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We study theoretically the collective mode spectrum of a strongly imbalanced two-component
unitary Fermi gas in a cigar-shaped trap, where the minority species forms a gas of polarons. We
describe the collective breathing mode of the gas in terms of the Fermi liquid kinetic equation taking
collisions into account using the method of moments. Our results for the frequency and damping of
the longitudinal in-phase breathing mode are in good quantitative agreement with an experiment by
Nascimbène et al. [Phys. Rev. Lett. 103, 170402 (2009)] and interpolate between a hydrodynamic
and a collisionless regime as the polarization is increased. A separate out-of phase breathing mode,
which for a collisionless gas is sensitive to the effective mass of the polaron, however, is strongly
damped at finite temperature, whereas the experiment observes a well-defined oscillation.

I. INTRODUCTION

Landau’s Fermi liquid theory accounts for the fact that
many normal state Fermi systems behave in a qualita-
tively similar way to a noninteracting Fermi gas [1–3].
The central assumption of the theory is the adiabatic
continuity of excitations, meaning that excitations of the
interacting system are characterized by the same quan-
tum numbers of spin σ =↑, ↓ and momentum p as the
noninteracting system [4–6]. The robustness of this pic-
ture relies on phase space arguments and does not depend
on the strength of the interparticle interaction.

Over the past ten years, the two-spin-component Fermi
quantum gas in the unitary limit has emerged as a new
Fermi liquid [7]. For small polarization P = (N↑ −
N↓)/(N↑ + N↓) (N↑,↓ being the total number of atoms
of each species), the ground state is a superfluid [8].
As the polarization is increased beyond the Clogston-
Chandrasekar limit, there is a first order phase transi-
tion to a Fermi liquid where both species coexist [9, 10].
In particular, the extreme limit P → 1 describes a sin-
gle spin-↓ quasiparticle interacting with a majority spin-
↑ Fermi sea (a “polaron”) characterized by an effective
mass m∗, energy Ep = −αEF (where EF is the Fermi
energy of the majority species and α = 0.61 [11, 12]),
and quasiparticle residue. These parameters have been
studied extensively at zero temperature [11–20].

There are three ways to measure the polaron parame-
ters. First, through the equation of state [21]. Second, by
measuring the radiofrequency spectrum, which has a pro-
nounced quasiparticle peak at the polaron energy with a
weight proportional to the quasiparticle residue [22–24].
The third method – which we are interested in here –
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measures the effective mass dynamically by exciting col-
lective mode oscillations [25].

The experiment [25] by Nascimbène et al. studied the
collective breathing modes in the longitudinal direction
of an elongated harmonic trap as a function of polariza-
tion. At low polarization, both spin components oscillate
in phase due to the strong coupling between them. At
larger polarization, an additional out-of-phase mode was
observed. In the P → 1 limit its frequency was iden-
tified with the collisionless value 2ω∗z , where ω∗z is the
axial trap frequency renormalized by the interaction of
the minority atoms with the majority background [7]:

ω∗z = ωz

√
m

m∗
(1 + α). (1)

Reference [25] obtained the polaron effective mass from
Eq. (1) after linearly extrapolating the experimental out-
of-phase breathing mode frequency to P = 1. This has
resulted in a value at unitarity of m∗/m = 1.17(10), in
close agreement with theoretical results [11, 16, 17, 19,
26, 27].

In a subsequent theory paper [28], Recati and Stringari
analyzed the out-of-phase collective mode using a scal-
ing ansatz with mean-field interactions but without colli-
sions, and obtained a frequency behaviour that disagreed
with the experiment [25] at lower values of polarization.
However, at these polarizations collisions can become im-
portant so that a full theoretical description of the exper-
iment is still lacking.

