
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Long-lasting quantum memories: Extending the coherence
time of superconducting artificial atoms in the ultrastrong-

coupling regime
Roberto Stassi and Franco Nori

Phys. Rev. A 97, 033823 — Published 15 March 2018
DOI: 10.1103/PhysRevA.97.033823

http://dx.doi.org/10.1103/PhysRevA.97.033823


Long-lasting Quantum Memories: Extending the Coherence Time of Superconducting
Artificial Atoms in the Ultrastrong-Coupling Regime

Roberto Stassi1∗ and Franco Nori1,2
1CEMS, RIKEN, Saitama 351-0198, Japan

2Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
(Dated: February 21, 2018)

Quantum systems are affected by interactions with their environments, causing decoherence
through two processes: pure dephasing and energy relaxation. For quantum information processing
it is important to increase the coherence time of Josephson qubits and other artificial two-level atoms.
We show theoretically that if the coupling between these qubits and a cavity field is longitudinal
and in the ultrastrong-coupling regime, the system is strongly protected against relaxation. Vice
versa, if the coupling is transverse and in the ultrastrong-coupling regime, the system is protected
against pure dephasing. Taking advantage of the relaxation suppression, we show that it is possible
to enhance their coherence time and use these qubits as quantum memories. Indeed, to preserve
the coherence from pure dephasing, we prove that it is possible to apply dynamical decoupling. We
also use an auxiliary atomic level to store and retrieve quantum information.

I. INTRODUCTION

Quantum memories are essential elements to imple-
ment quantum logic, as the information must be pre-
served between gate operations. Different approaches
to quantum memories are being studied, including NV
centers in diamond, atomic gases, single trapped atoms
[1]. Superconducting circuits [2, 3] are at the forefront
in the race to realize the first quantum computers, as
they exhibit flexibility, controllability and scalability. For
this reason, quantum memories that can be easily inte-
grated into superconducting circuits are also required.
The realization of a quantum memory device, as well as
of a quantum computer, is challenging because quantum
states are fragile: the interaction with the environment
causes decoherence. There are external, for example local
electromagnetic signals, and intrinsic sources of decoher-
ence. In circuit-QED, the main intrinsic source of deco-
herence are fluctuations in the critical-currents, charges,
and magnetic-fluxes.

Superconducting circuits have allowed to achieve the
ultrastrong coupling regime (USC) [4–6], where the light-
matter interaction becomes comparable to the atomic
and cavity frequency transitions (ωq and ωc, respec-
tively), reaching the coupling of λ = 1.34ωc [7]. Af-
ter a critical value of the coupling, λ > λc, with λc =√
ωq ωc/2, the Dicke model predicts that a system of N

two-level atoms interacting with a single-cavity mode, in
the thermodynamic limit (N →∞) and at zero temper-
ature (T = 0), is characterized by a spontaneous polar-
ization of the atoms and a spontaneous coherence of the
cavity field [8, 9]. This situation can also be encountered
in the finite-N case [10], when λ > λc.

Here, we consider a single two-level atom, N = 1, in-
teracting with a cavity mode in the USC regime. First,
we derive a general master equation, valid for a large va-
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riety of hybrid quantum systems [11] in the weak, strong,
ultrastrong, and deep strong coupling regimes. Consid-
ering the two lowest eigenstates of our system, we show
theoretically that if the coupling between the two-level
atom and the cavity field is longitudinal and λ > λc (in
the USC regime), the system is strongly protected against
relaxation. Vice versa, we prove that if the coupling is
transverse and λ > λc (in the USC regime), then the
system is protected against pure dephasing.

In the case of superconducting artificial atoms whose
relaxation time is comparable to the pure dephasing time,
taking advantage of this relaxation suppression in the
USC regime, we prove that it is possible to apply the dy-
namical decoupling procedure [12] to have full protection
against decoherence. With the help of an auxiliary non-
interacting atomic level, providing a suitable drive to the
system, we show that a flying qubit that enters the cav-
ity can be stored in our quantum memory device and re-
trieved afterwards. Moreover, we briefly analyze the case
of artificial atoms transversally coupled to a cavity mode
[13, 14]. In this treatment we neglect the diamagnetic
term A2, which prevents the appearance of a superradi-
ant phase, as the conditions of the no-go theorem can be
overcome in circuit-QED [7, 15].

II. MODEL

The Hamiltonian of a two-level system interacting with
a cavity mode is (~ = 1)

Ĥ = ωcâ
†â+

ε

2
σ̂z +

∆

2
σ̂x + λX̂σ̂x . (1)

being â (â†) the annihilation (creation) operator of the

cavity mode with frequency ωc, X̂ = â + â†, and σ̂j
the Pauli matrices, with j = {x, y, z}. For a flux qubit,
ε and ∆ correspond to the energy bias and the tunnel
splitting between the persistent current states {| ↓ 〉, | ↑ 〉}
[16]. We do not use the rotating wave approximation
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FIG. 1. (Color online) Energy levels for ∆ = 0 (black dotted
curves), ∆ = 0.2ωc (blue solid curves), and for ∆ = 0 apply-
ing a constant field with Λ = 0.2ωc (red dashed curves). Here
ε = ωc = 1. Inset: graphical representation of the potential
energy of the two-level system; each well is associated to a
polarized state {|P−〉, |P+〉}.

in the interaction term as the counterrotating terms are
fundamental in the USC regime.

