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We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveg-
uide for application to quantum nondemolition (QND) measurement of atomic spins. Here the
cooperativity per atom is determined by the ratio between the measurement strength and the deco-
herence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where
the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because
the QND measurement strength depends on the interference between the probe and scattered light
guided into an orthogonal polarization mode, while the decoherence rate depends on the local in-
tensity of the probe. Thus, by proper choice of geometry, the ratio of good to bad scattering can
be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing result-
ing from QND measurement of spin projection noise via the Faraday effect in two nanophotonic
geometries, a cylindrical nanofiber and a square waveguide. We find, that with about 2500 atoms
using realistic experimental parameters, ∼ 6.3 dB and ∼ 13 dB of squeezing can be achieved on the
nanofiber and square waveguide, respectively.

I. INTRODUCTION

Cooperativity is a measure of the entangling strength
of the atom-light interface in quantum optics. Originally
introduced in cavity quantum electrodynamics (QED),
the cooperativity per atom, C1, can be expressed in terms
of the ratio of the coherent coupling rate to decoherence
rates, C1 = g2/(ΓcΓA) where g is the vacuum Rabi fre-
quency, Γc is the cavity decay rate, and ΓA is atomic
spontaneous emission rate out of the cavity [1]. Alter-
natively, we can write C1 = (σ0/A)F , where σ0 is the
resonant photon scattering cross section of the atom, A
is the cavity mode area, and F is the cavity finesse. Ex-
pressed in this way, cooperativity is seen to arise due to
scattering of photons preferentially into the cavity mode,
compared to emission into free space, here enhanced by
the finesses due to the Purcell effect. Strong coupling dy-
namics seen in pioneering experiments in atomic cavity
QED [2, 3] is now a mainstay in quantum information
processing in systems ranging from quantum dots [4–
6] to circuit QED [7, 8]. The NA atom cooperativity,
CN = (NAσ0/A)F = (OD)F , where OD is the resonant
optical depth. In this configuration, the collective de-
grees of the atom can be manipulated by their common
coupling to the cavity mode.

Cooperativity also characterizes the atom-light inter-
face in the absence of a cavity. In free space, an atom
at the waist of a laser beam will scatter into the for-
ward direction at a rate κ ∝ (σ0/A)γs, where γs is the
photon scattering rate into 4π steradians [9]. Here the
single atom cooperativity can be expressed to be pro-
portional to ratio of these rates, C1 ∝ κ/γs ∝ σ0/A.
The NA-atom cooperativity, in a plane wave approxi-
mation, ignoring effects of diffraction and cloud geome-
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try [9], CN ∝ NAσ0/A = OD. To be self-consistent, here
the beam area must be very large, so C1 is very small, e.g.
C1 ∼ 10−6, but for a sufficiently large ensemble, the OD
can be large enough to lead to entanglement between the
collective atomic degrees of freedom and the light. In
that situation, measurement of the light leads to back
action on the ensemble, and for an appropriate quantum
nondemolition (QND) interaction, results in squeezing of
the collective spin [10, 11]. QND measurement-induced
spin squeezing have been observed in free space dipole-
trapped ensembles [12–14] and in optical cavities [15–
17]. The rate of decoherence is set by the rate of optical
pumping, γop ∝ γs, and we can characterize the cooper-
ativity/atom by C1 = κ/γop.

In recent years nanophotonic waveguides have emerged
as a new geometry that complements cavity QED, and
can lead to strong cooperativity [18–24]. Notably, the ef-
fective beam area of a tightly guided mode can be much
smaller than in free space and propagate for long dis-
tances without diffraction. As such, σ0/A can be orders
of magnitude larger than in free space, e.g., σ0/A ∼ 0.1,
and contribute collectively for a modest ensemble of a few
thousand atoms trapped near the surface of the waveg-
uide. Moreover, in some cases the Purcell effect can fur-
ther enhance forward scattering into the guided mode
when compared with scattering into free space. Taken
together, these features make nanophotonic waveguides
a promising platform for the quantum atom-light inter-
face.

In this paper we show that one can achieve an addi-
tional enhancement to the cooperativity in a nanopho-
tonic geometry that is not possible in free space. In par-
ticular, we consider the QND measurement of the collec-
tive spin of an atomic ensemble via a Faraday interaction
followed by polarization spectroscopy. In this configu-
ration the polarimeter effectively performs a homodyne
measurement, where the probe is the “local oscillator”
that interferes with the light scattered into the orthogo-
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nally polarized guided mode [9]. This signal thus depends
on the spatial overlap of the two orthogonal polarization
modes at the position of the atom. In contrast, decoher-
ence due to photon scattering into unguided 4π steradi-
ans occurs at a rate γs is determined only by the intensity
of the probe. The net result is that the cooperativity per
atom, C1 ∝ κ/γs, primarily depends on the strength of
the orthogonal polarization mode, and this factor can be
enhanced, especially for highly anisotropic guided modes.
Counterintuitively, we will see that the strongest cooper-
ativity arises when the atom is placed at the position of
minimum intensity of the azimuthally anisotropic probe
mode where the intensity of the initially unoccupied or-
thogonal mode is maximum.

We study the enhanced cooperativity for two nanopho-
tonic geometries: a cylindrical nanofiber formed by ta-
pering a standard optical fiber with cold atoms trapped
in the evanescent wave, as recently employed in a variety
of experimental studies [18, 25–38], and a nanofabricated
suspended square waveguide, currently investigated at
Sandia National Laboratories [39]. For each geometry
we study the use of the Faraday effect and polarimetry to
perform a QND measurement of the magnetic spins [40],
and thereby induce squeezing of collective spins of ce-
sium atoms. A dispersive measurement of the number of
atoms trapped near the surface of an optical nanofiber
was first performed in [41], and quantum spin projection
noise was recently detected using a QND measurement
with a two-color probe in [31, 38]. Previously, we studied
QND measurement-induced spin squeezing mediated by
a birefringence interaction [24]. We will see here that,
through the enhanced cooperativity, QND measurement
via the Faraday effect can lead to substantial squeezing,
greater than 10 dB in some geometries, for 2500 atoms.