In this paper, we analyze the collective breathing
mode spectrum of a Fermi liquid taking into account
finite-temperature effects, mean-field interactions and
also quasiparticle collisions. The theoretical framework
that allows us to do this is the Landau-Boltzmann equa-
tion, which we solve using the method of moments. This
method has already been successfully applied to study
the collective modes of balanced Fermi gases [29–34]. The
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FIG. 1. Equilibrium density profile [Eq. (8)] for majority (upper continuous blue line) and minority (lower continuous red line)
atoms for T/TF = 0.1, N↑ = 100000 and P = 0.6, 0.7, 0.8, 0.9 and 0.95 [(a)-(e)]. For comparison, we include the density profile
without the mean field term as dashed lines. The inset shows the local polarization Ploc = (n↑(r)− n↓(r))/(n↑(r) + n↓(r)) as
a function of the distance from the trap center.

paper is structured as follows: in Sec. II, we solve the
quasiparticle kinetic equation for a trapped and strongly
imbalanced Fermi gas using the single-polaron parame-
ters obtained in [11]. We obtain the eigenmodes in a
trap by expanding the distribution function in small de-
viations from equilibrium in a finite-dimensional basis
of trial functions. In this way, both the single-particle
contribution to the kinetic equation as well as the col-
lision integral can be reduced to a set of linear equa-
tions whose eigenvalues determine the collective mode
frequencies. We present results for collective modes for
the experimental setup of Ref. [25], and compare with
the experimental results.

II. COLLECTIVE MODES

In the high-polarization limit of the imbalanced Fermi
gas, the minority atoms (spin-↓) form a dilute gas of po-
larons that interact with the majority species (spin-↑).
Within Fermi liquid theory, the quasi-classical evolu-
tion of the minority and majority distribution function
nσ(r,p, t) is described by the coupled Landau-Boltzmann
kinetic equation [setting ~ = 1],[

∂t +
∂εσ(r,p)

∂p
· ∂
∂r
− ∂εσ(r,p)

∂r
· ∂
∂p

]
nσ(r,p)

= −Iσ[n↑, n↓], (2)

where the distribution functions of each spin state are
normalized as

Nσ =

∫
d3r nσ(r) with nσ(r) =

∫
d3p

(2π)3
nσ(r,p).

(3)

εσ(r,p) is the energy of a quasiparticle with spin σ and
momentum p at position r:

εσ(r,p) =
p2

2mσ
+ Uσ(r) + V (r). (4)

We take m↓ = m∗, the effective polaron mass, and
m↑ = m, the bare atom mass. The spin-independent

harmonic trapping potential with trapping frequencies
ωi (i = x, y, z) is given by

V (r) =
∑

i=x,y,z

mω2
i

2
r2
i . (5)

Uσ = Uσ[n↑(r), n↓(r)] are the mean-field interactions ex-
perienced by each spin component, which are deduced
from the single-polaron parameters at zero temperature.
For the minority species, the mean field potential is given
by the single-polaron energy U↓ = −αEF (r) and we
choose

U↓[n↑, n↓] = −α (6π2)2/3

2m
n

2/3
↑ (r) (6)

U↑[n↑, n↓] = −2

3
α

(6π2)2/3

2m

n↓(r)

n
1/3
↑ (r)

. (7)

The majority mean field U↑ is chosen such that the to-
tal force

∫
d3r(n↑∇U↑ + n↓∇U↓) acting on the system

vanishes. The distribution in thermal equilibrium is the
Fermi-Dirac distribution with chemical potential µσ [4, 5]

neq
σ (r,p) =

1

eβ(εσ(r,p)−µσ) + 1
. (8)

Unlike for a noninteracting gas, Eq. (8) is a complicated
self-consistent expression since neq

σ (r,p) enters εσ(r,p)
through the mean-field potential. Figure 1 shows the
density profile at T/TF = 0.1 for various polarizations
P = 0.5, 0.6, 0.7, 0.8, and 0.9 (continuous lines). For
comparison, we include the noninteracting density pro-
file as dashed lines. The attractive mean-field potential
increases the particle density in the trap center. The
polaron picture is valid for small polaron minority den-
sity. Figure 1 indicates that our analysis is valid down to
P ∼ 0.8, i.e., across most of the experimental range.

