuscript, we make the simplifying approximation of large 

chirp, |η |>> 1 . For clarity of presentation in this section, we make an additional 

simplifying approximation that is valid over the parameter range of interest: 

4 f #cτ |η | /w0 >> 1 . Physically, this condition implies that the temporal delays for 

different path lengths from the diffractive lens to the focus are small compared to the 

chirped pulse duration. We note that the simulations, presented below, do not make this 

approximation, but validate its use here.  

 A large chirp admits use of the stationary phase approximation when performing 

the Fourier transform to find the ξ -domain profile from Eq. (4). Specifically, we have 

E⊥ (0,ξ ,0) ≈ αÊa (ξ / cT )exp[−iη(ξ / cT )2] , where α = (1+ i)(η / 2πT 2 )1/2  and  T = ητ .  

For a super (or regular) Gaussian power spectrum of order g , Eq. (3) reduces to 

,  (7) 

where F(ξ) = Ea exp[−(ξ / cT )g − iη(ξ / cT )2] , Ea  is a constant amplitude, and 

.  (8) 

The integrand in Eq. (7) is nearly identical to that of a monochromatic Gaussian beam, 

but with the propagation distance scaled by a ξ -dependent factor: 

z → (1+ 2ηξ / ω 0cT 2 )−1 z . Expressions for the curvature and Guoy phases can be obtained 
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by evaluating the monochromatic Gaussian beam results at  instead of  z . The resulting 

spot size , where ZR = k0w0
2 / 2, reproduces Eq. (5) with 

the frequency shift substitution discussed in Appendix A.  

 By writing Eq. (7) in terms of the scaled axial distance, , an important property 

emerges: within the focal region, the envelope, and therefore the intensity, has a self-

similar form that depends on ξ  and z  only in the combination (1+ 2ηξ / ω 0cT 2 )−1 z . The 

intensity peak propagates with a velocity v f  and a near-constant shape over a distance 

~ 4 f (ω 0τ )−1—a distance that can readily exceed the Rayleigh length of the diffraction-

limited spot. On axis, the intensity peak takes the simple form I = 1
2 ε0cEa

2(w0 / w)2, with 

temporal and spatial widths Δξ = 2η(cτ w0
−1)2 f  and 

Δz = (v f / c)Δξ = 2(1+ 2η f / ω0cT 2 )−1 f 2 / ZR , respectively. Outside of the focal region, 

| z − f |> 2 f (ω 0τ )−1 , (ξ / cT )2 > 1, and ξ -dependence of the pulse amplitude, | F(ξ ) |, 

breaks the self-similar form. A visual illustration of this will appear in the simulations 

presented below. 

 

IV. IWAV Model 

As discussed above, the flying focus decouples the velocity of the intensity peak 

from the group velocity. By manipulating the speed of the peak, an ionization wave of 

arbitrary velocity (IWAV) can be produced. Aside from controlling the velocity of the 

ionization front, the ability to counterpropagate the intensity peak relative to the group 

velocity can mitigate the deleterious effects of ionization refraction.  

A self-consistent model of IWAVs must include the propagation of the flying 

focus pulse, the ionization dynamics of the background gas, and the resulting plasma 

refraction and depletion of pulse energy. Extending Eq. (2) to include these effects, we 

have  

2 ik0 − ∂
∂ξ

⎛
⎝⎜

⎞
⎠⎟

∂
∂z

+ ∇⊥
2⎡

⎣
⎢

⎤

⎦
⎥E⊥ = kp

2E⊥ − Q .  (9) 
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where kp = (e2ne / mec
2ε0 )1/2 , ne  is the free electron density, e  the fundamental unit of 

charge, me  the electron mass, and Q  a function accounting for depletion, which we 

return to below. The FF pulses of interest here propagate through a tenuous, singly 

ionizable gas, such that (kp / k0 )4 << 1 consistent with the approximations used to derive 

Eq. (10).    

 At every spatial location, the gas starts un-ionized. Optical field ionization occurs 

throughout the pulse freeing electrons from the gas atoms. Once freed, the electrons can 

multiply by collisionally ionizing additional gas atoms. Eventually, the electrons 

recombine through radiative or three-body mechanisms. Noting that the ion density 

ni = ne  in a singly ionizable gas, the electron density evolves according to 

c∂ξ ne = νFIng + αCIneng − α Rne
2 − β3Bne

3, (10) 

where ng = ng0 − ne  and ng0  is the initial gas density. The field ionization rate, νFI , 

depends on the local value of the envelope, E⊥ , while the rates for collisional ionization, 

αCI , radiative recombination, α R , and three-body recombination, β3B , depend on the 

local electron temperature, Te . In the simulations presented below, the cycle-averaged 

Ammosov-Delone-Krainov (ADK) rate is used for νFI  [25], while the other rates are 

calculated as in Ref. [26].  