The remainder of the paper is organized as follows. In
Sec. II, we lay out the theoretical description of the QND
measurement and the relevant measurement strength. In
addition, we describe how decoherence is included in the
model through a first-principles stochastic master equa-
tion, here for the case of alkali atoms, and cesium in par-
ticular. From this we will see how cooperativity emerges
as the key parameter that characterizes the squeezing.
We calculate in Sec. III the squeezing dynamics for the
different nanophotonic waveguides, atomic preparations,
and measurement protocols. We conclude with a sum-
mary and outlook for future work.

II. QND MEASUREMENT AND
COOPERATIVITY

The theoretical framework describing the propaga-
tion of light guided in a nanofiber and interacting with
trapped atoms in the dispersive regime was detailed in
our previous work [24]. We review the salient features
here and include the generalization to the square waveg-
uide.

For waveguides that are symmetric under a π/2 rota-

tion around the z (propagation) axis, there are two de-
generate polarizations for each guided mode and for each
propagation direction. Assuming a nanophotonic waveg-
uide that supports only the lowest order guided mode,
and restricting our attention to modes propagating in the
positive z-direction, we denote uH(r⊥) and uV (r⊥) as
the horizontally and vertically polarized modes that adi-
abatically connect to x and y linearly polarized modes,
respectively, as the cross section of the waveguide be-
come large compared to optical wavelength. Note, in
typical nanophotonic geometries these guided modes also
have a nonnegligible z component. For a cylindrically
symmetric nanofiber, these are the well-studied HE11

modes; for a square waveguide, these are the quasi-TE01

and quasi-TM01 modes, shown in Fig. (1). One can
solve for the guided modes of a cylindrical fiber ana-
lytically [24, 42, 43]. We use a vector finite difference
method to numerically solve for the guided eigenmodes
of the square waveguide [44] with core material of Si3N4

whose index of refraction is n = 2 [45].
The quasimonochromatic positive frequency compo-

nent of the quantized field associated with these guided
modes (g) at frequency ω0 takes the form

Ê(+)
g (r, t) =

√
2πh̄ω0

vg
[uH(r⊥)âH(t) + uV (r⊥)âV (t)]

· ei(β0z−ω0t), (1)

where vg is the group velocity, and β0 is the propagation
constant of the guided modes. In the first Born approxi-
mation the dispersive interaction of the guided field with
NA atoms trapped near the surface of the waveguide at
positions {r′⊥, zn}, detuned far from resonance, is defined
by the scattering equation [24],

Ê
(+)
g,out(r, t) = Ê

(+)
g,in(r, t)

+

NA∑
n=1

↔
Gg(r, r

′
n;ω0) · α̂↔n · Ê(+)

g,in(r′n, t), (2)

where α̂↔
(n)

is the atomic polarizability operator of the
nth atom, and

↔
G(+)
g (r, r′n;ω0) = 2πi

ω0

vg

∑
p

up(r⊥)u∗p(r
′
⊥)eiβ0(z−z′n) (3)

is the dyadic Green’s function for a dipole to radiate into
the forward-propagating guided mode. In principle the
Green’s function for an NA-atom chain decomposes into
a collective sub- and superradiant normal modes [23, 46],
but in the far-detuning limit, these all are equally excited.
The result is equivalent to the symmetric mode of inde-
pendently radiating dipoles. The input-output relation
for the mode operators then reads [24]

âoutp (t) = âinp (t) + i
∑
p′

φ̂p,p′ â
in
p′ (t), (4)
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FIG. 1. Fundamental guided modes of the nanophotonic
waveguides. (a) Electric field components of the H-polarized
HE11 mode of a circular nanofiber. From left to right are
Re[ux(r⊥)], Re[uy(r⊥)] and Im[uz(r⊥)] in the xy-plane. (b)
Same as (a) but for the H-polarized quasi-TE01 mode of a
square waveguide. Black lines outline the waveguide bound-
ary. The color scale is normalized to the maximum value
of all field components for each waveguide mode. All other
mode components not shown for both waveguide geometries
vanish everywhere. (c) The normalized intensity distribution
on the transverse plane for both geometries. The blue ar-
rows indicate the local electric field’s direction and ampli-
tude (relative length) at positions along the vertical waveg-
uide axis, which only have an x-component of the mode. The
stars indicate typical positions of trapped atoms (r′⊥/a = 1.8
for nanofiber [18] and similar scale for the square waveguide,
r′⊥/w = 1.0, where a and w are the radius and width of the
waveguides respectively). Dotted light gray lines show the
corresponding V -mode contour which is the H-mode rotated
by 90◦ around the waveguide propagation axis. The atom’s
azimuthal position is chosen to be at a position with the V -
mode being strongest.

where

φ̂p,p′ = 2π
ω0

vg
u∗p(r

′
⊥) ·

NA∑
n=1

α̂↔n · up′(r′⊥) (5)

is the phase operator associated with scattering polar-
ization p′ → p by a collective atomic operator. When
p = p′, this is a phase shift; for p 6= p′, this leads to a
transformation of the polarization of the guided mode.

