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The relationship between 2D SO(2, 1) conformal anomalies in nonrelativistic systems and the
virial expansion is explored using recently developed path-integral methods. In the process, the
Beth-Uhlenbeck formula for the shift of the second virial coefficient δb2 is obtained, as well as a
virial expansion for the Tan contact. A possible extension of these techniques for higher orders in
the virial expansion is discussed.
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I. INTRODUCTION

The virial expansion has been widely used in the study
of strongly correlated systems and in other contexts,
as it captures the impact of few-body physics on the
high-temperature thermodynamics of many-body sys-
tems. The expansion has recently been used in the study
of ultracold atomic Fermi gases [1, 2], where the realiza-
tion of 2D systems has now been achieved by multiple
groups around the world (see e.g. [3, 4]). While the most
common form of the expansion is that of the pressure
equation of state, of particular interest is the virial ex-
pansion of the Tan contact [5], as the latter determines
all short-range correlations in systems with contact inter-
actions. The calculation of virial coefficients, however, is
a challenging problem: in its most straightforward form,
computing the n-th order requires solving the m-body
problem for all m ≤ n. Thus, a number of different ap-
proaches have been proposed to calculate the virial co-
efficients, all of which aim at producing a reliable and
efficient computational scheme [6, 7] that bypasses find-
ing such full solution.

In 2D, the existence of a scaling anomaly provides
an appealing conceptual framework to establish relation-
ships between different relevant aspects of these calcula-
tions, as well as hints for a possible systematic procedure
for higher-order coefficients. A signal of the connection
between the virial expansion and 2D anomalies is already
present in the celebrated Beth-Uhlenbeck (BU) formula
for δb2, the shift from the free value of the second virial
coefficient, which in the case of 2D attractive contact in-
teractions of nonrelativistic Fermi particles becomes [2]

δb2 = eβEb − 2

∫
dk

k

e−2βεk

π2 + ln2( k
2

Eb
)
. (1)
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Here Eb is the magnitude of the single bound state
energy allowed by this system. The first term comes
precisely from the presence of this bound state, and the
integral term comes from the scattering sector, once the
phase shift for the s channel has been properly accounted
for. This system possesses an SO(2,1) symmetry [8, 9],
which includes scaling symmetry. If the symmetry is re-
spected at the quantum level, the bound state term in (1)
would not be included (the existence of a finite energy Eb
would provide a scale in the system, hence breaking the
classical scaling symmetry). The scattering term in the
original BU formula contains the derivate of the phase
shift with respect to the momentum or energy; if the
scaling symmetry is preserved, this term would be zero.
Therefore, this heuristic argument seems to signal a di-
rect relationship between 2D anomalies and δb2.

In this paper, we show that δb2 is indeed produced en-
tirely by the anomaly. We use a path-integral approach
inspired by the work of [10–16]. In the process, we will
describe the virial expansion of the Tan contact (which
in 2D is interpreted as the anomaly [17]), as well as a
procedure to compute δbn, n ≥ 2, using the Hubbard-
Stratonovich (HS) representation of the partition func-
tion.

The rest of the paper is organized as follows: In section
II we will derive the anomaly, showing the identification
with the Tan contact; in this section we will also relate
the anomaly with the virial expansion and will derive
the main general formula for δbn; the explicit calculation
for δb2 and its connection with the BU formula will be
shown. Section III will sketch the procedure to calculate
δbn and the first results on δb3 will be discussed. Section
IV will contain conclusions and comments. We would like
to emphasize that our goal in this paper is to lay out the
framework more than to engage in applications, although
we will naturally connect with other approaches to assess
similarities and differences. We hope that our approach
will offer insight into the questions addressed here.
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II. ANOMALY, TAN CONTACT, VIRIAL
EXPANSION AND DERIVATION OF THE

BETH-UHLENBECK FORMULA

A. Structural Aspects

The partition function for a 2D dilute gas of nonrelativis-
tic spin 1/2 Fermions is1

Z = tr
[
e−β(H−µN)

]
=

∫ [∏
σ

dψ∗σdψσ

]
e−SE , (2)

where

SE =

∫ β

0

dτ

∫
d2~x

[
ψ∗σ

(
∂τ −

∇2

2
− µ

)
ψσ + cψ∗↑ψ

∗
↓ψ↓ψ↑

]
.