Electron-ion collisions convert the laser pulse energy to electron thermal energy 

(i.e. inverse bremsstrahlung heating). For short, high-intensity laser pulses, the heating 

can occur rapidly, resulting in the loss of local thermodynamic equilibrium between the 

electrons and ions. We denote the electron and ion thermal energy densities as 

Θe = 3
2 nekbTe  and Θ i = 3

2 nekbTi  respectively, where Ti  is the ion temperature. Their 

modifications are described by  

c∂ξ Θe =
2ω 0

2

(ω0
2 +ν ei

2 )
νeineU p −αCInengU I − 3

me

mi

ν einekb(Te − Ti ) (11a)
 

c∂ξ Θi = 3
me

mi

neν eikb(Te − Ti )  
, (11b) 
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where νei  is the standard electron-ion collision frequency [26], U p = me(e | E⊥ | /2meω 0 )2  

is the cycle-averaged kinetic (ponderomotive) energy of an electron within the pulse, U I  

the ionization potential, and mi  the ion mass. In order, the terms on the right hand side 

(RHS) of Eq. (11a) correspond to inverse bremsstrahlung heating, the energy expended 

by free electrons during collisional ionization, and electron-ion thermal relaxation.  

 Field ionization and inverse bremsstrahlung deplete the pulse energy as it 

propagates through the gas or plasma. We express Q  as a sum of the two contributions: 

Q = QFI + QIB . For every electron the pulse frees from a gas atom, it must expend the 

ionization energy, U I . This loss is captured by  

QFI = ik0 − ∂
∂ξ

⎛
⎝⎜

⎞
⎠⎟

U Iν FI ng

I
E⊥ ,  (12) 

where I = 1
2 ε0c | E⊥ |2  is the intensity. The inverse bremsstrahlung contribution, 

QIB = ik0 − ∂
∂ξ

⎛
⎝⎜

⎞
⎠⎟

ω p
2

ω0
2 +νei

2 c−1νeiE⊥ , (13) 

balances the energy gained by the electrons through the first term in Eq. (11a). 

 While Eq. (9) accounts for dispersion in the plasma, dispersion in the background 

gas has been neglected. Of potential importance for the flying focus is group velocity, or 

second order, dispersion (GVD). GVD modifies the time separation of different colors 

within the pulse either reducing (compressing) or increasing (stretching) the chirp 

(duration). The modified time separation could, in turn, modify the focal velocity. In Eq. 

(2), GVD would appear as the additional phase φGVD = [(∂2 k / ∂ω 2 ) |ω0
]δω 2z / 2 . By 

comparing φGVD  with the quadratic spectral phase, ητ 2δω 2 / 4 , one can show that GVD 

becomes important for propagation distances zGVD ~ ητ 2[(∂2 k / ∂ω 2 ) |ω0
]−1 / 2. For typical 

gases at atmospheric densities and the pulses of interest here, zGVD ~ 10 km —a 

propagation distance far greater than we consider. However, even if the propagation 

distance were longer, one could adjust the initial chirp to compensate for GVD: if η  
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produces the desired focal velocity in vacuum, ηGVD = η − 2 f [(∂2 k / ∂ω 2 ) |ω0
] / τ 2  would 

produce the same focal velocity in the presence of GVD.  

 

V. FF and IWAV simulations 

 To demonstrate the propagation of the FF pulse and IWAV formation, we 

perform simulations that solve Eqs. (9-13) for the parameters displayed in Table I. 

Appendix C provides an overview of the method. Additional details about the 

corresponding experimental setup can be found in Ref. [15]. The simulated pulses model 

the output from the frontend of the Multi-Terawatt laser (MTW) at the University of 

Rochester, Laboratory for Laser Energetics. MTW uses an optical parametric chirped 

pulse amplifier (OPCPA) frontend to pump a 100 J-class Nd:glass final amplifier. The 

OPCPA produces linearly polarized pulses with a central wavelength 

λ0 = 2π / k0 = 1.054 μm  and 9.2 nm of bandwidth, full width at half maximum. The 

pulses have a nearly flat power spectrum over the entire bandwidth with a transform-

limited duration of ~ 1.6τ ~ 370 fs. Numerically, we implement the flat power spectrum 

as a super-Gaussian of order eight (SG8). The initial transverse profile, also an SG8, has 

a spot size, w0 , equal to the radius of the diffractive lens used for the experiments in Ref. 