For ε = 0, the coupling is longitudinal and the two low-
est eigenstates {|0̃〉, |1̃〉} are exactly the polarized states
|P−〉 = |−〉| + α〉 and |P+〉 = |+〉| − α〉, where |±〉 =

1/
√

2( | ↑ 〉± | ↓ 〉), and | ± α〉 = exp[±α(â† − a)]|0〉 are
displaced Fock states [17], with α = λ/ωc. A proof of this
is given in the Appendix A. In the subspace spanned by
the polarized states P = {|P−〉, |P+〉}, Ĥ becomes

ĤP =
∆

2
σ̂z +

εR

2
σ̂x , (2)

with εR = ε〈+α|−α〉. Equation (2) describes a two-state
system, see inset in Fig. 1, characterized by a double-well
potential with detuning parameter ∆ and depth propor-
tional to the overlap of the two displaced states. The
kinetic contribution (εR/2)σ̂x mixes the states P associ-
ated to the two minima of the potential wells.

For ∆ = 0, the coupling is transverse and the two
lowest eigenstates {|0̃〉, |1̃〉} converge, for λ > λc, to the

entangled states |E−〉 = (|P+〉 − |P−〉)/
√

2 and |E+〉 =

(|P+〉+ |P−〉)/
√

2. In this case, as

〈+α| − α〉 = exp{−2|λ/ωc|2} , (3)

the energy difference between the eigenstates, ω1̃ − ω0̃ =
εR, converges exponentially to zero with λ (vacuum
quasi-degeneracy), see Fig. 1 and Ref. [18]. The system

described by Ĥ does not conserve the number of excita-
tions, N = a†a+ |e〉〈e|, being |e〉 the excited state of the
two-level system, but for ∆ = 0 has Z2 symmetry and it
conserves the parity of the number of excitations [19, 20].

For ∆ 6= 0, the parity symmetry is broken [21–23]. As
εR converges exponentially to zero with λ, the first two
eigenstates of Ĥ converge exponentially to the polarized

states P , and the energy splitting between the first two
eigenstates converge to ∆, see Eq. (2) and Fig. 1. For
∆ = 0, it is also possible to break the Z2 parity sym-
metry, and have the polarized states P , applying to the
cavity the constant field −Λ/2X̂. In this case, the energy
splitting between the first two eigenstates is a function
of the coupling λ; indeed, ω1̃ − ω0̃ = 2Λλ/ωc, see Fig. 1
and Appendix A 2.

III. MASTER EQUATION AND COHERENCE
RATE

The dynamics of a generic open quantum system S,
with Hamiltonian ĤS and eigenstates |m〉, is affected by
the interaction with its environment B, described by a
bath of harmonic oscillators. Relaxation and pure de-
phasing must be studied in the basis that diagonalizes
ĤS. The fluctuations that induce decoherence origi-
nate from the different channels that connect the sys-
tem to its environment. For a single two-level system
strongly coupled to a cavity field these channels are
S = {σ̂x, σ̂y, σ̂z, X̂, Ŷ }, with Ŷ = i(â − â†). In the in-

teraction picture, the operators Ŝ(k) ∈ S can be written
as

Ŝ(k) (t) = Ŝ
(k)
+ (t) + Ŝ

(k)
− (t) + Ŝ(k)

z , (4)

with

Ŝ
(k)
− (t) =

∑
m,n>m

s(k)
mn |m〉〈n| e−iωnmt , (5)

Ŝ(k)
z =

∑
m

s(k)
mm |m〉〈m| (6)

and Ŝ
(k)
+ = (Ŝ

(k)
− )†; this in analogy with σ̂+, σ̂− and σ̂z,

for a two-state system [24], while s
(k)
mn = 〈m|Ŝ(k)|n〉 and

ωmn = ωm−ωn. The interaction of the environment with

Ŝ
(k)
z affects the eigenvalues of the system, and involves

the randomization of the relative phase between the sys-
tem eigenstates. The interaction of the environment with

Ŝ
(k)
x = Ŝ

(k)
+ + Ŝ

(k)
− induces transitions between different

eigenstates. With this formulation, we have derived a
master equation in the Born-Markov approximation valid
for generic hybrid-quantum systems [25], at T = 0,

˙̂ρ = −i
[
ĤS, ρ̂

]
+
∑
k

∑
m,n>m

Γ(k)
mnD [|m〉〈n|] ρ̂ (7)

+
∑
k

γ(k)
ϕ D

[
Ŝ(k)
z

]
ρ̂ ,

where D[Ô]ρ̂ = (2Ôρ̂ Ô†− Ô†Ôρ̂− ρ̂ Ô†Ô)/2 is the Lind-
blad superoperator. The sum over k takes into account

all the channels Ŝ(k) ∈ S. Γ
(k)
mn = γ(k)(ωmn)|s(k)

mn|2 are
the transition rates from level n to level m, γ(k)(ωmn)
are proportional to the noise spectra. Expanding the
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last term in the above master equation, allows to prove

that the pure dephasing rate is γ
(k)
ϕ |s(k)

mm − s(k)
nn |2/4. Us-

ing only the lowest two eigenstates of ĤS, the master
equation can be written in the form

˙̂ρ = −i
[
Ĥ, ρ̂

]
+
∑
k

Γ(k)D [σ̂−] ρ̂+ γ(k)
ϕ D

[
Ŝ(k)
z

]
ρ̂ , (8)

where σ̂− is the lowering operator. In the weak- or
strong-coupling regime, it corresponds to the classical
master equation in the Lindblad form for a two-state sys-
tem. For a complete derivation of the master equation,
see Appendix B.