The Fermion fields have antiperiodicity β. The index σ
is summed over ↑, ↓ values in the Euclidean action term.
Following [2], the dimensionless coupling constant c will
be selected to incorporate the nonperturbative physics
connected with the existence of a bound state. For the
attractive case, the Lippmann-Schwinger equation gives
the pole of the scattering matrix T describing the bound
state energy Eb of the 2-body problem [18, 19]:

T (p′, p, E) = V (p′, p) + (3)

+

∫
d2k

(2π)2
V (p′, k)

1

E − ~k2 + iε
T (k, p, E).

In momentum space, the Dirac delta potential is
V (p′, p) = c. From the previous equation one gets

1

T (E)
=

1

c
−
∫

d2k

(2π)2

1

E − ~k2 + iε
.

At the bound state, 1/T (−Eb) = 0, Eb > 0, such that

1

c
=

1

c
(
Eb
Λ2

) =
1

(2π)2

∫ Λ→∞ d2~k

−Eb − ~k2 + iε
(4)

=
1

4π
ln

(
Eb
Λ2

)
+ Finite constant.

The expression for 1
c is singular, and we choose to regu-

larize it with a large cutoff Λ. This infinity will be used
to cancel a divergence that will arise in the calculation
of the effects of the interaction in the path integral of
Eq. (2).

As is well known, the action SE has a classical invari-
ance under the following scaling transformations [part of
SO(2, 1) invariance]:

τ → τ̃ = λ2τ,

~x→ ~̃x = λ~x, (5)

ψ(τ, ~x)→ ψλ(τ̃ , ~̃x) = λ−1ψ(τ, ~x).

1 In this paper ~ = kB = m = 1.

Using dimensional analysis, the following equation was
derived in Ref. [16] (see appendix A):

2E −DP = −2
∑
k

Ek
∂P

∂Ek
, (6)

where E = energy density = 〈H〉
A , A = 2D volume, P is

the pressure, and D the dimensionality of space (D=2
in this paper). The {Ek} are a set of energy parameters
that may include bound state energies as well as those
formed from dimensionful couplings constants in SE [16].
In our case, there is no dimensionful coupling constant (c
is dimensionless) and there is only one bound state energy
−Eb, Eb > 0 (we will use Eb in Eq. (6) henceforth), such
that

2E − 2P = −2Eb
∂P

∂Eb
. (7)

Now, ∂
∂Eb

= ∂c
∂Eb

∂
∂c , and from Eq. (4) ∂c

∂Eb
= − c2

4πEb
.

Therefore

2E − 2P =
c2

2π

∂P

∂c
. (8)

In the thermodynamic limit (A → ∞, Ω → −PA),
βPA = lnZ, hence2

∂P

∂c
=

1

βAZ
∂Z
∂c

=
−4π

Ac2
〈I〉, (9)

where

I =
c2

4π

∫
d2~xψ†↑ψ

†
↓ψ↓ψ↑, (10)

which is Tan’s contact. Here, we used the fact that, in

equilibrium, 〈ψ†↑ψ
†
↓ψ↓ψ↑〉 is τ−independent to derive Eq.

(9). The scaling anomaly [17, 20] is therefore

A = 2P − 2E =
2

A
〈I〉. (11)

In Appendix B we also prove this result using the ideas
and techniques of Ref. [10].

B. Virial expansion for the anomaly

From Eq. (9), Tan’s contact can be written as

〈I〉 = − 1

4πβZ
c2
∂

∂c
Z. (12)

Writing Ω = Ωfree + δΩ, where δΩ is the contribution
from interactions, Z can be expressed as

Z = e−βΩfreee−βδΩ

= ZfreeZI . (13)

2 〈θ̂〉 =
tr
(
e−β(H−µN)θ̂

)
tr e−β(H−µN) .
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Using (4), ∂
∂c = ∂Eb

∂c
∂
∂Eb

= −4πEbc
−2 ∂

∂Eb
gives

∂Z
∂c

= 4πβc−2ZEb
∂

∂Eb
δΩ, (14)

and hence

〈I〉 = −Eb
∂

∂Eb
δΩ. (15)