[15]. Explicitly, Êl ∝ exp[−(rw0
−1)8 − ( 1

2 τδω )8 + 1
4 iητ 2δω 2] . As in Ref. [15], the 

diffractive lens has a focal length f = 0.51 m  at λ0 .  

 The pulses propagate through either ½ atmosphere of H2 ( ng0 = 1 atm of H atoms) 

or, for reference, vacuum. Unless otherwise stated, the peak power is fixed at 290 MW, 

which corresponds to energies ranging from 4.1 to 12.4 mJ depending on the chirp. The 

power was chosen so that the peak intensity moderately exceeds the ionization threshold. 

If the power were too low, the pulse would not ionize at all. If, on the other hand, the 

power were too high, the leading edge of the pulse could fully ionize the gas before the 

peak of the flying focus pulse arrived. At such a high power, the IWAV would travel at 

the group velocity, not the focal velocity.   
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 Figure (4) displays lineouts of the on-axis ( r = 0) intensity and electron density as 

a function of time and space for v f = −c , corresponding to the red circle in Fig. (2). To 

guide the eye, a white dashed line demarcating a trajectory moving at  −c  has also been 

plotted. The FF pulse created a sharp ionization front, i.e. an IWAV, that moves 

backwards at v f . The on-axis intensity in Fig. (4) appears to have a shorter duration than 

would be expected from the chirp and power spectrum. This apparent shortening results 

from plasma refraction. The ionization rate has a highly nonlinear dependence on the 

electric field. As a result, ionization predominately occurs near the peak of the pulse, 

localizing the plasma to the center of the spot. The corresponding refractive index has a 

sharp gradient that strongly refracts the back of the pulse. The repercussions of plasma 

refraction can be observed more clearly in Fig. (5). Figure (5) displays the spatiotemporal 

profile of the FF pulse at three different locations in the lab frame. The profiles in H2 are 

shown above the grey line, and, for reference, the vacuum profiles are shown below. The 

refraction of the back of the pulse is apparent.  

 The insets in Fig. (5) magnify the region around the peak intensity in each frame. 

The region about the peak intensity looks almost identical in all three frames. As 

discussed above, the FF pulse has a self-similar profile when propagating in vacuum. 

Surprisingly, a self-similar structure persists in the presence of the ionization refraction, 

albeit slightly modified. Figure (6) shows lineouts of the on-axis intensity at the same 

locations. Within the focal region, the on-axis intensity, and resulting plasma, has nearly 

the same temporal profile. Note that most of the ionization occurs behind the pulse. At 

the pulse powers considered here, optical field ionization provides the initial seed 

electrons for collisional ionization. Throughout its duration, the pulse heats the electrons, 

which allows collisional ionization to persist after the pulse has passed.  

While Fig. (5) clearly demonstrates an effect of ionization refraction, the 

disruption to propagation was relatively benign: by counterpropagating the focus with 

respect to the group velocity, the brunt of ionization refraction was avoided. Figure (7) 

illustrates the advantage of moving the laser pulse backwards with respect to the group 

velocity. The figure displays a comparison of IWAVs created by FF pulses with 

v f = −c / 2  and v f = c / 2  
on the left and right, respectively. The two velocities 
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correspond to the red (right) and blue (left) squares in Fig. (2). For v f = −c / 2, the blue-

shifted frequencies focus earlier and further from the lens, initiating the ionization wave. 

As the red-shifted frequencies come to focus and ionize, they do so closer to the lens, 

behind (in space) the already generated plasma. This allows the peak intensity to 

propagate backwards relatively unimpeded. For v f = c / 2, the red-shifted frequencies 

focus earlier and closer to the lens. As the blue-shifted frequencies come to focus, they 

propagate through the plasma created by the red-shifted frequencies. This exacerbates the 

ionization refraction, leading to a drastically lower electron density with an intermittent, 

disjointed profile as observed on the right in Fig. (7). In both cases, the depletion of pulse 

energy is less than 4% and has little affect on the propagation.  