IV. ANALYSIS

As shown above, if the coupling is transverse, in the
USC regime the two lowest eigenstates converge to the
entangled states E = {|E−〉, |E+〉} as a function of the
coupling λ. If the coupling is longitudinal, the two
lowest eigenstates are the polarized states P . More-
over, we proved that the relaxation of the population

is proportional to |s(k)
mn|2 and the pure dephasing to

|s(k)
mm − s(k)

nn |2/4; we call these two quantities sensitivity
to longitudinal relaxation and to pure dephasing, respec-
tively. In Table I we report the values of

SR(C) = |〈C+|Ŝ|C−〉| (9a)

SD(C) = |〈C+|Ŝ|C+〉 − 〈C−|Ŝ|C−〉|/2 , (9b)

calculated for every channel Ŝ in S, C is E or P . As
〈+α| − α〉 converges exponentially to zero with λ, see
Eq. (3), if the coupling is longitudinal, there is protection
against relaxation; if the coupling is transverse, there is
protection against pure dephasing. The suppression of
the relaxation can be easily understood considering that
εR in Eq. 2 exponentially decreases when λ increases.
Therefore the kinetic energy term, (εR/2) σ̂x, in Eq. 2
decreases when λ grows. This, in turn, reduces the prob-
ability of tunnelling between the two minima associated
with the double well shown in the inset of Fig. 1. The sen-

sitivity to the relaxation |s(k)
mn|2 is connected to Fermi’s

golden rule for first-order transitions. Considering the
polarized states P , the suppression of the longitudinal re-
laxation rates holds for every order. This is because every
other intermediate path between the P states, through
higher states, involves always atomic and photonic co-
herent states with opposite signs.

When the coupling is transverse, the suppression of the
pure dephasing is given by the presence of the photonic
coherent states | ± α〉, that suppress the noise coming
from the σ̂z and σ̂y channels [13], while for the other
channels the system is in a “sweet spot”. For this reason,
this suppression holds only to first order. Furthermore,
approaching the vacuum degeneracy, fluctuations in ∆
become relevant and they drive the entangled states E
to the polarized states P (spontaneous breaking of the

TABLE I. Values of SR(E), SD(E), SR(P ) and SD(P ) calcu-
lated for every channel in S.

Ŝ SR(E) SD(E) SR(P ) SD(P )
σ̂x 1 0 0 1
σ̂y i〈−α|+ α〉 0 i〈−α|+ α〉 0
σ̂z 0 〈+α| − α〉 〈−α|+ α〉 0

X̂ 2α 0 0 2α

Ŷ 0 0 0 0

parity symmetry [21]). This will be further explained in
Section VI B.

V. DYNAMICAL DECOUPLING

The dynamical decoupling (DD) method [26] consists
of a sequence of π-pulses that average away the effect of
the environment on a two-state system. To protect from
pure dephasing, the DD method uses a sequence of σ̂x or
σ̂y pulses. If we rotate the σ̂z and σ̂y operators in the ba-

sis given by the states P , we find that R̂ σ̂zR̂
−1 = β−1σ̂x

and R̂ σ̂yR̂
−1 = β−1σ̂y, with β−1 = 〈+α| − α〉. There-

fore, σ̂z and σ̂y pulses in the bare atom basis correspond
to σ̂x and σ̂y pulses attenuated by the β−1 factor in the
basis given by the states P . To compensate the reduc-
tion, the amplitude of the pulses must be multiplied by
a factor β. When the direction of the coupling is not
exactly longitudinal, the convergence of the lowest eigen-
states to the polarized states P is exponential respect to
the coupling; thus, the σ̂z operator in the free-atom basis
is not exactly the σ̂x operator in the reduced eigenbasis
of Ĥ. Instead, there are no problems with the σ̂y oper-
ator of the bare atom, because it corresponds exactly to
β−1σ̂y in the reduced dressed basis.

VI. PROPOSAL

A. T1 < Tϕ or T1 ∼ Tϕ

This proposal is applicable to supeconducting qubits
whose relaxation time T1 is lower than the pure dephas-
ing time Tϕ or comparable, i.e. flux qubits. If we consider
the polarized states P as a quantum memory device and
if we prepare it in an arbitrary superposition, we can
preserve coherence. Indeed, our quantum memory de-
vice is naturally protected from population relaxation.
To protect it from pure dephasing, we apply DD [27].