The anomaly becomes

A = −2Eb
∂

∂Eb

(
δΩ

A

)
. (16)

Defining the virial expansion by3 [21]

δΩ ≡ 2
∑
n≥2

znδΩn (17)

= − 1

β2π

∑
n≥2

znδbn, (17a)

where z = eβµ is the fugacity4. Equation (15) then be-
comes

〈I〉 =
1

β2π
Eb
∑
n≥2

zn
∂

∂Eb
δbn, (18)

and Eq. (16) becomes

A =
2Eb
πβ2

∑
n≥2

zn
∂

∂Eb
δb̄n, (19)

where δb̄n = δbn/A.
The anomaly A can also be formally computed using

the knowledge of Ω = Ωfree + δΩ 5 and the above virial

3 The 2 comes from the number of species of Fermions (↑ , ↓).
4 One should recall that when T is sufficently large the Fermion gas

will behave as a classical gas. Therefore the chemical potential
µ will become negative as it is for classical gases [22]. Consider
the product βµ in this limit, for 2D:

βµ = β

(
−

1

β
ln

[
F
T

ρ

])
,

where ρ is the density of the system and

F = g(mk/2π~2)

whith k the Boltzman constant and g the degeneracy of the par-
ticles, g = 2s+ 1, for particles of spin s. Therefore, in the limit
T →∞ (notice that we also have ρ→ 0) the product βµ→ −∞.
If we now define the fugacity as z = eβµ we see the at order zero
in the fugacity , i.e.,

lim
T→∞

z = 0.

5 Use 〈H〉 = Ω − T∂Ω/∂T − µ∂Ω/∂µ, P = −Ω/A (infinite A
limit) to compute 2P − 2E. We also used the fact that all µ
dependence in δΩ is captured by the fugacity z; this is best
seen from the standard definition of the virial expansion, Z =
tr
(
e−β(H−µN)

)
=
∑
N
zN trN

(
e−βH

)
, where, by definition, all

the µ dependence is therefore contained in z.

expansion

A = − 2

πβ2

∑
n≥2

znT
∂

∂T
δb̄n

=
2

πβ

∑
n≥2

zn
∂

∂β
δb̄n. (20)

Using Eqs. (16), (17) and (20) we get

1

πβ

∂

∂β
δb̄n = −Eb

∂

∂Eb

(
δΩn
A

)
, (21)

or

δbn = −πEb
∫ β

dβ′β′
∂

∂Eb
(δΩn) . (22)

Equation (22) is one of the main results in this work.
Notice it is defined up to an integration constant, more
of which will be said below. One has then to compute
δΩn in order to find δbn. The most efficient way to do this
is by means of the Hubbard-Stratonovich representation
of the partition function 6

Z =

∫
[dφ∗dφ]

N
e

[
tr lnG−1+

∫
dτ
∫
d2~x

|φ|2
c

]
(23)

=

∫
[dφ∗dφ]

N
e−Seff(φ

∗,φ,µ), (24)

with

G−1 =

(
∂τ − ∇

2

2 − µ φ

φ∗ ∂τ + ∇2

2 + µ

)

≡
(
G−1

1 φ
φ∗ G−1

2

)
. (25)

C. Calculation of δb2: Beth-Uhlenbeck formula

We will illustrate this for the case n = 2, for which we
need to keep only up to the quadratic terms in Seff. At
this point we can follow Ref. [2] and write Z as in Eq.
(13)

Z = e−βΩfree

e−βδΩ,

δΩ =
1

2πi

∫ ∞
−∞

dω

∫
d2k

(2π)2
Disc

{
lnD−1(ω + iε, k)

}
fBE(ω)

= z2δΩ2 + z3δΩ3 +O(z4), (26)

where fBE(ω) = (eβω − 1)−1 is the Bose-Einstein distri-
bution function for the frequency ω. To extract the z2

6 N is the normalization constant obtained when path-
integrating over φ∗, φ in trading the quadratic Fermionic
interaction for (at most) quadratic terms in the ac-
tion. See http://www.weizmann.ac.il/condmat/oreg/sites/

condmat.oreg/files/uploads/tutorial11.pdf.