Interactions change the distribution function through
the collision integral [10, 35]
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FIG. 2. (a) Frequency and (b) damping of the longitudinal breathing mode of an imbalanced Fermi gas in an anisotropic
trap with aspect ratio λ = 0.075 as a function of polarization for different temperatures (top to bottom lines) T/TF =
0.06, 0.08, 0.1, 0.12, 0.15 and 0.18, respectively. The thin black lines in the first figure denote the collisionless limit ωcl = 2ωz

and the hydrodynamic limit ωhd =
√

12/5ωz. (c) Scaling plot of frequency versus damping, which indicates the presence of
a single dominant scattering lifetime. The black dashed line is the parametric estimate of Eq. (25). The experimental data
points are taken from Ref. [25].

Iσ[n↑, n↓] =

∫
d3p1

(2π)3

∫
dΩ

dσ

dΩ
|vrel|

[
nσ(r,p, t)nσ̄(r,p1, t) (1− nσ(r,p′, t)) (1− nσ̄(r,p′1, t))

− nσ(r,p′, t)nσ̄(r,p′1, t) (1− nσ(r,p, t)) (1− nσ̄(r,p1, t))

]
, (9)

where σ̄ denotes the opposite spin species of σ, vrel

the relative velocity of colliding particles, and dσ
dΩ =(

mred

2π f↑↓
)2

the differential scattering cross section, where
the scattering amplitude f↑↓ is linked to the single-

polaron energy by f↑↓ =
∂Ep
∂n↑

[10, 35]. The first line

of the collision integral describes the depopulation of the
state (p, σ) by collisions with a quasiparticle (p1, σ̄) to a
final state (p′, σ) and (p′1, σ̄). The second line describes
the reverse process (p′, σ) + (p′1, σ̄) → (p, σ) + (p1, σ̄).
The collisions are constrained by energy and momen-
tum conservation. Writing in the center-of-mass frame
p = mσ

M P + q and p1 = mσ̄
M P − q, where M = m + m∗

is the total mass and P = p + p1 the total momentum,
we have p′ = mσ

M P + q′ and p′1 = mσ̄
M P − q′, where

|q| = |q′|, as well as vrel = q/mred with mred = mm∗

m+m∗

the reduced mass. The integration over the angle element
dΩ in Eq. (9) describes the change in the solid angle be-
tween q and q′.

Solving the full collision integral is a complicated task.
Here, we use an approximate method to study small os-
cillations around the equilibrium distribution (see, e.g.,
Refs. [30, 33] for more details). To this end, we expand
the distribution function as

nσ(r,p, t) = neq
σ (r,p)

+ neq
σ (r,p)(1− neq

σ (r,p))Φσ(r,p, t), (10)

where neq
σ (r,p) is the equilibrium distribution (8). The

prefactor in Eq. (10) is chosen such that Φσ can be in-
terpreted as a potential perturbation that corrects the

quasiparticle energy εσ. The collision integral then reads:

Iσ[Φσ,Φσ̄] =

∫
d3p1

(2π)3

∫
dΩ

dσ

dΩ
|vrel|

× neq
σ (r,p)neq

σ̄ (r,p1) (1− neq
σ (r,p′)) (1− neq

σ̄ (r,p′1))

× [Φσ(r,p, t) + Φσ̄(r,p1, t)− Φσ(r,p′, t)− Φσ̄(r,p′1, t)] .
(11)

This complicated kinetic equation can be solved approxi-
mately by expanding the perturbation Φσ(r,p) in a suit-
ably chosen set of basis functions

Φσ(r,p, t) = e−iωt
∑
j

cj,σψj,σ(r,p), (12)

where we assume a harmonic time-dependence with fre-
quency ω. Substituting this form in Eq. (2), multiplying
by ψi(r,p), and integrating over r and p reduces the ki-
netic equation to a set of linear equations of the form

det[ωM1 +M2 +M3 + C] = 0, (13)

where M1,M2, and C are matrices with coefficients

(M1)σσ
′

ij = −i
∫
d3rd3p

(2π)3
ψi,σ(r,p)neq

σ′(r,p)

× (1− neq
σ′(r,p))ψj,σ′(r,p) (14)