 

VI. Advanced FF and IWAV Techniques 

 In the previous section, we considered a laser pulse with a quadratic spectral 

phase focused by a diffractive lens. The peak intensity of the pulse, and the resulting 

ionization front, travelled at a constant velocity determined by the coefficient of the 

spectral phase (i.e the chirp). By using a more complex spectral phase, the peak intensity 

can be made to travel with a dynamic velocity [16]. Following the procedure in Section 

III, the trajectory of the peak satisfies  

ct = z + f
ω 0

∂zφs , (14) 

where we have used δω = ω0(z / f −1) to write φs  in terms of z . For a desired z(t) , one 

can invert Eq. (14) to find φs . As a practical example, one could accelerate or decelerate 

the speed of an IWAV to modulate the THz emission in the two-color optical Cherenkov 

mechanism [2,27]. 

 One can also control the spatiotemporal properties of the IWAV by modifying the 

power spectrum. Recall that each frequency focuses at a different location on the optical 

axis and, with the exception of the line focus, a different time. As a result, the spectral 

amplitude of each frequency determines the peak intensity at each location and time. By 

adjusting the relative amplitude of each frequency, the trajectory of the peak intensity can 

be controlled independently of the focal velocity and chirp.  
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 Here we consider the simplest case of a line focus, where all of the frequencies 

focus simultaneously at different locations on the optical axis. Because the diffractive 

lens maps frequencies to axial locations, one can ramp or mask the power spectrum to 

vary the intensity, and hence the ionization and heating, along the optical axis. To 

illustrate this, we apply a periodic modulation to the power spectrum: 
Êa ∝ [1+ cos( 1

2 Nπτδω )]2 exp[−( 1
2 τδω )8] . When focused, the spectrum produces an 

intensity profile that oscillates along the optical axis with a period 4 f / Nτω0 . Figure (8) 

shows the on-axis intensity and electron density resulting from a modulated power 

spectrum with N = 6 . The peak power and energy of the pulse were 650 MW  and 

6.9 mJ, respectively. Similar profiles, created with axicons, have been used to enhance a 

variety of plasma-based applications, including THz radiation, betatron X-rays, and 

electron acceleration [28-31]. The FF, however, has several advantages over an axicon: 

(1) at each longitudinal location, the FF has a minimum spot size nearly equal to that of 

an ideal lens, (2) for a flat power spectrum, the peak, on-axis intensity of the FF does not 

vary within the focal region, and (3) the FF largely avoids the plasma refraction that 

limits the intensity achievable by an axicon [32].  

 

VII. Summary and Conclusions 

 We have examined the formation of ionization waves of arbitrary velocity 

(IWAVs) by “flying focus” pulses. A dynamic, or flying, focus occurs when a chromatic 

lens focuses a laser pulse with a nonlinear spectral phase. In a region about the focus, the 

peak intensity of the laser pulse follows a time-dependent trajectory along the optical 

axis. Generally, the trajectory depends on the details of the spectral phase. For the special 

case of a quadratic spectral phase (i.e. a chirp), the peak intensity travels with a constant 

velocity that is distinct from the group velocity of the pulse. This distinct “focal velocity” 

can be tuned through the chirp such that the peak co- or counterpropagates with respect to 

the optical axis. In either case, the peak propagates self-similarly through the focal region 

with a near-constant spatiotemporal profile. The length of the region, determined by the 

bandwidth of the pulse and focal length of the lens, can readily exceed the Rayleigh range 

of the diffraction-limited spot. 
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 In a medium, the flying focus pulse field-ionizes the constituent atoms and heats 

the resulting electrons along the trajectory of its peak intensity. The leading edge of the 

ionization, both field and collisional, follows the trajectory of the peak intensity. Thus by 

adjusting the chirp, an ionization front can be made to travel at an arbitrary velocity along 

the optical axis. This property has the potential to enable a wide range of applications 

currently limited or precluded by an inability to phase-match at the laser pulse group 

velocity, such as THz generation, high harmonic generation, and photon acceleration. 

From a practical standpoint, a negative focal velocity pulse can create a clean ionization 

front relatively unimpeded by plasma refraction. As a more exotic example, one can 

mask or ramp the power spectrum to further control the propagation of the FF pulse and 

tailor the plasma formation, for instance creating modulated plasma density profiles.  
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Appendix A: Alternative Derivation of the Focal Velocity  
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 Equation (6) accurately predicts the focal velocity for an arbitrary chirp [15,16]. 