http://www.weizmann.ac.il/condmat/oreg/sites/condmat.oreg/files/uploads/tutorial11.pdf
http://www.weizmann.ac.il/condmat/oreg/sites/condmat.oreg/files/uploads/tutorial11.pdf
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contribution from Eq. (26) we will use the zeroth-order
(z0) version of D−1(ω + iε, k) given by 7,

D−1(ω + iε, k) =
1

4π
ln

(
−
ω + iε+ 2µ− εk

2

Eb

)
, (27)

with εk = k2

2 .
We recognize several regions for the ω integration

as seen in Table I. The discontinuities here been com-
puted by studying the branch cuts of the complex log-
arithmic function. Since some of the sub-integrals have
Eb−dependent limits we have to be careful with taking
the Eb derivatives. We obtain (See Appendix C for de-
tails)

∂δΩ2

∂Eb
= −e

βEb

πβ
− 2

πβ

∫ ∞
0

dk̃k̃
e−βk̃

2

Eb

(
π2 + ln2( k̃

2

Eb
)
) .(28)

TABLE I. ω range. Here f = arctan
(
π/ln

(
ω+2µ−(1/2)εk

Eb

))
.

ω Disc
{

lnD−1(ω + iε, k)
}

(−∞, εk/2− 2µ− Eb) 0
(εk/2− 2µ− Eb, εk/2− 2µ) −2πi
(εk/2− 2µ, εk/2− 2µ+ Eb) −2πi− 2if

(εk/2− 2µ+ Eb,∞) −2if

Finally, using Eq. (22),

δb2 = −πEb
∫ β

dβ′β′
∂δΩ2

∂Eb

= eβEb −
∫ ∞

0

dy

y

2e−βEby
2

π2 + 4 ln2 y
. (29)

This is the well known Beth-Uhlenbeck formula for δb2
(rescaled verison of Eq. (1)). The overall integration
constant in (29) is chosen to be zero so that in the limit
δΩ2 → 0 we recover the free case. We now compare our
procedure with that of [2]. They obtain δb2 by explic-
itly computing δΩ2, and then reading off the coefficient
of the z2 term. We do not have to obtain an explicit
expression for δΩ2, which contains several terms in inte-
gral form with complicated integrands. The authors of
[2] resort to first computing ∂δΩ2/∂µ in order to get a
more manageable expression, and then perform an inte-
gral over µ to obtain δΩ2. In our case, while the original
integral expressions in δΩ2 are complicated, ∂Ω2

∂Eb
is easily

7 δΩ in (26) contains an infinite number of powers zn (n ≥ 0) but
to obtain δΩ2 we only retain the zeroth-order part of D−1(ω, k).
To find the complete contributions for higher zn, n ≥ 3, one also
has to consider the contributions from the higher powers in the
effective action (see below).

calculated and given by Eq. (28). We then perform a
simple integration over β to get δb2. We hope that simi-
lar simplifications will occur for higher δbn(n ≥ 3). One
can plot the second virial coefficient as seen in Fig. 1.
8 This result agrees with those in the literature, in par-

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0
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2.0

2.5

3.0

Ln
λ

a2 D

δ
b 2

FIG. 1. Shift in the second virial coefficient δb2 as a function
of the physical coupling lnλ/a2D, where λ =

√
2πβ is the

thermal wavelength.

ticular with [21]. The corresponding term in the virial
expansion Eq.(18), I ≡

∑
n≥2

znIn is9

I2 =
Eb
β2π

∂δb2
∂Eb

=

(
Eb
βπ

)
eβEb

[
1 + 2

∫ ∞
0

dy
y e−βEb(y

2+1)

π2 + 4 ln2 y

]
,

(30)
which agrees with ref. [23], after the identification I2 =

1
2β2π c2 is made.

III. EXTENSION FOR δbn, n ≥ 3

A. General Framework

The emphasis in this paper is on the close connection
between 2D anomalies and the virial expansion for the
Tan contact. Eqs. (11)-(18) accomplish this, and in par-
ticular, Eq. (29) reflects this relationship for δb2. As a
bonus, this formulation naturally suggests a procedure to
compute δbn, n ≥ 3. In this section we will give a sketch
of the procedure and will report on partial results for δb3.
While complete analytical and numerical results will be

8 We are plotting δb2 vs ln
(

λ
a2D

)
, a2D = 2D scattering length,

to compare with ref. [21]. Here ln (βEb) = 2 ln
(

λ
a2D

)
− ln(2π).