The Faraday effect arises from the irreducible rank-
1 (vector) component of the polarizability tensor [47].
Given an atom with hyperfine spin f , this contribution

is α̂vecij = iα1εijkf̂k, where α1 = C
(1)
f

σ0

4πk0
ΓA

2∆ is the char-

acteristic polarizability. In alkali atoms C
(1)
f = ∓ 1

3f for

FIG. 2. (a) Schematic polarization spectroscopy geometry for
the QND measurement and spin squeezing generation based
on the Faraday effect. Atoms trapped near the surface of
the nanophotonic waveguide cause a Faraday rotation of the
guided light, which is measured in a polarimeter that detects
the S2 component of the Stokes vector (intensity in the di-
agonal D minus anti-diagonal D̄ modes). (b) The evolution
of the light’s polarization state on the Poincaré sphere (left
to right). The Stokes vector of the light is prepared along
the S1 direction, and the Faraday interaction causes a rota-
tion around the S3-axis. Shot noise, shown as uncertainty
bubble, limits the resolution of the detection. (c) The evolu-
tion of the collective state before and after the measurement
(left to right). The spin is prepared in a coherent state with
projection noise shown as an uncertainty bubble. After the
measurement the uncertainty in Fz is squeezed, and the di-
rection is correlated with the measurement outcome on the
polarimeter.

the D1- and D2-line transitions, respectively. We take the
detuning, ∆, large compared to the excited state hyper-
fine splitting. The resonant scattering cross section on a
unit oscillator strength is σ0 = 6π/k2

0, where k0 = ω0/c.
The polarization transformation associated with scatter-
ing from H to V mode is determined by the operator

φ̂V H = i2π
ω0

vg
α1 [u∗V (r′⊥)× uH(r′⊥)] · F̂, (6)

where F̂ =
∑
n f̂

(n) is the collective spin of the atomic
ensemble. Thus,

âoutV (t) = âinV (t) + iφ̂V,H â
in
H (t)

= âinV (t)−2π
ω0

vg
α1[u∗V (r′⊥)×uH(r′⊥)]·F̂ âinH (t), (7)

and similarly for scattering from V to H.
The polarization transformation can be expressed as a

rotation of the Stokes vector of the light on the Poincaré
sphere with operator components

Ŝ1(t) = 1
2

[
â†H(t)âH(t)− â†V (t)âV (t)

]
, (8a)

Ŝ2(t) = 1
2

[
â†H(t)âV (t) + â†V (t)âH(t)

]
, (8b)

Ŝ3(t) = 1
2i

[
â†H(t)âV (t)− â†V (t)âH(t)

]
. (8c)

By measuring the output Stokes vector in a polarimeter,
we perform a QND measurement of a collective atomic
operator to which it was entangled. In a proper con-
figuration, this leads to squeezing of a collective spin.
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Launching H-polarized light corresponds to the initial
Stokes vector along S1, and Faraday rotation leads to
an S2 component, which is measured in a polarimeter
(Fig. 2(a)). Taking the H-mode as a coherent state with
amplitude βH , the signal of the polarimeter measures

Ŝout2 = (βH â
†out
V + β∗H â

out
V )/2. Expressed in this way

we see that the polarimeter acts as a homodyne detec-
tor, with the input H-mode acting as the local oscillator
and the photons scattered into the V -mode as the sig-
nal. Formally, the input-output relation follows from the
scattering equation, Eq. (7), and reads

Ŝout2 = Ŝin2 +i
(
φ̂V H−φ̂HV

)
Ŝin1 = Ŝin2 +χ3(r′⊥)F̂zŜ

in
1 . (9)

The first term Ŝin2 represents the shot-noise that funda-
mentally limits the resolution of the measurement and
thus the spin squeezing that can be obtained in a given
time interval. The second term is the homodyne signal,
where we have expressed the rotation angle around the
3-axis of the Poincaré sphere as

χ3(r′⊥) = −4πω0

vg
α1 |Re [u∗V (r′⊥)× uH(r′⊥)]|

= −C(1)
f

σ0

AFar(r′⊥)

ΓA
2∆

. (10)

We emphasize here the dependence of the rotation angle
on the position of the atom in the transverse plane, r′⊥,
assumed equal for all atoms in the chain. In particular
χ3(r′⊥) depends on the overlap of uH(r′⊥) and uV (r′⊥) ,
indicating atomic scattering of photons from the H to V
modes associated with the Faraday interaction. We have
characterized this overlap by an effective area that defines
the Faraday interaction at the position of the atom,

AFar(r
′
⊥) =

1

ng |Re [u∗V (r′⊥)× uH(r′⊥)]| , (11)

where ng = c/vg is the group index. A more tightly con-
fined (smaller) area corresponds to a stronger interaction.

By monitoring the Faraday rotation, we can perform
a continuous measurement on the collective spin projec-
tion F̂z. The “measurement strength,” which character-
izes the rate at which we gain information and thereby
squeeze the spin, is given by

κ = |χ3(r′⊥)|2 Pin

h̄ω0
, (12)

where Pin is the input power transported into the guided
mode. The measurement strength is the rate at which
photons are scattered from the guided H to V mode. De-
coherence arises due to diffuse scattering into unguided
modes and the accompanied optical pumping of the spin.
In principle the photon scattering rate into 4π steradi-
ans is modified over free space due to the Purcell effect,
but we neglect this correction here. In the case of the
nanofiber, this is a small effect at typical distances at
which the atom is trapped [48, 49]. For the square waveg-
uide, we will examine this correction in future work.

Decoherence is due to optical pumping of the spin be-
tween different magnetic sublevels. Henceforth, we re-
strict to alkali atoms driven on the D1 or D2 line, with
optical pumping rate

γop =
2

9
σ(∆)

Iin(r′⊥)

h̄ω0
. (13)

Here σ(∆) = σ0
Γ2
A

4∆2 is the photon scattering cross-section
at the detuning ∆ for a unit oscillator strength tran-
sition, and the factor of 2/9 reflects the branching ra-
tio for absorbing a π-polarized laser photon followed by
spontaneous emission of a photon, causing optical pump-
ing to another spin state. Iin(r′⊥) = ngPin|uH(r′⊥)|2 ≡
Pin/Ain(r′⊥) is the input intensity into the guided H-
mode at the position of the atom, where we have defined

Ain(r′⊥) =
1

ng|uH(r′⊥)|2 (14)

to be the effective area associated with the input mode.
We thus define the cooperativity/atom

C1(r′⊥) =
κ

γop
=

σ0

2f2

Ain(r′⊥)

[AFar(r′⊥)]2
. (15)

This is our central result. Roughly, 1/[AFar(r
′
⊥)]2 ∼

|uV (r′⊥)|2|uH(r′⊥)|2, thus C1(r′⊥) ∼ σ0|uV (r′⊥)|2. In the
context of homodyne measurement, the signal to be mea-
sured is proportional to the overlap between the H- and
V -modes, while the decoherence rate depends on the in-
tensity of local oscillator or H-mode. How large the ini-
tially unoccupied V -mode is at the atoms’ position deter-
mines the signal-to-noise ratio for a QND measurement.
We thus enhance the cooperativity by choosing the po-
sition of the atoms so that the orthogonal, unoccupied
mode is large, while the intensity of the local input mode
that causes decoherence is small.