We consider Ĥ in Eq. (1) with ∆ 6= 0. In order to have
the second excited states far apart in energy, we need
|∆| < 0.5ωc. The longitudinal relaxation suppression
behaves as |〈+α| − α〉|2 = exp{−4N(λ/ωc)

2}; increasing
the coupling λ or the number N of atoms increases ex-
ponentially the decay time of the longitudinal relaxation.
However, the contribution of the X̂ channel to pure de-
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FIG. 2. (Color online) (a) Contour plot in a logarithmic
scale (vertical bar on the right) of the maximum sensitivity

to relaxation, max{|s(k)
0̃1̃
|2 : Ŝ(k) ∈ S}, versus the normalized

coupling λ/ωc and the angle θ. (b) Contour plot in a loga-
rithmic scale of the maximum sensitivity to pure dephasing,

max{|s(k)
1̃1̃
− s

(k)

0̃0̃
|2/4 : Ŝ(k) ∈ S}, versus the normalized cou-

pling λ/ωc and θ. Here, ωq = 0.2ωc, and ωc = 1.

phasing increases quadratically with λ/ωc. This does not
affect the coherence time of our system; indeed, supercon-
ducting harmonic oscillators generally have higher qual-
ity factors than superconducting qubits. It is convenient
to write Ĥ in Eq. (1) in the basis that diagonalizes the
atomic two-level system {|g〉, |e〉},

Ĥ ′ = ωcâ
†â+

ωq
2
σ̂z + λX̂ (cos θ σ̂x + sin θ σ̂z) , (10)

with θ = arctan(∆/ε) and ωq =
√
ε2 + ∆2. Using

Eq. (10), in Fig. 2(a) we show the numerically calculated

sensitivity, max{|s(k)

0̃1̃
|2 : Ŝ(k) ∈ S}, to the longitudinal

relaxation as a function of the normalized coupling λ/ωc
and of the angle θ. For large values of λ/ωc and for θ 6= 0,
there is a strong suppression of the relaxation rate: it
is maximum when the coupling is entirely longitudinal,
θ = π/2. For λ/ωc = 1.3, θ = π/2 and ωq = 0.2ωc,
the longitudinal relaxation rate is reduced by a factor
≈ 10−3, meanwhile the contribution of the cavity field to
the pure dephasing rate increases only by 6.76. Moreover,
for one two-state system affected by 1/f noise, the DD
can achieve up to 103-fold enhancement of the pure de-
phasing time Tϕ, applying 1000 equally spaced π-pulses
(see Appendix C). Using this proposal with these pa-
rameters, it is possible to increase the coherence time of
a superconducting two-level atom up to 103 times.

B. T1 � Tϕ

Figure 2(b) shows the numerically calculated maxi-

mum sensitivity to pure dephasing, max{|s(k)

1̃1̃
− s

(k)

0̃0̃
|2/4 :

Ŝ(k) ∈ S}, as a function of λ/ωc and θ. For large values of
λ/ωc, the strong suppression of the pure dephasing rate is
confined to a region (dark blue) that exponentially con-
verges to zero for increasing λ; only in this region the
entangled states exist. In Fig. 2(b), for ∆ = 0 (θ = 0), it
is clear that, for a large value of the coupling λ, fluctu-
ations in ∆ (or in θ) drive the entangled states E (dark
blue region) to the polarized states P (light blue region).
Superconducting qubits whose relaxation time T1 is much
greater than the pure dephasing time Tϕ, i.e. fluxonium
[28], can take advantage of the suppression of the pure
dephasing. For λ/ωc = 0.8, θ = 0 and ωq = 0.5ωc, the
pure dephasing rate is reduced by a factor ≈ 7 × 10−2;
meanwhile the contribution of the cavity field to the lon-
gitudinal relaxation rate increases only by 2.47.

VII. PROTOCOL

Now we propose a protocol to write-in and read-
out the quantum information encoded in a Fock state
|ψ〉 = a|0〉+ b|1〉. We consider an auxiliary atomic state
|s〉 decoupled from the cavity field, and with higher en-
ergy ωs respect to the two-level system {|g〉, |e〉} [29, 30].
Figure 3(a) shows the eigenvalues of the Hamiltonian of

the total system, Ĥtot = Ĥ ′ + ωs|s〉〈s|, versus the cou-

pling λ/ωc. The blue solid curves concern Ĥ ′, the red
dashed equally-spaced lines the auxiliary level |s〉 and
these count the number of photons in the cavity [31]. We
prepare the atom in the state |s〉 sending a π-pulse res-
onant with the transition frequency between the ground
|P−〉 and |s, 0〉 states [32]. When the qubit with an un-
known quantum state |ψ〉 enters the cavity, the state be-
comes |Ψs〉 = |s〉⊗ (a|0〉+ b|1〉) = a|s, 0〉+ b|s, 1〉. Imme-
diately after, we send two π-pulses: p1 resonant with the
transition |s, 1〉 → |P−〉 and p2 resonant with the transi-
tion |s, 0〉 → |P+〉. Hereafter, we apply DD to preserve
the transverse relaxation rate; meanwhile the quantum
memory device is naturally protected from the longitu-
dinal relaxation. To restore the quantum information we
reverse the storage process. Figure 3(b) shows the time
evolution of the fidelity F between the initial state |ψ〉
and the states |Ψs(t)〉 = as|s, 0〉 + bs|s, 1〉 and |ΨP(t)〉 =
a+|P+〉+ b−|P−〉 in the rotating frame, this is calculated
using the above master equation for λ = 1.3ωc. The
standard decay rates are assumed to be the same for
every channel of the two-level artificial atom {|g〉, |e〉},
γ(k) = 10−3ωc. For the pure dephasing rates, we choose