9 The n-th term is Eb
β2π

∂
∂Eb

δbn = −E
2
b
β2

∫ β dβ′ β′ ∂2
∂E2

b

(δΩn) .
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reported elsewhere, we show here that even though the
complexity of the details increases, the methodology it-
self is a direct extension of the calculations for δb2.

We begin by writing Eq. (24) as

Z = Zfree

∫
[dφ∗dφ]

N
e−(S2+δS), (31)

where S2 is the quadratic piece of Seff that gives the entire
contribution to δΩ2,10 namely

S2 =

∫
dxdy φ∗(y)∆−1(y − x)φ(x), (32)

with

∆−1(y − x) ≡ −1

c
δ(x− y) +G1(x− y)G2(y − x) (33)

and δS contains an infinite number of nonlocal terms
with even powers (2n) of the fields, n ≥ 2.11 One can then
use the standard expansion of the exponential and the
Wick theorem to calculate Z [19], where the contraction
between φ∗(y) and φ(x) is

φ∗(y)φ(x) ≡ ∆(y − x). (34)

The first term in δS is

S4 =
1

2

∫ 4∏
i=1

dxiφ
∗(x1)φ(x2)φ∗(x3)φ(x4)G1(x1 − x2)×

×G2(x2 − x3)G1(x3 − x4)G2(x4 − x1). (35)

As for δb2, it is convenient to work in momentum space.
Equation (26) now receives extra contributions coming
also from these higher terms in the effective action, as
well as those coming from higher orders from D−1(ω, k).
Collecting all the similar terms one then systematically
finds δΩ3, δΩ4, ..., and one then uses Eq. (22) to find
δb3, δb4, ... The actual calculations will require explicit
treatment of Matsubara sums (just as for δb2).

B. Sketch of the calculation of δb3

While the calculational scheme for δbn described above
is systematic and straightforward, the actual details
are not trivial. We will present here the first details,
including preliminary numerical evaluations, of δb3.
Beyond what will be discussed below, we have produced
further analytical expressions coming from the Wick
expansion term, Eq. (43) below. Extensive numerical
work is currently underway; full details will be published
elsewhere.

10 Here we use “covariant notation”, i.e., x = (τ, ~x), etc.
11 G1 and G2 were defined in (25).

Let us start by writing the quadratic part of the grand
potential, Eq. (26), as

δΩ0 =
1

2πi

∫ ∞
−∞

dω

∫
d2k

(2π)2
Disc

{
lnD−1(ω + iε, k)

}
fBE(ω),

(36)

which comes from the quadratic partition function

Z0 =

∫
[dφ∗dφ]

N
e−S2 . (37)

On the other hand, the general form for the partition
function is written as

Z = Zfree

∫
[dφ∗dφ]

N
e−(S2+δS)

= ZfreeZ0

(
1−Z−1

0

∫
[dφ∗dφ]

N
e−S2δS

)
= Zfreee

−βδΩ, δΩ = δΩ0 + δΩ̃. (38)

δb3 is therefore expected to have contributions from both
δΩ0 and δΩ̃.

• From δΩ0: Let us remember that the term D−1 has
an expansion in the fugacity12 z

D−1 = D−1(z0)
(
1− zD(z0)B

)
+O(z2), (39)

where

B =

∫
d2k

(2π)2

e−βk
2/2 + e−β(k+q)2/2

ω + iε−
(
k2

2 + (k+q)2

2

)
+ 2µ

, (40)

and hence

lnD−1 = lnD−1
(
z0
)
− zD(z0)B +O(z2). (41)

• From δΩ̃13:

Z = ZfreeZ0

[
1−Z−1

0

∫
[dφ∗dφ]

N
e−S2δS

]
= ZfreeZ0 [1− 〈δS〉0] = ZfreeZ0 [1− C] . (42)

Using Eq. (35), and defining xij = xi − xj , the
quantity C is given by

C =
1

2

∫ 4∏
i=1

dxiG1(x12)G2(x23)G1(x34)G2(x41)×

×〈φ†(x1)φ(x2)φ†(x3)φ(x4)〉0, (43)