We contrast this with squeezing arising from a birefrin-
gence interaction, as we studied previously in [24]. Linear
birefringence corresponds to a relative phase between the
ordinary and extra-ordinary linear polarizations, which
can arise both due to the geometry of the anisotropic
modes relative to the placement of the atoms, as well as
the atoms’ tensor polarizability. Here, the coupling is not
optimal at the position of minimum intensity; it is max-
imum at the angle 45◦ between the H and V modes. As
such, one will not see as strong of an enhancement of the
cooperativity as we will find in our protocol employing
the Faraday effect.

Figs. 3 and 4 show plots of 1/AFar, 1/Ain, and C1

as a function of the position of the atom in the trans-
verse plane, r′⊥, for the two nanophotonic geometries.
We see that AFar is essentially cylindrically symmetric
sufficiently far from the surface for both the nanofiber
and square waveguide geometries and thus the measure-
ment strength is basically independent of the azimuthal
position of the atoms. In contrast, Ain is azimuthally
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FIG. 3. Contour plots of the effective mode areas and the
cooperativity per atom near an optical nanofiber. (a) and (b)
show the contour of the reciprocal effective Faraday inter-
action mode area, Eq. (11), and the reciprocal input mode
area in the xy-plane, Eq. (14), respectively. An x-polarized
incident mode is assumed. (c) shows a contour plot of the co-
operativity Eq. (15) in the xy-plane. The isovalue lines of C1

increase by 0.002428 on each gradient step from the outside
inwards. The x and y coordinates are scaled in units of a for
all three plots.
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FIG. 4. Similar to Fig. 3 but for the square waveguide. In
(a), the contour lines outside of the waveguide are essentially
concentric circles. There are distortions near the four corners
of the square waveguide shown in the plot mainly caused by
numerical divergences. In (c), the isovalue lines of C1 increase
by 0.005109 on each gradient step from the outside inwards.
The x and y coordinates are scaled in units of w for all three
plots.

anisotropic. For input x-polarization, 1/Ain is the small-
est along the y-axis at a given radial distance, which cor-
responds to the smallest intensity of the input H-mode,
and thus smallest optical pumping rate γop. This angle
corresponds to the position at which |uV (r′⊥)| is largest
and thus yields the largest enhancement of C1. Thus,
counterintuitively, we enhance the cooperativity by plac-
ing the atom at the angle of minimum input intensity.

This enhancement is even greater for the square waveg-
uide which has more anisotropic guided modes compared
to the cylindrical nanofiber. For typical geometries, given
a nanofiber with radius a = 225nm and atoms trapped
on the y−axis, a distance 200nm (0.8a) from the sur-
face, the single atom cooperativity is C1 = 0.00728 at
the optimal trapping angle; for the square waveguide of
width w = 300nm, and atoms trapped 150nm from the
surface, C1 = 0.0102 at optimum. Thus, with order 1000
trapped atoms the NA-atom cooperativity is of order of
10, sufficient to generate substantial spin squeezing.

III. SPIN SQUEEZING DYNAMICS

Given an ensemble of NA atoms initially prepared in
a spin coherent state for the hyperfine spin f , polarized
in the transverse plane, e.g., along the x-axis, a QND
measurement of the collective spin Fz will squeeze the
uncertainty of that component. The metrologically rele-
vant squeezing parameter is [50],

ξ2 ≡ 2NAf
〈
∆F 2

z

〉〈
F̂x
〉2 . (16)

Under the assumption that the state is symmetric with
respect to exchange of any two atoms, valid when we start
in a spin coherent state and all couplings are uniform
over the ensemble, the collective expectation value can
be decomposed into〈

∆F 2
z

〉
= NA

〈
∆f2

z

〉
+NA(NA−1)

〈
∆f (i)

z ∆f (j)
z

〉∣∣∣
i6=j

(17a)〈
F̂x
〉

= NA
〈
f̂x
〉
. (17b)

The first term of Eq. (17a) and Eq. (17b) is the projec-
tion noise associated with the NA identical spin-f atoms,
and the second term of Eq. (17a) is determined by two-

body covariances,
〈
∆f

(i)
z ∆f

(j)
z

〉∣∣∣
i 6=j

=
〈
∆f

(1)
z ∆f

(2)
z

〉
=〈

f̂
(1)
z f̂

(2)
z

〉
−
〈
f̂

(1)
z

〉〈
f̂

(1)
z

〉
. Negative values in these two-

body correlations correspond to the pairwise entangle-
ment between atoms, leading to spin squeezing [51].
Note, when the detuning is sufficiently far-off resonance,
all collective sub- and super-radiant modes [23, 46] are
equally (and thus symmetrically) excited. In this paper,
we work in the dispersive regime with a few thousands of
atoms and can safely ignore the atom-atom interaction
caused by multiple scattering, and hence the collective
atomic system satisfy the exchange symmetry.