(M2)σσ
′

ij =

∫
d3rd3p

(2π)3
ψi,σ(r,p)

[
(∇pεσ(r,p)) · ∇r

− (∇rεσ(r,p)) · ∇p

]
neq
σ′(r,p)
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× (1− neq
σ′ (r,p))ψj,σ′(r,p) (15)

(M3)σσ
′

ij = −
∫
d3rd3p

(2π)3
ψi,σ(r,p) (∇pn

eq
σ (r,p))·

×
[
∇r

∂Ueq,σ
∂neq

σ′ (r)
δnj,σ′(r)

]
(16)

(C)σσ
′

ij =

∫
d3rd3p

(2π)3
ψi,σ(r,p) Iσ[ψj,σ′(r,p), 0], (17)

where

δnj,σ′(r) =

∫
d3p

(2π)3
neq
σ′(r,p)(1− neq

σ′ (r,p))ψj,σ′(r,p).

(18)

The eigenmodes ω are obtained by computing the ma-
trices M1,M2,M3, and C numerically and solving the
eigenvalue problem for the matrix −M−1

1 [M2 +M3 +C].
For the breathing mode oscillation, a suitable set of basis
functions is

ψ1,σ = x2 + y2 (19)

ψ2,σ = z2 (20)

ψ3,σ = xpx + ypy (21)

ψ4,σ = zpz (22)

ψ5,σ = p2
x + p2

y (23)

ψ6,σ = p2
z. (24)

The computation of the moments is intricate, and we
relegate the details of this calculation and the results to
App. A.

A. In-phase mode

We first discuss the lowest-frequency breathing mode.
For a weakly imbalanced Fermi gas, this mode cor-
responds to an in-phase breathing mode of both spin
species, which changes at large polarization, where it
describes the breathing mode of the majority species.
In the following, we choose the same parameters as in
the experiment [25]: the aspect ratio of the trap is
λ = ωz/ωr = 0.075 and we explore the unitary limit
a → ∞ at low temperatures. The temperature scale is
set by the majority density as TF = ω0(6N↑)

1/3 with

ω0 = (ωzω
2
r)1/3, which corresponds to the Fermi energy

of a noninteracting trapped single-component gas.
Figure 2 shows the in-phase breathing mode as a func-

tion of polarization for several temperatures T/TF =
0.06, 0.08, 0.1, 0.12, 0.15, and 0.18. Figure 2(a) shows
the collective mode frequency, which clearly displays a
crossover between a hydrodynamic and a collisionless
limit. The oscillation frequency in the collisionless limit
P → 1 is equal to twice the trap frequency, ωcl = 2ωz. In
the hydrodynamic limit P � 1, the frequency can be es-
timated by taking moments of the z2 dynamic structure
factor yielding ωhd =

√
12/5ωz [25]. Both limiting cases

(a)

(b)

FIG. 3. (a) Frequency and (b) damping of the longitu-
dinal out-of-phase breathing mode of an imbalanced Fermi
gas in an anisotropic trap with aspect ratio λ = 0.075 as
a function of polarization for three different temperatures
T/TF = 0.02, 0.03 and 0.04 (top to bottom in (a) and bottom
to top in (b)). For comparison, we show the collisionless re-
sults as dashed lines. The continuous black line indicates the
zero temperature scaling result of Ref. [10] and the thin black
line denotes the collisionless limit Eq. (1). The experimental
data points are taken from Ref. [25].

are indicated by thin black lines. The solution of the
Fermi liquid kinetic theory is in good agreement with the
experimental measurements and provides an accurate de-
scription of the collisionless-to-hydrodynamic crossover
with the experimental parameters. At unitarity, the
Clogston-Chandrasekar limit is at P = 0.75, which puts
a lower limit on the applicability of our theory. Never-
theless, even below that, in the superfluid phase, there
is only a small quantitative discrepancy with the exper-
iment. Figure 2(b) shows the damping of the collective
mode frequency. Again, our theoretical calculations are
in good quantitative agreement with the experiment [25],
with optimal agreement at a temperature T ≈ 0.12TF ,
the same optimal temperature as for the collective mode
frequency.