γ
(k)
ϕ = 10−3γ(k), since we apply DD. The pulses are de-

scribed by Ĥp1
= ε(t) cos(ωabt)(σ̂gs + σ̂†gs)/〈a|σ̂gs|b〉 and

Ĥp2
= ε(t) cos(ωabt)(σ̂es + σ̂†es)/〈a|σ̂es|b〉, where σ̂gs =

|g〉〈s|, σ̂es = |e〉〈s|, ε(t) is a Gaussian envelope, and ωab
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FIG. 3. (Color online) Two-level system deep strongly cou-
pled to a cavity mode and an auxiliary non-interacting level
s. (a) Energy levels of Ĥtot versus the normalized coupling
λ/ωc. The blue solid curves concern the interacting part;
the red dashed horizontal lines concern the non-interacting
part. (b) Time evolution of the fidelity F between the initial
state |ψ〉 and |Ψs(t)〉 (red dashed curve), |ΨP(t)〉 (blue solid
curve), and the atomic state in the non-interacting case (black
dotted-dashed curve). Here, ωc = 1, ε = 0.01ωc, ∆ = 0.2ωc,
λ = 1.3ωc, ωs = 1.7ωc. The cavity and |s〉 → |e〉 relaxation
rates are γc = γse = 10−5ωc.

is the transition frequency between the state a and b. At
time t = 0, the states |s, 0〉 and |s, 1〉 are prepared, so that
a2

s = 0.8 and b2s = 0.2. As shown in Fig. 3(b), at times
γct1 = 7×10−4 and γct2 = 14×10−4, we apply the pulses
p1 and p2, respectively. Now the populations and the co-
herence are completely transferred to the polarized states
P , and the qubit is stored. Later, at γct3 = 2.7 × 10−2

and γct4 = 2.76× 10−2, two pulses equal to the previous
ones restore the qubit |ψ〉 into the cavity. As a compari-
son, we have calculated the fidelity (black curve) between
|ψ〉 and the state of a two-level artificial atom prepared
at t = 0 in the same superposition as |ψ〉, but interact-
ing ordinarily with the cavity field, λ/ωc � 0.1, and now
without DD (free decay). This fidelity converges to its
minimum value much faster than the one calculated for
the polarized states, which is not significantly affected by
decoherence in the temporal range shown in [Fig. 3(b)].

VIII. CONCLUSIONS

We propose a quantum memory device composed of
the lowest two eigenstates of a system made of a two-level
atom and a cavity mode interacting in the USC regime
when the parity symmetry of the Rabi Hamiltonian is
broken. Making use of an auxiliary non-interacting level,
we store and retrieve the quantum information. For pa-
rameters adopted in the simulation, it is possible to im-
prove the coherence time of a superconducting two-state
atom up to 103 times. For instance, the coherence time
of a flux qubit longitudinally coupled to a cavity mode
[33–35], at the optimal point, can be extended from 10µs
to over 0.01 seconds [36]. Instead, in the case of unbroken
parity symmetry, the coherence time of a fluxonium, with
applied magnetic flux Φext = 0.5 Φ0, inductively coupled
to a cavity mode, can be extended from 14µs to 0.2 ms
[28]. This is a remarkable result for many groups working
with superconducting circuits. Similar approaches can be
applied to other types of qubits.
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Appendix A: Polarized States {|P−〉, |P+〉}

In this Appendix, we prove that when the coupling
between a two-level system and a cavity mode is lon-
gitudinal, the two lowest eigenstates are the polarized
states |P−〉 = |−〉| + α〉 and |P+〉 = |+〉| − α〉, where

|±〉 = 1/
√

2( | ↑ 〉 ± | ↓ 〉), {| ↓ 〉, | ↑ 〉} are, for example,
persistent current states in the case of a flux qubit, and
| ± α〉 = exp[±α(â† − a)]|0〉 are displaced Fock states,
with α = λ/ωc.

1. Case: ∆ 6= 0

Let us start with the Hamiltonian of a two-level system
interacting longitudinally with a cavity mode

Ĥ = ωc â
†â+

∆

2
σ̂x + λX̂σ̂x . (A1)

Replacing σ̂x by its eigenvalue m = ±1, we can write

Ĥ = ωc â
†â+m

(
∆

2
+ λX̂

)
. (A2)



6

The transformation â = b̂ − mλ/ωc, which preserves

the commutation relation between â and â†, [b̂, b̂†] = 1,

diagonalizes Ĥ

Ĥ = ωc b̂
†b̂− λ2m2

ωc
+

∆

2
m. (A3)

This is the Hamiltonian of a displaced harmonic oscilla-

tor. Applying the operator b̂ = â+mα, with α = λ/ωc, to
the ground state |0m〉 of the oscillator given by Eq. (A3),
gives â|0m〉 = −mα|0m〉. We now see that |−mα〉 = |0m〉
is a coherent state with eigenenergy

Em = −λ
2m2

ωc
+m

∆

2
. (A4)

Therefore, the two lowest eigenstates of the Hamilto-
nian Ĥ in Eq. (A1) are the two states |P−〉 = |−〉|+α〉 and
|P+〉 = |+〉| − α〉, with eigenvalues E± = −λ2m2/ωc ±
∆/2. The energy splitting between the eigenstates |P−〉
and |P+〉 is E+ −E− = ∆. The number of photons con-
tained in each state is n = |α|2 = λ2/ω2

c .