To study the spin squeezing dynamics, we follow the
method first developed by Norris [52]. We employ a first-
principles stochastic master equation for the collective
state of NA atoms,

dρ̂ = dρ̂|QND + dρ̂|op . (18)

The first term on the right-hand side of Eq.(18) governs
the spin dynamics arising from QND measurement [9,
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53],

dρ̂|QND =

√
κ

4
H [ρ̂] dW +

κ

4
L [ρ̂] dt, (19)

where κ is the measurement strength defined in Eq. (12),
and dW is a stochastic Wiener interval. The conditional
dynamics are generated by superoperators that depend
on the collective spin

H [ρ̂] = F̂z ρ̂+ ρ̂F̂z − 2
〈
F̂z
〉
ρ̂, (20a)

L [ρ̂] = F̂z ρ̂F̂z−
1

2

(
ρ̂F̂ 2

z +F̂ 2
z ρ̂
)

=
1

2

[
F̂z,
[
ρ̂, F̂z

]]
. (20b)

The second term governs decoherence arising from op-
tical pumping, which acts locally on each atom,dρ̂|op =∑NA

n D(n) [ρ̂] dt, where

D(n)[ρ̂] =− i
h̄

(
Ĥ

(n)
eff ρ̂−ρ̂Ĥ(n)†

eff

)
+γop

∑
q

Ŵ (n)
q ρ̂Ŵ (n)†

q . (21)

Here Ĥ
(n)
eff is the effective nonHermitian Hamiltonian de-

scribing the local light shift and absorption by the nth

atom and Ŵ
(n)
q is the jump operator corresponding to

optical pumping through absorption of a laser photon
followed by spontaneous emission of a photon of polar-
ization q [47] (see Appendix A).

The rate of decoherence is characterized by the optical
pumping rate, γop. Note, the optical pumping superoper-
ator, Eq.(21), is not trace preserving when restricted to a
given ground-state hyperfine manifold f . Optical pump-
ing that transfers atoms to the other hyperfine mani-
fold in the ground-electronic state is thus treated as loss.
Moreover, if the atoms are placed at the optimal posi-
tion in the transverse plane, the local field of the guided
mode is linearly polarized. In that case the vector light
shift vanishes, and for detunings large compared to the
excited-state hyperfine splitting, the rank-2 tensor light
shift is negligible. The light shift is thus dominated by
the scalar component, which has no effect on the spin

dynamics. In that case Ĥeff = −i h̄γop2 1̂, representing an
equal rate of absorption for all magnetic sublevels.

Following the work of Norris [52], the solution to the
master equation is made possible by three approxima-
tions. Firstly, we restrict the subspace of internal mag-
netic sublevels that participate in the dynamics. The
system is initialized in a spin coherent state, with all
atoms spin-polarized along the x-axis. We denote this
as the “fiducial state” |↑〉 = |f,mx = f〉. Through QND
measurement, spin squeezing is induced by entanglement
with the “coupled state” |↓〉 = |f,mx = f − 1〉. Op-
tical pumping is dominated by “spin flips” |↑〉 → |↓〉
and “loss” due to pumping to the other hyperfine level.
We finally include a third internal magnetic sublevel
|T 〉 = |f,mx = f − 2〉 to account for “transfer of coher-
ences” that can occur in spontaneous emission [52, 54]
(see Fig. 5). Restricted to this qutrit basis, the internal

hyperfine spin operators are

f̂x = fσ̂↑↑ + (f − 1)σ̂↓↓ + (f − 2)σ̂TT , (22a)

f̂y = −i
√
f

2
(σ̂↑↓−σ̂↓↑)− i

√
2f − 1

2
(σ̂↓T−σ̂T↓) (22b)

f̂z =

√
f

2
(σ̂↑↓ + σ̂↓↑) +

√
2f − 1

2
(σ̂↓T + σ̂T↓) , (22c)

where we have defined the atomic population and coher-
ence operators σ̂ba = |b〉〈a|.

FIG. 5. Schematic energy level diagram for cesium atoms
probed on the D2 line, 6S1/2 → 6P3/2. Relevant dynam-
ics are restricted to a truncated qutrit subspace of ground
levels. Atoms are prepared in the fiducial state |↑〉, and
driven by x-polarized (π) light. The Faraday rotation cor-
responds to coherent scattering of π → σ in this basis, and
measurement backaction leads to entanglement between pairs
of atoms in |↑〉 = |f = 4,mx = 4〉 and the coupled state
|↓〉 = |f = 4,mx = 3〉. Optical pumping can cause spin flips
|↑〉 → |↓〉 and |↓〉 → |T 〉 = |f = 4,mx = 2〉. The latter pro-
cess is included to account for transfer of coherences. The
detuning ∆ is taken to be large compared to the excited state
hyperfine splitting.

Secondly, we assume the collective state is symmetric
under exchange of spins. This approximation is valid
when all atoms see the same probe intensity and in
the far-detuning regime when all sub- and super-radiant
modes are equally excited. With this, we can limit our
attention to the symmetric subspace and define, for ex-
ample, the symmetric two-body covariances by〈

∆σ
(1)
ba ∆σ

(2)
dc

〉
s
≡ 1

2

[〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
+
〈
∆σ

(2)
ba ∆σ

(1)
dc

〉]
, (23)

where the superscripts, (1) and (2), label arbitrary
two different atoms in the ensemble. Due to the ex-
change symmetry,

〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
s

=
〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
=〈

∆σ
(2)
ba ∆σ

(1)
dc

〉
, which reduces the number of n-body mo-

ments required to simulate the spin dynamics of the en-
semble.

Thirdly, we make the Gaussian approximation, valid
for large atomic ensembles, so that the many-body state
is fully characterized by one- and two-body correlations.
Equivalently, the state is defined by the one- and two-

body density operators, with matrix elements ρ
(1)
a,b =



7〈
σ̂ba
〉
, ρ

(1,2)
ac,bd =

〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
s

in the symmetric sub-
space. We track the evolution of the correlation func-
tions through a set of coupled differential equations [52].
Optical pumping, acting locally, couples only n-body cor-
relations to themselves, e.g.,

d
〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
s

∣∣∣
op

=
〈
D†[∆σ(1)

ba ]∆σ
(2)
dc

〉
s
dt+

〈
∆σ

(1)
ba D†[∆σ

(2)
dc ]
〉
s
dt. (24)

QND measurement generates higher order correlations
according to

d
〈
σ̂ba
〉∣∣
QND

=
κ

4

〈
L† [σ̂ba]

〉
dt+

√
κ

4

〈
H† [σ̂ba]

〉
dW. (25)