12 This comes when one expands the Fermi Dirac distribution as

fk = ze−βk
2/2 − z2e−βk2 +O(z3) in fk = 1

eβ(k
2/2−µ)+1

.
13 Note

〈Â〉0 = Z−1
0

∫
[dφ∗dφ]

N
e−s2A.
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where what is left to do is evaluate the expectation
value by using Wick’s theorem, taking into account
the order in fugacity for the product in theGs. This

is to be done in momentum space (x → (ωn,~k))
such that

φ∗(y)φ(x) ≡ ∆(y − x) (44)

will introduce terms proportional to the Bose-
Einstein distribution and therefore both Fermi and
Bose Matsubara sums will appear. Using Eq. (41)
in Eq. (36), one can show that the contribution
from δΩ0 to δb3 is

δb03 = 4

∫ ∞
0

dω e−4ω

ln
(
βEb
3ω

)2

+ π2

(
Ei(ω) + ln

(
βEb
3ω

))
,

(45)
where Ei(x) is the exponential integral [24].

• Fig. 2 shows δb03 vs βEb. The comparison with the
results by the authors of ref. [21] who computed
δb3 using other methods shows that it is indeed
necessary to compute the Wick terms contribution
to δb3, the analytical expressions of which we have.
Once the numerical evaluation is completed we will
compare with Ref. [21] in a forthcoming publication
[25].
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FIG. 2. Contribution from δΩ0 to δb3 compared with [21].

IV. CONCLUSIONS AND COMMENTS

In this paper we have demonstrated an intimate con-
nection between 2D SO(2, 1) scaling anomalies and the
existence of the Tan contact, namely, the contact is
essentially the anomaly, Eq. (11). This identification
allowed us to derive an expression for the shift of the n-th

virial coefficient, Eq. (22), in terms of ∂(δΩn)
∂Eb

, where δΩn
is the corresponding part of Ω coming from interactions,
Eq. (17). In particular, we were able to derive δb2, which
coincides with the Beth-Uhlenbeck formula, validating
in this fashion the original heuristic motivation for this
work, i.e., the connection between 2D SO(2, 1) scaling
anomalies and the non-zero value of δb2. In the process,
we also derived the n-th virial expansion for the Tan
contact, and a systematic and self-consistent procedure
to calculate δbn, n ≥ 3 was developed through a formal
expansion of the path integral. Partial results for δb3
were discussed; the full calculation will be reported
elsewhere. We have also recently discovered a mapping
of the anomalous 2D two-body contact interaction
studied in this paper and the anomalous 1D three-body
contact interaction, details of which will appear in a
paper in preparation. Applications of these ideas to
other systems with SO(2, 1) symmetry in molecular,
atomic, condensed-matter, high-energy and biological
physics are underway.
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Appendix A

In this section we will prove Eq. (6). Consider the set
of microscopic parameters gj (coupling constants from
the Lagrangian). We can form energy parameters Ej
taking suitable powers of gj ; consider also possible bound
states and energies of the system, Eb`, hence forming the
set of energy parameters Ek = {Ej , Eb`}. The grand
thermodynamical potential Ω = Ω(β, µi, V, Ek) for a ho-
mogeneous system in D-spatial dimensions must have the
form (Ω is an extensive variable)

Ω(β, µi, V, Ek) = V β−1−D/2f(zi, βEk), (A1)

where f(zi, βEk) is a dimensionless function of dimen-
sionless variables and zi = eβµi is the fugacity corre-
sponding to µi. It is straightforward to show that [16]

β
∂Ω

∂β

∣∣∣∣∣
zi,V

=

(
−1− D

2

)
Ω +

∑
k

Ek
∂Ω

∂Ek
. (A2)

Using the thermodynamic identity E = ∂(βΩ)
∂β

∣∣
zi,V

= Ω+

β ∂Ω
∂β

∣∣
zi,V

we get (also use Ω = −PV )

2E −DPV = 2

Ω + β
∂Ω

∂β

∣∣∣∣∣
zi,V

−DPV
= 2

(
Ω−

(
1 +

D

2

)
Ω +

∑
k

Ek
∂Ω

∂Ek

)
−DPV

= −2
∑
k

Ek
∂P

∂Ek
V. (A3)