For an alternative, rough derivation of the flying focus velocity, we consider the limit of 

large chirp. In this limit, the stretched pulse duration, T  (e.g. T = (1+ η2 )1/2τ  for a 

Gaussian power spectrum), far exceeds the transform limited duration. We can then write 

the frequency shift in zω  as its ξ -domain representation: . The focal 

location for each frequency becomes 

 ,  (A1) 

with the corresponding velocity . For large chirp 

T ≈|η |τ , and this expression reproduces Eq. (6).   

 

Appendix B: On-axis FF Solution 

 In this appendix, we find an exact solution to Eq. (3) evaluated on the propagation 

axis, r = 0, for a spatiotemporal Gaussian pulse shape. Using a Gaussian power spectrum 

and Fourier transforming Eq. (4) to the ξ -domain, we have  

E0(r,ξ ,z) = Ea exp − r 2

w0
2 −

ik0r
2

2 f
− ξ 2

c2τ 2(1− iη)
⎡

⎣
⎢

⎤

⎦
⎥ , (B1) 

where Ea  is a constant amplitude. Inserting this expression into Eq. (3) and setting r = 0, 

provides 

E0(0,ξ , z) =
Ea (k0 + i∂ξ )

2π iz
F(ξ ) exp[−q ′r 2 − p ′r 4]d ′r∫ , (B2) 

where F(ξ ) = Ea exp[−(1+ iη)ξ 2 / c2T 2], T = (1+ η2 )1/2τ , p = (1+ iη) / 4c2T 2z2, and 

q =
k0

2z
2z

k0w0
2 − 2ξ

k0c
2T 2

⎛

⎝⎜
⎞

⎠⎟
− i 1− z

f
+ 2ηξ

k0c
2T 2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  

At this point, one may already discern that (2w0z / k0 ) | q | has the appearance of the spot 

size. Indeed, we recover our ξ -domain expression for the spot size from Section III 
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when |η |>> 1, i.e. when we drop the second term in q . Completing the integral in Eq. 

(B2) yields the envelope of the FF pulse evaluated on axis: 

E0(0,ξ ,z) =
π 1/2 Ea

4izp1/2 (k0 + i∂ξ )F(ξ)eq2 /4 perfc q
2 p1/2

⎛
⎝⎜

⎞
⎠⎟

 , (B3) 

where erfc  is the complimentary error function. As expected, Eq. (B3) recovers the 

monochromatic Gaussian optics result in the limit T → ∞ . Equation (B3) appears 

somewhat unwieldy, motivating our use of simplifying approximations and simulations 

in Sections III and V respectively.  

 

Appendix C: Discussion of Simulation Method 

 Numerical solutions to Eq. (1) or Eqs. (10-14) can be obtained by applying 

standard pseudo-spectral split step methods [33]. In these methods, one makes many 

small advances in  z , alternating between diffraction steps in Fourier space and nonlinear 

or refractive steps in real space. If initialized at the diffractive lens plane, these methods 

can come with great computational expense. One must resolve the largest wavenumber 

imparted by the diffractive lens (equivalent to resolving the spot size at focus), while 

making the transverse simulation domain large enough to contain the initial spot size. 

Denoting the transverse resolution by Δx  and the domain size as NΔx , these 

requirements can be expressed as Δx < 2π k0
−1 f #  and Δx > 2w0 / N  respectively. The 

resulting number of grid points can be extremely large: N ~ k0w0 / π f # . Consider 1 μm 

wavelength light focused through a 3.6 cm radius diffractive lens with an f # = 7. The 

bare minimum number of grid points—one cell in a vacuum spot—in a single transverse 

dimension would be N ~ 9800 . In terms of Eqs. (2) and (4), the first requirement 

amounts to resolving the rapidly varying phase appearing in the kernel: k0w0Δx / f < 1.  

 We can avoid such an onerous computation by recognizing that (1) the dynamics 

of interest occur near focus and (2) near focus, the rapidly varying phase of the kernel is 

nearly cancelled by the phase applied by the diffractive lens. Using Eq. (2) to find the 

envelope near focus decouples the numerical grids at z = 0  and z ~ f , and greatly 

relaxes the requirements on the number of grid points. Convergence of the integral 
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requires k0w0Δx ' | L−1 − f −1 |< 1, where Δ ′x  is the transverse resolution in the diffractive 

lens plane. This significantly reduces the number of grid points required in one transverse 

direction ′N ~|1− L / f | (k0w0 / π f # ). Meanwhile, the transverse domain in the  z-plane 

needs only to contain the spot size at z , and can have whatever resolution is desired (for 

a rough estimate of the domain size one can simply use the spot size predicted by 

Gaussian optics). With these requirements met, the integral in Eq. (2) can be performed 

using standard numerical techniques, and the temporal profile found by performing a fast 

Fourier transform (FFT) with respect to δω .  