2. Case: ∆ = 0

The polarized states can be generated also substituting
in Eq. (A1) the term ∆σ̂x/2 with the field −Λ

(
a+ a†

)
/2

Ĥ = ωcâ
†â− Λ

2
X̂ + λX̂σ̂x . (A5)

Following the same procedure as in the previous case, we
can write

Ĥ = ωcâ
†â+

(
â+ â†

)(
mλ− Λ

2

)
, (A6)

that can be diagonalized by the transformation â = b̂ −
(mλ− Λ/2)/ωc,

Ĥ = ωcb̂
†b̂−

(
mλ− Λ

2

)2
ωc

. (A7)

Considering the two lowest eigenstates, the excited
state is now |P+〉 = |+〉| − α〉 with energy E+ =

− (Λ/2− λ)
2
/ωc and the ground state is |P−〉 = |−〉| +

α〉 with energy E− = − (Λ/2 + λ)
2
/ωc, and −mα =

−(mλ−Λ/2)/ωc. The energy difference between the ex-
cited and the ground state is E+ − E− = 2λΛ/ωc.

Appendix B: Master equation for a generic hybrid
system

The total Hamiltonian that describes a generic hybrid
system interacting with the environment B is

Ĥ = ĤS + ĤB + ĤSB , (B1)

where ĤS , ĤB and ĤSB , are respectively the Hamilto-
nian of the system, the bath, and of the system-bath in-

teraction. Here, ĤSB =
∑
k Ĥ

(k)
SB , where the sum is over

all the channels k that connect the system S to the envi-
ronment. For a single two-level system strongly coupled
to a cavity field these channels are S = {σ̂x, σ̂y, σ̂z, X̂, Ŷ },
with Ŷ = i(â− â†). In the interaction picture we have

Ŝ(k) (t) =
∑
mn

s(k)
mn |m〉〈n| eiωmnt (B2)

= Ŝ
(k)
+ (t) + Ŝ

(k)
− (t) + Ŝ(k)

z ,

with

Ŝ
(k)
− (t) =

∑
m,n>m

s(k)
mn |m〉〈n| e−iωnmt , (B3)

Ŝ(k)
z =

∑
m

s(k)
mm |m〉〈m| (B4)

and Ŝ
(k)
+ = (Ŝ

(k)
− )†, this in analogy with σ̂+, σ̂−, σ̂z for

a two-state system [24], where s
(k)
mn = 〈m|Ŝ(k)|n〉 and

ωmn = ωm − ωn. The interaction of the environment

with Ŝ
(k)
z affects the eigenstates of the system, and in-

volves the randomization of the relative phase between
the system eigenstates. The interaction of the environ-

ment with Ŝ
(k)
x = Ŝ

(k)
+ + Ŝ

(k)
− induces transitions among

different eigenstates. We use the Born master equation
in the interaction picture

˙̂ρI = − 1

~2

∑
k

∫ t

0

dt′ trB

{[
Ĥ

(k)
SB (t) ,

[
Ĥ

(k)
SB (t′) , ρ̂I (t′) B̂0

]]}
(B5)

where B̂0 is the density operator of the bath at t = 0.

1. Relaxation

Within the general formula for a system S interacting
with a bath B, described by a bath of harmonic oscilla-
tors, in the rotating wave approximation, the Hamilto-
nian ĤSB is

Ĥ
(k)
SB (t) = Ŝ

(k)
− (t)B̂†(t) + Ŝ

(k)
+ (t)B̂(t) (B6)

with B̂(t) =
∑
p αb̂pe

−iνpt, where α is the coupling

constant with the system operator Ŝ(k). We assume that
the bath variables are distributed in the uncorrelated
thermal mixture of states. It is easy to prove that

〈B̂(t)B̂(t′)〉B = 0 , (B7)

〈B̂†(t)B̂†(t′)〉B = 0 ,

〈B̂†(t)B̂(t′)〉B =
∑
p

α2 exp{iνp(t− t′)}n̄(νp, T ) ,

〈B̂(t)B̂†(t′)〉B =
∑
p

α2 exp{−iνp(t− t′)}[1 + n̄(νp, T )] ,
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where n̄ = (exp{ ~νp
kBT
} − 1)−1, kB is the Boltzmann con-

stant, and T is the temperature. Using Eq. (B6) and the
properties of the trace, substituting τ = t − t′, Eq. (B5)
in the Markov approximation becomes (~ = 1)

˙̂ρI = (B8)∑
k

∑
(m,n>m)

∑
(m′, n′>m′)

s(k)
mns

(k)
n′m′

×
[

(|n′〉〈m′|ρI |m〉〈n| − |m〉〈n|n′〉〈m′|ρI)