Therefore

2E −DP = −2
∑
k

Ek
∂P

∂Ek
. (A4)

Appendix B

In this appendix we will give a heuristic proof of Eq.
(11) along the lines of ref. [10]. Consider the partition
function for the scaled sytem τ → λ2τ , ~x→ λ~x

Z → Zλ =

∫ [
dψ∗λσ dψλσ

]
e−S

λ[ψ∗,ψ]

= JZ̃, (B1)

where

Sλ[ψ∗, ψ] ≡
∫ β

0

dτ

∫
d2~x

[
ψ∗σ

(
∂τ−

∇2

2
−µ̃
)
ψσ + cλψ∗↑ψ

∗
↓ψ↓ψ↑

]
(B2)

and where J is the Jacobian of the transformation ψσ,
ψ∗σ → ψλσ , ψ∗λσ , µ̃ = λ2µ, and Z̃ is

Z̃ = tr
(
e−β(H(λ)−Nµ̃)

)
, (B3)

where

H(λ) =

∫
d2~x

(
H0 + cλψ∗↑ψ

∗
↓ψ↓ψ↑

)
. (B4)

In Eq. (B4) H0 is the free Hamiltonian and cλ is the

rescaled coupling constant (under ~k → λ−1~k)

1

c
→ 1

cλ
=

1

(2π)2

∫ Λ̃=λ−1Λ→∞ d2~̃k

−Eb − ~̃k2 + iε

=
1

(2π)2

∫ Λ→∞ d2~k

−λ2Eb − ~k2 + iε
=

1

c
(
λ2Eb
Λ2

) .
(B5)

Under an infinitesimal dilation λ = 1 + δλ,

δZ
∣∣
λ=1
≡ Zλ=1+δλ − Z

= δJ(λ)Z̃
∣∣
λ=1

+ J(λ)
∣∣
λ=1

(
∂Z̃

∂λ

)∣∣∣∣
λ=1

δλ. (B6)
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It is straightforward to show that

δZ
∣∣
λ=1

= δJ(λ)
∣∣
λ=1

Z + 2Z

[
µβ〈N〉+

∫ β

0

dτ 〈I〉

]
δλ,

(B7)
where the angle brackets 〈 〉 denote the thermal average
and I is Tan’s contact

I =
c2

4π

∫
d2~xψ†↑ψ

†
↓ψ↓ψ↑. (B8)

On the other hand, in the large A (volume in 2D) limit,

Z = e−βΩ = eβPA, (B9)

and

Zλ = eβ
λPλAλ , (B10)

and with λ = 1+δλ, using thermodynamic identities [10],
after some algebra one obtains

δZ = 2βZ [µ〈N〉+ PA− 〈H〉] δλ. (B11)

Comparing Eqs. (B7) and (B11) we get (E = 〈H〉
A )

PA− 〈H〉 = Jacobian term + 〈I〉. (B12)

In references [10–13, 15, 16] the Jacobian term was

shown to be proportional to c2
(
ψ∗↑ψ↓

)2

where ψ∗↑ψ↓

is a constant background value (finite). In our case,
c = c(Eb/Λ

2) → 0 when Λ → ∞, and below, when
we calculate the virial coefficients, an expansion around
ψ∗↑ψ↓ = 0 will be performed. In either case, the Jacobian
term in this case is zero and the anomaly is completely
captured by the Tan contact [17]. The final result is then

Anomaly = A = 2P − 2E =
2

A
〈I〉. (B13)

Appendix C: Derivation of Eq. (28)

The definition for the complex logarithm is

ln(x+ iy) = ln
√
x2 + y2 + iArg(y, x), (C1)

where

Arg(y, x) =



arctan(y/x), x > 0
arctan(y/x) + π, x < 0, y ≥ 0
arctan(y/x)− π, x < 0, y < 0

π/2, x = 0, y > 0
−π/2, x = 0, y < 0

Undefined, x = y = 0.

(C2)

TABLE II. Discontinuities and drops.