We can truncate this hierarchy in the Gaussian approxi-
mation, setting third order cumulants to zero. Thus, for
example,

d
〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
s

∣∣∣
QND

= d
〈
σ̂

(1)
ba σ̂

(2)
dc

〉
s

∣∣∣
QND

−
〈
σ̂ba
〉∣∣
QND

(
d
〈
σ̂dc
〉∣∣
QND

)
−
〈̂
σdc
〉∣∣
QND

(
d
〈̂
σba
〉∣∣
QND

)
− d
〈
σba
〉∣∣
QND

d
〈
σdc
〉∣∣
QND

= −κ
〈
∆σ

(1)
ba ∆Fz

〉
s

〈
∆Fz∆σ

(2)
dc

〉
s
dt, (26)

where we have employed the Ito calculus dW 2 = dt.
Note, by setting the third-order cumulants to zero, the
contribution of the L superoperator to dynamics of

the two-body covariances vanishes, d
〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
s

∣∣∣
L

=

κ
4

〈
L†
[
∆σ

(1)
ba ∆σ

(2)
dc

] 〉
s
dt = 0. This indicates the events

of no-photon detection under the Gaussian state approx-
imation do not affect atom-atom correlations; the mea-
surement backaction and squeezing arise from the homo-
dyne detection in the guided modes.

Using all of the approximations above, the collective
spin dynamics can be efficiently calculated for the ensem-
ble of qutrits (dimension d = 3) with d2 = 9 equations
for the one-body quantity,

〈
σ̂ba
〉
, and d2(d2 + 1)/2 = 45

equations for the two-body covariances,
〈
∆σ

(1)
ba ∆σ

(2)
dc

〉
s
,

in the symmetric subspace independent of the number of
atoms. With this formalism in hand, we can calculate
the squeezing parameter, Eq.(16), as a function of time
by finding time-dependent solutions for the one-body av-

erages
〈
f̂x
〉

and
〈
∆f2

z

〉
, and the two-body covariances〈

∆f
(1)
z ∆f

(2)
z

〉
. The detailed approach to calculating the

collective spin dynamics can be found in Appendix A.
Using this formalism, we calculate the squeezing of an

ensemble of cesium atoms, initially spin-polarized in the
6S1/2, |f = 4,mx = 4〉 state. We choose the guided mode
frequency near the D2 resonance, 6S1/2 → 6P3/2, de-
tuned far compared to the excited-state hyperfine split-
ting. In Fig. 6, we plot the reciprocal of the spin squeez-
ing parameter as a function of time and its peak as a func-
tion of atom number, NA, for both the optical nanofiber

and the square waveguide cases. By placing atoms 200
nm away from the nanofiber surface (r′⊥ = 1.8a), our
simulations for 2500 atoms yield 6.3dB of squeezing. Us-
ing the square waveguide platform with the same num-
ber of atoms placed 150nm away from the surface, our
calculation yields 12.9dB squeezing. As we have shown
in Sec. II, the square waveguide geometry enhances the
anisotropic contrast of the two orthogonal guided modes
and dramatically reduces the relative local intensity when
the atoms are placed on the y-axis. This results in a
large cooperativity, higher peak spin squeezing, achieved
in shorter time, and with a relatively slower decay when
compared to the nanofiber. In addition, in Figs. 6(b)
and 6(d) we show how the peak squeezing scales with
the number of trapped atoms when the atom positions
are fixed as above.
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FIG. 6. The reciprocal spin-squeezing parameter, Eq. (16).
Subfigs. (a) and (c) are plots of ξ−2 as a function of time
in units of the optical pumping rate γop, for the cylindrical
nanofiber and square waveguide, respectively, for NA = 2500,
with other parameters given in the text. These curves peak
at time determined by the detailed balance of reduced un-
certainty due to QND measurement and decoherence due to
optical pumping. Subfigs. (b) and (d) show the plots of the
peak value ξ−2 as a function of NA for the nanofiber and
square waveguide correspondingly.

In the absence of any other noise, the cooperativity
of atom-light coupling increases as the atoms are placed
closer to the waveguide surface. Figs.7(a) and 7(c) show
the peak squeezing as a function of r⊥ for both nanofiber
and square waveguide geometries with 2500 atoms. With
the same setting, we also plot out the cooperativity, C1,
on a logarithm scale in Figs.7(b) and 7(d) as a function
of atom radial distance to the center of both waveguide
geometries. We find that C1 is proportional to e−βr⊥ and
the peak squeezing scales as

√
OD, where β ≈ 1.65/a
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for the nanofiber and β ≈ 2.14 × 2/w for the square
waveguide with 2500 atoms. The cooperativity of the
square waveguide increases faster than the nanofiber as
the atoms approach to the waveguide surface.
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FIG. 7. Peak squeezing parameter ((a) and (c)) and coopera-
tivity at the optimal azimuthal trapping position ((b) and (d))
as a function of the radial distance to the waveguide axis, for
NA = 2500, with other parameters given in the text. (a)
and (b) are for the nanofiber case; (c) and (d) are for the
square waveguide case.

IV. SUMMARY AND OUTLOOK

In this paper we studied the cooperativity of the atom-
photon interface for two nanophotonic geometries: a
cylindrical nanofiber and a square waveguide. Due to the
anisotropic nature of the guided modes, one can strongly
enhance the cooperativity by trapping atoms at positions
that maximize the rate at which photons are forward-
scattered into the orthogonally polarized guided mode,
while simultaneously minimizing the rate of which they
are scattered into free space. Counterintuitively, the op-
timal geometry is such that atoms at a certain distance
from the surface are trapped at the azimuthal angle of
minimal intensity of the probe. We applied this idea to
study the generation of a spin squeezed state of an ensem-
ble atoms induced by QND measurement, mediated by
the Faraday interaction in the dispersive regime. With
realistic parameters, our simulation shows more than 6dB
of squeezing for a cylindrical nanofiber or 12dB for the
square waveguide with 2500 atoms. The amount of spin
squeezing we predict based on Faraday effect is substan-
tially larger than for the birefringence-based spin squeez-
ing protocol studied in our earlier work [24]. Although
we have only considered a cylindrical nanofiber and a

square waveguide geometries, the ideas presented in this
paper are applicable to other nanophotonic waveguide
geometries which could show enhanced cooperativity. In
addition, our model of decoherence, simplified when the
detuning is large compared to the excited state hyperfine
splitting, is almost certainly not the optimal operating
condition.