Finally, in Fig. 2(c), we show a reduced plot of damp-
ing versus frequency, which does not contain the polar-
ization. All results approximately collapse onto a single
scaling curve. This indicates the presence of a single dom-
inant relaxation time τ and is consistent with a thermo-
dynamic argument for the crossover, which predicts that
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(a)

(b)

FIG. 4. (a) Frequency and (b) damping of the radial
out-of-phase breathing mode of an imbalanced Fermi gas
in an anisotropic trap with aspect ratio λ = 0.075 as a
function of polarization for different temperatures T/TF =
0.02, 0.04, 0.06, 0.1 and 0.15 (top to bottom in (a) and bot-
tom to top in (b)). For comparison, we show the collisionless
results as dashed lines. The continuous black line indicates
the zero temperature scaling result of Ref. [10] and the thin
black line denotes the collisionless limit Eq. (1).

frequency and damping satisfy [36]

ω2 = ω2
cl +

ω2
hd − ω2

cl

1 + iωτ
, (25)

where ω is a complex number, the real part of which sets
the mode frequency ω1 and the imaginary part sets the
damping γ1. This scaling solution is shown as a black
dashed line in Fig. 2(c) for comparison.

In addition to the longitudinal in-phase breathing
mode, there is also a radial in-phase oscillation. Because
the radial trapping frequency is much larger than the
longitudinal frequency, ωr � ωz, collisions are much less
efficient here (as can be seen, for example, from Eq. (25)).
For all temperatures in our calculation, the oscillation is
only very weakly damped and remains close to the colli-

sionless value ω
(r)
1 = 2ωr for all polarizations. We do not

plot this mode.

B. Out-of-phase mode

There is a second higher-frequency breathing mode ex-
citation for each trap direction, which corresponds to an

out-of-phase breathing mode at small polarization and
reduces to an oscillation of the minority atoms at large
polarization. This limit is of particular interest as the
collisionless oscillation frequency, Eq. (1), depends on the
polaron mass.

Figure 3 shows our results for the frequency and damp-
ing of the longitudinal out-of-phase for three different
temperatures T/TF = 0.02, 0.03, and 0.04. Different
from the in-phase oscillation, the collisionless limit can-
not be reached by changing the polarization, and we find
that the mode is very strongly damped at any polariza-
tion. Indeed, for any larger temperatures T/TF > 0.05,
the mode is completely overdamped. For comparison,
we include the collisionless frequencies as dashed lines in
Fig. 3(a). We find that at small temperature and high
polarization, the difference of the breathing mode from
the single polaron frequency [Eq. (1)] is proportional to
the radius of the minority cloud, which depends on the
polarization as

R↓
R↑
∼
(

1− P
1 + P

)1/6

. (26)

This result was previously established by Recati and
Stringari [28], who analyzed the mode at zero temper-
ature neglecting collisions by combining a scaling ansatz
and a density functional for the ground state energy of
the imbalanced gas. We show their result in Fig. 3 for
comparison (black line). At finite temperature, this effect
is less pronounced and decreases with increasing temper-
ature, and our calculation suggests a linear dependence
of the collisionless breathing mode frequency on the po-
larization for P < 0.9.

The calculated frequencies are at odds with the ex-
perimental measurements [25] (black points in Fig. 3).
While already the collisionless results differs from the ex-
perimental data, it was suggested in [28] that collisions
could be responsible for this discrepancy. Our calcula-
tions, which do include collisions, would seem to refute
this claim. We find that the damping of this mode is very
significant, to the extent that it would be overdamped for
all values of P at the experimental temperatures, ren-
dering it difficult to observe, in contradiction with the
experiment.

The radial out-of-phase breathing mode persists over
a larger range of temperatures since collisions are less
efficient compared to the longitudinal oscillation. Fig-
ure 4 shows the frequency and damping of this mode for
temperatures T/TF = 0.02, 0.04, 0.06, 0.1, and 0.15. Col-
lisions decrease the oscillation frequency compared to the
collisionless case (dashed lines) with a strong damping at
any polarization. The oscillation reduces to the collision-
less frequency only at small temperatures.