In the simulations presented here, Eq. (2) is used to propagate the flying focus 

pulse from the diffractive lens to a location before focus where the intensity is just below 

the ionization threshold, z = zi . As discussed above, this greatly relaxes the requirements 

on the numerical grid. From z = zi  to z = zf , where the intensity is above the ionization 

threshold, a pseudo-spectral split step method is used to solve Eq. (10).  

 Figure (3) was generated from the output of a 2D+t cylindrically symmetric 

simulation that used a discrete Hankel transform in the transverse direction. The 

numerical implementation of the Hankel transform was found to be highly dissipative, 

failing to conserve the energy of the pulse. Because Eq. (1) is linear, this was not an issue 

for examining FF pulse propagation in vacuum. However, the dissipation can cause 

spurious results when looking at the nonlinear problem of IWAV formation: the 

ionization rate depends strongly on the local intensity. To avoid this, the remaining 

figures, (4)-(8), were generated from the output of 2D+t Cartesian simulations that used 

FFTs. The energy and power were calculated using a scale factor for the ignorable 

transverse coordinate. The scale factor was chosen to ensure that the peak intensity in 

vacuum at z = f  was equal to its value in 3D.  
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Pulse Parameters Value 

λ (μm) 1.054 
Δλ (nm)  9 

τ (fs) 230 
P (MW) 290 
Diffractive Lens Parameters Value 
w0 (cm) 3.6 
f  (cm) 51 
Gas Parameters Value 
ng (cm-3) 2.7×1019 

UI (eV) 13.6 
T0 (eV) .026 
Table 1.  Parameters for simulations 

 

 
Figure 1. Schematic of the flying focus. A positively (top row) or negatively (bottom 

row) chirped laser pulse passes through a diffractive lens. For the positive chirp, the red 

frequencies come to focus earlier than the blue, resulting in a positive focal velocity. For 

the depicted negative chirp, the blue frequencies come to focus earlier, resulting in a 

negative focal velocity.  
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Figure 2. The focal velocity of the flying focus pulse as a function of chirp parameter and 

pulse duration for the parameters in Table I. A positively chirped pulse is limited to 

positive focal velocities, while a negatively chirped pulse can have either a positive or 

negative velocity.   

 

 

Figure 3. Intensity isocontours of a flying focus pulse with v f = −c / 3 in the laboratory 

frame at three times, increasing from top to bottom.  The peak intensity, represented by 

the dark orange contours, counterpropagates with respect to the optical axis. 
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Figure 4. Intensity and electron density as a function of axial location and time for a 

flying focus pulse with v f = −c . The pulse creates a sharp ionization front that also 

travels at  −c . 

 

 

 

Figure 5. Spatiotemporal intensity profiles of a flying pulse with v f = −c  at three axial 

locations. The profile in H2 is plotted above the dashed line, and, to emphasize the effect 

of plasma refraction, the vacuum profiles are plotted below. The insets illustrates that, 

near peak intensity, a self-similar structure persists in both H2 and vacuum as the flying 

focus traverses the focal region.  
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Figure 6. The on-axis intensity of a flying pulse with v f = −c  at three axial locations. The 

persistence of a self-similar intensity profile, even with ionization dynamics, is evident. 

 

 

 

 
Figure 7. Intensity and electron density as a function of axial location and time for flying 

focus pulses with v f = −c / 2  and v f = c / 2  on the left and right respectively. The 

v f = −c / 2  pulse creates a sharp, clean ionization front, largely avoiding plasma 

refraction. The v f = c / 2  pulse suffers significant plasma refraction, producing an 

intermittent, disjointed ionization front.  
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Figure 8. Intensity and electron density as a function of axial location and time for a 

flying focus pulse with a modulated power spectrum and v f = ∞, i.e. a simultaneous line 

focus. The diffractive lens has mapped the modulation in the power spectrum to a spatial 

intensity modulation. A modulated plasma density profile results.  

 