ω Discontinuity (hi) Drop
(∞, εk/2− 2µ− EB) 0 —

(εk/2− 2µ− EB , εk/2− 2µ) −2πi +2πi
(εk/2− 2µ, εk/2− 2µ+ EB) −2πi+ h3 0

(εk/2− 2µ+ EB ,∞) h3 0

Let us analyze the different possibilities for ω in h ≡
Disc(lnD−1):

h = ln

[
1

4π
ln

(
−
ω + 2µ− εk

2

Eb
− iε

)]
(C3)

− ln

[
1

4π
ln

(
−
ω + 2µ− εk

2

Eb
+ iε

)]
. (C4)

Therefore we recognize two regions for the variable ω

• ω < εk
2 − 2µ, where

h =

{
0, ω < εk

2 − 2µ− EB ,
−2iπ ≡ h1,

εk
2 − 2µ− EB < ω < εk

2 − 2µ.
(C5)

• ω > εk
2 − 2µ, where

h =

{
−2πi+ h3 ≡ h2,

εk
2 − 2µ < ω < εk

2 − 2µ+ EB ,
h3, ω > εk

2 − 2µ+ EB .

(C6)

where

h3 ≡ −2i arctan

 π

ln
(
ω+2µ−(1/2)εk

EB

)
 . (C7)

The results for the regions of ω are summarized in
Table (II).

Consider the following expression∫ ∞
a(t)

h(x, t)dx =

∫ b(t)

a(t)

h1(x, t)dx+

∫ c(t)

b(t)

h2(x, t)dx

+

∫ ∞
c(t)

h3(x, t)dx, (C8)

where h = Disc(lnD−1), x = ω and t = EB . Following
Eq.(22) we need to take the derivative with respect to t
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∂

∂t

∫ ∞
a(t)

h(x, t)dx = −∂a(t)

∂t
h1(a(t), t) +

∂b(t)

∂t
[h1(b(t), t)− h2(b(t), t)] +

∂c(t)

∂t
[h2(c(t), t)− h3(c(t), t)]

+

∫ b(t)

a(t)

∂

∂t
h1(x, t)dx+

∫ c(t)

b(t)

∂

∂t
h2(x, t)dx+

∫ ∞
c(t)

∂

∂t
h3(x, t)dx

= −∂a(t)

∂t
h1(a(t), t) +

∂b(t)

∂t
[Drop1] +

∂c(t)

∂t
[Drop2] +

∫ b(t)

a(t)

∂

∂t
h1(x, t)dx

+

∫ c(t)

b(t)

∂

∂t
h2(x, t)dx+

∫ ∞
c(t)

∂

∂t
h3(x, t)dx. (C9)

Here Dropi corresponds to the drop of the function hi
when it argument x goes from x− δ to a value x+ δ with

δ << 1. These terms are recorded in Table II.
We obtain the following expression

∂δΩ

∂EB
=

1

2πi

∫
d2k

(2π)2

{
∂

∂EB
(
εk
2
− 2µ− EB)(2iπ)fB(ω = ξk) +

∫ ∞
εk/2−2µ

∂h3

∂EB
fB(ω)dω

}

=
1

2πi

∫
d2k

(2π)2

{
− z2eβEB (2πi)e−βεk/2 −

∫ ∞
εk/2−2µ

dω

∫
d2k

(2π)2

fB(ω)(2iπ)

EB

(
π2 + ln2

(
ω+2µ− εk2

EB

))
+O(z3)

= − z
2

πβ
eβEB − z2

∫ ∞
0

dω̃

∫
d2k

(2π)2

eβ(ω̃− εk2 )

EB

(
π2 + ln2( ω̃

EB
)
) +O(z3)

= − z
2

πβ

eβEB + 2

∫ ∞
0

dk̃k̃
e−βk̃

2

EB

(
π2 + ln2( k̃

2

EB
)
)
+O(z3), (C10)

where ξk ≡ εk/2− 2µ− EB , we have used the change of

variables ω = ω̃ − 2µ+ εk
2 , and the substitution ω̃ → k̃2.

Thus, at second order in the fugacity we obtain

∂δΩ2

∂Eb
= − 1

πβ

eβEb + 2

∫ ∞
0

dk̃k̃
e−βk̃

2

Eb

(
π2 + ln2( k̃

2

Eb
)
)
 .

(C11)
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