Note that Bruun et al. [35] derive an expression for
the collisional damping of the out-of-phase mode in the
strongly polarized limit from the momentum relaxation
rate computed within Fermi liquid theory, which is γ2

ω0
=

2π3

9 (6N↑)
1/3α2m∗

m ( T
TF↑

)2. The results in the limit P → 1
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presented in Figs. 3 and 4 are in good agreement with
this expression.

III. SUMMARY AND CONCLUSIONS

In conclusion, we have studied the collective breathing
modes of a strongly imbalanced unitary Fermi gas, as-
suming that it can be described as an interacting gas of
minority polarons and majority atoms. We have solved
the kinetic equation in an elongated harmonic trap tak-
ing into account quasiparticle collisions. For the in-phase
breathing mode, our results provide an accurate descrip-
tion of both frequency and damping observed in the ex-
periment by Nascimbène et al. [25]. The theory displays
a crossover between a collisionless limit at large polariza-
tion, where the mode frequency ω is much larger than the
inverse collision time 1/τ , ωτ � 1, and a hydrodynamic
limit ωτ � 1, where single excitations decay rapidly. Our
theory appears to be reliable down to the critical polar-
ization P ∼ 0.7, below which a superfluid core forms at
the trap center. By contrast, our results for the out-of-
phase breathing mode oscillation differ from the findings
in [25]. While our results are consistent with predictions
from a scaling ansatz for the collisionless gas [10], taking
into account collisions does not resolve the discrepancy
between theory and experiment.
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Appendix A: Method of moments

We determine the lowest breathing mode excitations
of a spin-imbalanced Fermi gas by solving the linearized
Boltzmann equation using the method of moments. This
appendix describes the details of the calculation.

We define the potential energy per spin species:

Epot,σ =

∫
d3r Vtrap n

eq
σ (A1)

and the kinetic energy

Ekin,σ =

∫
d3rd3p

(2π)3

p2

2mσ
neq
σ . (A2)

They are related through the virial theorem

Ekin,σ

Epot,σ
= 1− χ̃σ, (A3)

where χσ is defined as

χ̃σ = − 1

2Epot,σ

∫
d3r̃ neq

σ r̃
∂U eq

σ

∂r̃
. (A4)

The eigenmodes are determined by solving the equation

det(A+B) = 0. (A5)

A is the matrix of moments of the streaming term (A =
[ωM1 +M2 +M3]/ω0 in the main text), and B the matrix
for the collision integral (B = C/ω0 in the main text).
They are:

A
σσ

=



2iωω0(1 + ϕσ)

ω2
r

iωω0(1 + ϕσ)

2ω2
r

1 0
iω

ω0

mσ

m

iω

2ω0

mσ

m
2iωω0(1 + ϕσ)

ω2
r

3iωω0(1 + ϕσ)

ω2
r

0 2 2
iω

ω0

mσ

m

iω

ω0

mσ

m

2(1 + 2ϕ1,σσ − ϕ3,σσ) ϕ1,σσ − ϕ3,σσ −
iω

ω0

mσ

m
0 −2

ω2
r

ω2
0

mσ

m

(
1 − χ̃σ − χσσ + 2χ′σσ

) ω2
r

ω2
0

mσ̄

m

(
χσσ − 2χ′σσ

)
2(ϕ1,σσ − ϕ3,σσ) 2 + 3ϕ1,σσ − ϕ3,σσ 0 −

iω

ω0λ
2

mσ

m
2
ω2
r

ω2
0

mσ

m

(
χσσ − 2χ′σσ

)
−2

ω2
r

ω2
0

mσ

m

(
1 − χ̃σ − χσσ + 2χ′σσ

)
imωω0

mσω2
r(1 − χ̃σ)

imωω0

2mσω2
r(1 − χ̃σ)