× ei(ωn′m′−ωnm)t

∫ t

0

dτ e−iωn′m′τ 〈B̂†(t)B̂(t− τ)〉B

+ (|m′〉〈n′|ρI |n〉〈m| − |n〉〈m|m′〉〈n′|ρI)

× ei(ωnm−ωn′m′ )t

∫ t

0

dτ eiωn′m′τ 〈B̂(t)B̂†(t− τ)〉B

+ (|n〉〈m|ρI |m′〉〈n′| − ρI |m′〉〈n′|n〉〈m|)

× ei(ωnm−ωn′m′ )t

∫ t

0

dτ eiωn′m′τ 〈B̂†(t− τ)B̂(t)〉B

+ (|m〉〈n|ρI |n′〉〈m′| − ρI |n′〉〈m′|m〉〈n|)

× ei(ωn′m′−ωnm)t

∫ t

0

dτ e−iωn′m′τ 〈B̂(t− τ)B̂†(t)〉B
]
.

Within the secular approximation, it follows that m′ = m
and n′ = n. We now extend the τ integration to infinity
and in Eqs. (B7) we change the summation over p to an
integral,

∑
p →

∫∞
0
dν gk(ν), where gk(ν) is the density

of states of the bath associated to the operator Ŝ(k), for
example

∫ t

0

dτ e−iωnmτ 〈B̂†(t)B̂(t− τ)〉B → (B9)∫ ∞
0

dν gk (ν)α2 (ν) n̄ (ν, T )

∫ ∞
0

dτ ei(ν−ωnm)τ .

The time integral is
∫∞

0
dτ ei(ν−ωnm)τ = πδ(ν − ωnm) +

iP/(ν − ωnm), where P indicates the Cauchy principal
value. We omit here the contribution of the terms con-
taining the Cauchy principal value P, because these rep-
resent the Lamb-shift of the system Hamiltonian. We
thus arrive to the expression

˙̂ρI = π
∑
k

∑
m,n>m

|s(k)
mn|2α2 (ωmn) gk (ωmn)

{(
2|n〉〈m|ρI |m〉〈n| − |m〉〈n|n〉〈m|ρI − ρI |m〉〈n|n〉〈m|

)
n̄ (ωmn, T )

+
(
2|m〉〈n|ρI |n〉〈m| − |n〉〈m|m〉〈n|ρI − ρI |n〉〈m|m〉〈n|

)
[n̄ (ωmn, T ) + 1]

}
, (B10)

with s
(k)
nm = (s

(k)
mn)∗. Transforming back to the

Schrödinger picture, we obtain the master equation for a
generic system in thermal equilibrium

˙̂ρ (t) = −i
[
ĤS , ρ̂

]
(B11)

+
∑
k

∑
m,n>m

Γ(k)
mn

{
D
[
|n〉〈m|

]
ρ̂ (t) n̄ (ωmn, T )

+ D
[
|m〉〈n|

]
ρ̂ (t) [n̄ (ωmn, T ) + 1]

}
where Γ

(k)
mn = 2π|s(k)

mn|2α2 (ωmn) gk (ωmn) is the transi-

tion rate from level m to level n, and D[Ô]ρ̂ = (2Ôρ̂ Ô†−
Ô†Ôρ̂− ρ̂ Ô†Ô)/2.

2. Pure dephasing

A quantum model of the pure dephasing describes the
interaction of the system with the environment in terms
of virtual processes; the quanta of the bath with energy
~νq are scattered to quanta with energy ~νp, leaving the
states of the system unchanged. In the interaction pic-
ture we have

Ĥ
(k)
SB = Ŝ(k)

z (t) B̂(t) (B12)

with B̂ (t) =
∑
pq α b̂

†
p b̂q e

iνpqt, where α is the coupling
constant with the system. In the sum, terms with p = q
have nonzero thermal mean value and they will be in-
cluded in ĤS , producing a shift in the Hamiltonian en-
ergies, so we will omit this contribution. Substituting
Eq. (B12) in the Born master equation Eq. (B5), with
τ = t− t′

˙̂ρI =
∑
k

∑
m,m′

s(k)
m,ms

(k)
m′,m′

×
[(
|m′〉〈m′|ρI |m〉〈m| − |m〉〈m|m′〉〈m′|ρI

)
×
∫ t

0

dτ〈B̂ (t) B̂ (t− τ)〉B (B13)

+
(
|m〉〈m|ρI |m′〉〈m′| − ρI |m′〉〈m′|m〉〈m|

)
×
∫ t

0

dτ〈B̂ (t− τ) B̂ (t)〉B
]
. (B14)

The correlation function becomes

〈B̂ (t) B̂ (t− τ)〉B =
∑
p,q 6=p

α2n̂p (1 + n̂q) exp{i(νp−νq)τ} .