Our simulations are based on a first-principles stochas-
tic master equation that includes QND measurement-
backaction that generates entanglement and results in
spin squeezing, as well as decoherence due to optical
pumping by spontaneous photon scattering [9, 24, 52].
This simulation is made possible by a set of simplifying
assumptions: (i) we restrict each atom to a qutrit, em-
bedded in the hyperfine manifold of magnetic sublevels;
(ii) the state is exchange-symmetric with respect to any
two atomic spins; (iii) the many-body state is fully char-
acterized by one- and two-body correlations (the Gaus-
sian approximation). With these, we solve for the metro-
logically relevant squeezing parameter as a function of
time and see the tradeoffs between QND measurement
and decoherence for various geometries and choices of pa-
rameters. Our method is extendable to include higher or-
der correlations, which become manifest for large squeez-
ing, when the Holstein-Primakoff (Gaussian) approxima-
tion breaks down. The computational framework we have
developed here should allow us to study n-body moments
with an acceptable computational load.

In future work we intend to extend our analysis in
a number of directions. While we focussed here on
the enhancement of the cooperativity in a nanophotonic
waveguide-based QND measurement, we did not fully an-
alyze the impact of Purcell effect and the modification of
spontaneous emission rates in our simulations. We have
also neglected here the motion of atoms in the optical
lattice. In practice, however, these effects are impor-
tant, the latter having been observed in the nanofiber
experiments [37, 38, 55, 56]. We will include these in
future studies, with an eye towards the development of
new strategies for atomic cooling and state initialization
in the nanophotonic platforms [57]. We expect that our
proposed geometry, which places the atoms at positions
of minimum intensity, could also help reduce the pertur-
bation on the motion of trapped atoms due to the probe
that causes a disturbance in the signal [37].

Finally, we have studied here the dispersive regime of a
QND measurement, where the probe light is detuned far-
off-resonance, and multiple scattering of photons among
atoms is negligible. To extend our theory, it is necessary
to include the collective effects such as super and sub-
radiance [23, 46, 58], with applications including quan-
tum memories [34, 59], the generation of matrix product
states and cluster states [60–64].
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Appendix A: Modeling collective spin dynamics

In this Appendix we give further details of the equa-
tions of motion for spin squeezing as a function of time,
as discussed in the main text, building on the work of
Norris [52]. In the symmetric subspace, and in the Gaus-
sian approximation, we track a set of one- and two-body
correlation functions that determine the metrologically
relevant squeezing parameter, Eqs. (16,17). The evolu-
tion is determined by the dynamics induced by the QND
measurement and decoherence due to optical pumping,
Eqs. (18-21). For concreteness, we consider here ce-
sium atoms, initially prepared in a spin coherent state,
with all atoms in the stretched state polarized along
the x-axis, |↑〉 = |6S1/2, f = 4,mx = 4〉. The atoms are
trapped on the y-axis at a distance r′⊥ from the core
axis of the waveguide and are probed with guided light
in the H-mode, which has linear polarization in the x-
direction at the position of the atoms. We take the
detuning large compared to the excited state hyperfine
splitting, e.g., 4 GHz red detuned from the D2 line,
|6S1/2, f = 4〉 → |6P3/2, f

′ = 3〉. Spontaneous emission
from the probe may result in optically pumping of atoms
to the other hyperfine manifold, f = 3; we treat this as
a loss channel under the approximation that, over the
time interval of interest, there is a negligible probability
for these atoms to repump to f = 4. We also include a
bias static magnetic field along the z-axis. This does not
affect the QND measurement of Fz, but ultimately, we
must calculate all dynamics in the rotating frame.

Spontaneous emission, optical pumping, and the re-
sulting decoherence acts locally on each atomic spin, gov-
erned by the master equation, Eq. (21). For light linearly
polarized in the x-direction, and for detunings large com-
pared to the excited state hyperfine splitting, this takes
the simplified form [47]

dρ̂(n)

dt

∣∣∣∣
op

= D[ρ̂(n)]

=− i
h̄
[ĤA, ρ̂

(n)]−γopρ̂(n)+
γop
4f2

(
f̂

(n)
+ ρ̂

(n)f̂
(n)
− +f̂

(n)
− ρ̂

(n)f̂
(n)
+

)
, (A1)

where f̂
(n)
± = f̂

(n)
z ± if̂ (n)

y are the raising and lowering
operators for projection of spin along the x-axis, and

γop =
Γ2
A

18∆2 σ0
Iin
h̄ω0

is the optical pumping for linear po-
larization in the far-detuned limit, given intensity Iin
at the position of the atom (we assume that all atoms
are trapped the same distance for the waveguide, and
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thus see the same intensity). The atomic Hamiltonian is

ĤA =
∑
n h̄Ω0f̂

(n)
z + ĤLS , the sum of the Zeeman inter-

action with a bias magnetic field, giving rise to Larmor
precession at frequency Ω0, and the light shift, ĤLS =
h̄χ3F̂zŜ3, due to the probe. Even for far detuning, the
residual tensor light shift cannot be neglected as it scales
at 1/∆2, the same as γop and κ. In principle a two-color
probe can remove the tensor term which would otherwise
lead to a degradation of the mean spin, and thus a reduc-
tion metrologically useful squeezing [65, 66]. We neglect
this effect here. Finally, going to the rotating frame at the

Larmor frequency, f̂
(n)
x → f̂

(n)
x cos(Ω0t) + f̂

(n)
y sin(Ω0t),

f̂
(n)
y → f̂

(n)
y cos(Ω0t) − f̂ (n)

x sin(Ω0t), and averaging the
rapidly oscillating terms (RWA), the master equation
takes the form

dρ̂(n)

dt

∣∣∣∣
op

= D[ρ̂(n)]

⇒−γopρ̂(n)

+
γop
8f2

(
f̂ (n)
x ρ̂(n)f̂ (n)

x +f̂ (n)
y ρ̂(n)f̂ (n)

y +2f̂ (n)
z ρ̂(n)f̂ (n)

z

)
. (A2)

With atoms initially prepared in the “fiducial state,”
|↑〉 = |f = 4,mx = 4〉, we include in the dynamics the
“coupled state,” |↓〉 = |f = 4,mx = 3〉, and the “trans-
fer state,” |T 〉 = |f = 4,mx = 2〉. Restricted to this

qutrit substate, the spin projector operators {f̂x, f̂y, f̂z}
are given in Eqs. (22).