−
m

mσ
0 2

iω

ω0

iω

2ω0
imωω0

mσω2
r(1 − χ̃σ)

imωω0

2mσω2
r(1 − χ̃σ)

0 −
m

mσ

iω

ω0

3

2

iω

ω0



,

(A6)

A
σσ̄

=



0 0 0 0 0 0

0 0 0 0 0 0

2(2ϕ1,σσ̄ − ϕ3,σσ̄) ϕ1,σσ̄ − ϕ3,σσ̄ 0 0 2
ω2
r

ω2
0

mσ̄

m
(χσσ̄ − 2χ′σσ̄)

ω2
r

ω2
0

mσ̄

m
(χσσ̄ − 2χ′σσ̄)

2(ϕ1,σσ̄ − ϕ3,σσ̄) 3ϕ1,σσ̄ − ϕ3,σσ̄ 0 0 2
ω2
r

ω2
0

mσ̄

m
(χσσ̄ − 2χ′σσ̄)

ω2
r

ω2
0

mσ̄

m
(χσσ̄ − 2χ′σσ̄)

0 0 0 0 0 0

0 0 0 0 0 0



, (A7)
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B
στ

=



0 0 0 0 0 0
0 0 0 0 0 0

0 0
±1

τAσ

0 0 0

0 0 0
±1

λ2τAσ

0 0

0 0 0 0
−1

τBσ

−
mσ ±mτ

M

1

τCσ

∓
mσmτ

M2

(
1

τDσ

+
1

τEσ

)
1

τBσ

+
mσ ±mτ

M

1

τCσ

±
mσmτ

M2

(
1

τDσ

−
1

τEσ

)

0 0 0 0
2

τBσ

+
mσ ±mτ

M

2

τCσ

±
2mσmτ

M2

(
1

τDσ

−
1

τEσ

)
−

2

τBσ

−
mσ ±mτ

M

2

τCσ

∓
mσmτ

M2

2

τDσ



, (A8)

where the upper sign for B applies if σ = τ and the lower if σ 6= τ and we define the dimensionless quantities (use
rescaled coordinates r̃i = ωiri/ω0):

χστ = − 1

2Epot,σ

∫
d3r̃ neq

τ r̃
∂U eq

σ

∂neq
τ

∂neq
σ

∂r̃
(A9)

χ′στ =
3

4Epot,σ

∫
d3r̃ neq

σ neq
τ

∂U eq
σ

∂neq
τ

(A10)

ϕσ =
1

10Epot,σ

∫
d3r̃ r̃2 ∂n

eq
σ

∂r̃

∂U eq
σ

∂r̃

1

1 +
1

mω2
0 r̃

∂U eq
σ

∂r̃

(A11)

ϕ1,στ =
1

10Epot,σ

∫
d3r̃ r̃2 ∂n

eq
σ

∂r̃

∂neq
τ

∂r̃

∂U eq
σ

∂neq
τ

1

1 +
1

mω2
0 r̃

∂U eq
τ

∂r̃

(A12)

ϕ3,στ = − 1

2Epot,σ

∫
d3r̃ r̃neq

σ

∂neq
τ

∂r̃

∂U eq
σ

∂neq
τ

1

1 +
1

mω2
0 r̃

∂U eq
τ

∂r̃

. (A13)

The various relaxation times can be calculated along the lines of Ref. [37]:

1

τiσ
=

∫ ∞
0

dr̃ r̃2

∫ ∞
0

dP P 2

∫ ∞
0

dq q5 dσ

dΩ

∫ 1

−1

d(x, y)n↓(r,p)n↑(r,p1) (1− n↓(r,p′)) (1− n↑(r,p′1))× gi,σ(x, y),

(A14)

where gA,σ(x, y) = βω0r̃
2(1−xy)

6π2mredEpot,σ
and

gi,σ(x, y) =
β

π2mredm2
σω0Ekin,σ



q2

40
(1 + x2 + y2 − 3x2y2) i = B

qP

30
(x+ y)(1− xy) i = C

P 2

10
(1 + x2 + y2 − 3xy) i = D

P 2

4
(x− y)2 i = E

. (A15)
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