(B15)
As before, we now extend the τ integration to infinity and
in Eq. (B15) we change the summation over p (q) with the
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integral,
∑
p(q) →

∫∞
0
dνp(q) gk(νp(q)), for example

∫ t

0

dτ 〈B̂†(t)B̂(t− τ)〉B →∫ ∞
0

dνpdνq gk (νp) gk (νq)α
2 (ν) n̄ (νp, T ) [1 + n̄ (νq, T )]

×
∫ ∞

0

dτ ei(νp−νq)τ . (B16)

The time integral is
∫∞

0
dτ ei(νp−νq)τ = πδ(νp − νq) +

iP/(νp−νq). We omit here the contribution of the terms
containing the Cauchy principal value P, but they must
be included in the Lamb-shifted Hamiltonian. Trans-
forming back to the Schrödinger picture, we obtain the
pure dephasing contribution to the master equation for
a generic system in thermal equilibrium

˙̂ρ =
∑
k

γ(k)
ϕ D

[∑
m

s(k)
mm|m〉〈m|

]
ρ̂ (B17)

with

γ(k)
ϕ = 2π

∫ ∞
0

dν α2(ν)g2
k(ν)n̄(ν, T ) [1 + n̄(ν, T )] .

(B18)
Using Eq. (B11) and (B17), we obtain the master equa-
tion valid for generic hybrid-quantum systems in the
weak-, strong-, ultra-strong coupling regime, with or
without parity symmetry.

Appendix C: Dynamical Decoupling performance

In a pure dephasing picture, a two-level system is de-
scribed by

Ĥ =

(
Ω

2
+ β (t)

)
σ̂z , (C1)

where Ω and β(t) represent the energy transition and ran-
dom fluctuations imposed by the environment. The fre-
quency distribution of the noise power for a noise source
β is characterized by its power spectral density

S (ω) =
1

2π

∫ ∞
−∞

dt〈β (0)β (t)〉e−iωt (C2)

The off-diagonal elements of the density matrix for a su-
perposition state affected by decoherence is

ρ01(t) = ρ01(0) exp [−iΣ(t)] exp [−χ(t)] . (C3)

The last term is a decay function and generates de-
coherence, it is the ensemble average of the accumu-
lated random phase exp [−χ(t)] = 〈exp [iδϕ(t)]〉, with

δϕ(t) =
∫ t

0
dt′δβ(t′). Following Ref. [37], we have that

χ (τ) =

∫ ∞
0

dωS (ω)
F (ωt)

ω2
coth

(
~ω

2kBT

)
. (C4)

When the system is free to decay, free induction decay
(FID), then F (ωt) = 2 sin (ωt/2)

2
. If we apply a sequence

of N pulses, then F (ωt) = |YN (ωt)|2/2, with

YN (z) = 1 + (−1)
N+1

exp{iz}+ 2

N∑
j=1

(−1)
j

exp{izδj} .

(C5)
Using superconducting artificial atoms, the power spec-
tral density exhibits a 1/f power-law, S(2πf) = A/f ,
where A is a parameter that we will evaluate assum-
ing to know the pure dephasing time of the system dur-
ing FID. Indeed, we calculate the integral χ0 = χ(τFID)
in Eq. C4, considering that the pure dephasing time is
τFID = 10µs and A = 1. After that we choose A = 1/χ0,
in S(2πf). With this choice of A, we are sure that,
exp [−χ(τFID)] = 1/e, and that the pure dephasing rate,
when the system is free to decay, is ΓFID = 1/τFID. At
this point, we can calculate χN = χ(τ) in Eq. C4 for a
sequence of N equidistant pulses, δj = j/(N + 1), us-
ing Eq. C5 and A = 1/χ0. If αN is the pure dephas-
ing suppression factor, ΓN = αNΓFID, it results that
αN =

√
χN . Considering τFID = 10µs and T = 12 mK,

we found A = 4.34× 109. Applying 1000 equally spaced
pulses, the suppression factor is αN = 10−3. In con-
clusion, applying a DD sequence of 1000 π-pulses in a
two-level artificial atom that experiences noise with 1/f
power spectral density, at low temperature the decoher-
ence time can be prolonger by 103 times.

Appendix D: Conditions for an auxiliary
non-interacting atomic level

The frequency transitions between the auxiliary level
|s〉 and the lowest two levels must be much greater
than the one between the lowest two levels; this is fa-
cilitated by using a flux qubit in its optimal point.
More importantly, the transition matrix elements be-
tween the auxiliary level and the lowest two levels should
be much lower than the transition matrix element be-
tween the lowest two levels. For example, for a cou-
pling λ/ωc = 1, the transition matrix elements between
the auxiliary level and the lowest two levels should be
less than 10% of the transition matrix element between
the lowest two levels. In the case of longitudinal cou-
pling, the matrix elements must be calculated between
the states |ge±〉 = (|g〉 ± |e〉)/

√
2 and between the states

|es±〉 = (|e〉 ± |s〉)/
√

2 and |gs±〉 = (|g〉 ± |s〉)/
√

2. If,
for some parameters, the last condition is not satisfied,
another way to store the information would be to pre-
pare the system in the state |s〉 when the coupling is low,
λ/ωc ≤ 0.1, and, after that the flying qubit enters the
cavity, switching-on the coupling [38]. Afterwards, we
follow the protocol described in the part of the main pa-
per. To release the quantum information, we reverse the
process.



9

[1] C. Simon, M. Afzelius, J. Appel, A.B. de la Giroday, S.J.
Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kröll, J.H.
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