With all the components of the stochastic master equa-
tion defined in Eq. (18-21), one can derive the equa-
tions of motion of one- and two-body moments straight-
forwardly using the symmetric Gaussian state approxi-
mation. Some explicit results have been given in Eq. (24
-26). The equation of motion for the optical pumping
dynamics of the one-body moment

〈
σ̂ba
〉
, is given by

d
〈̂
σba
〉∣∣
op=

〈
D†[σ̂ba]

〉
dt=
∑
c,d

tr(D†[σ̂ba]σ̂dc)
〈̂
σdc
〉
dt. (A3)

The equations of two-body moments of the optical pump-
ing can be derived similarly. Continued from Eq. (24),
we have

d
〈
∆σ

(1)
ba∆σ

(2)
dc

〉
s

∣∣∣
op

=
〈
∆D†[σ(1)

ba]∆σ
(2)
dc

〉
sdt+

〈
∆σ

(1)
ba∆D†[σ(2)

dc]
〉
sdt

=
∑
m,n

tr
(
D†[σ̂ba]σ̂mn

)〈
∆σ(1)

mn∆σ
(2)
dc

〉
s

+
∑
m,n

tr
(
D†[σ̂dc]σ̂mn

)〈
∆σ̂

(1)
ba∆σ(2)

mn

〉
s
. (A4)

In deriving Eqs. (25) and (26), we have used the Gaus-
sian state assumption to write three-body moments in
connection to one- and two-body moments,

〈
ÂB̂Ĉ

〉
=〈

ÂB̂
〉〈
Ĉ
〉

+
〈
ÂĈ
〉〈
B̂
〉

+
〈
B̂Ĉ

〉〈
Â
〉
− 2

〈
Â
〉〈
B̂
〉〈
Ĉ
〉
. If

only keeping coherence operators of the nearest coupling
states, Eqs. (A3) and (A4) recover the same results found
by Norris [52].

We apply similar techniques to derive the equations of
motion due to QND measurement Eqs. (25) and (26) to
yield

d
〈̂
σba
〉∣∣
QND

=
κ

4

∑
c,d

tr
(
L† [σ̂ba] σ̂dc

) 〈
σ̂dc
〉
dt

+

√
κ

4

∑
c,d

tr
(
H†[σ̂ba]σ̂dc

)〈̂
σdc
〉
dW. (A5)

d
〈
∆σ

(1)
ba∆σ

(2)
dc

〉
s

∣∣∣
QND

=−κ
{

1

2

[√
f

2

(
δa↑
〈̂
σb↓
〉
+δb↓

〈̂
σ↑a
〉
+δa↓

〈̂
σb↑
〉
+δb↑

〈̂
σ↓a
〉)

+

√
2f−1

2

(
δa↓
〈̂
σbT
〉
+δbT

〈̂
σ↓a
〉
+δaT

〈̂
σb↓
〉
+δb↓

〈̂
σTa
〉)]

−
√
f

2

〈̂
σba
〉(〈̂
σ↑↓
〉
+
〈̂
σ↓↑
〉)
−
√

2f−1

2

〈̂
σba
〉(〈̂
σ↓T
〉
+
〈̂
σT↓
〉)

+(NA−1)

[√
f

2

(〈
∆σ

(1)
ba ∆σ

(2)
↑↓
〉
s+
〈
∆σ

(1)
ba∆σ

(2)
↓↑
〉
s

)
+

√
2f−1

2

(〈
∆σ

(1)
ba∆σ

(2)
↓T
〉
s+
〈
∆σba∆σ

(2)
T↓
〉
s

)]}

·
{

1

2

[√
f

2

(
δc↑
〈̂
σd↓
〉
+δd↓

〈̂
σ↑c
〉
+δc↓

〈̂
σd↑
〉
+δd↑

〈̂
σ↓c
〉)

+

√
2f−1

2

(
δc↓
〈̂
σdT
〉
+δdT

〈̂
σ↓c
〉
+δcT

〈̂
σd↓
〉
+δd↓

〈̂
σTc
〉)]

−
√
f

2

〈̂
σdc
〉(〈̂
σ↑↓
〉
+
〈̂
σ↓↑
〉)
−
√

2f − 1

2

〈̂
σdc
〉(〈̂
σ↓T
〉
+
〈̂
σT↓
〉)

+(NA−1)

[√
f

2

(〈
∆σ

(1)
↑↓ ∆σ

(2)
dc

〉
s
+
〈
∆σ

(1)
↓↑ ∆σ

(2)
dc

〉
s

)
+

√
2f−1

2

(〈
∆σ

(1)
↓T∆σ

(2)
dc

〉
s+
〈
∆σ

(1)
T↓∆σ

(2)
dc

〉
s

)]}
dt, (A6)

By combining the optical pumping and QND measure-
ment contribution to Eqs. (A3-A6), one can find a set of
stochastic equations of a closed set of variables of{〈

σ̂ba
〉
,
〈
∆σba∆σdc

〉
s
|a, b, c, d ∈ {↑, ↓, T}

}
(A7)

in the symmetric qutrit subspace. The matrix of equa-
tions is sparse and close to diagonal which indicates
only nearest neighboring coupling is possible in the{〈
σ̂ba
〉
,
〈
∆σba∆σdc

〉
s

}
basis. In the symmetric qutrit

subspace, we have 45 two-body moment variables and
corresponding sparse second-order equations, which we
solve numerically.
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