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Distributed quantum sensing uses quantum correlations between multiple sensors to enhance
the measurement of unknown parameters beyond the limits of unentangled systems. We describe
a sensing scheme that uses continuous-variable multipartite entanglement to enhance distributed
sensing of field-quadrature displacement. By dividing a squeezed-vacuum state between multiple
homodyne-sensor nodes using a lossless beam-splitter array, we obtain a root-mean-square (rms)
estimation error that scales inversely with the number of nodes (Heisenberg scaling), whereas the
rms error of a distributed sensor that does not exploit entanglement is inversely proportional to the
square root of number of nodes (standard quantum limit scaling). Our sensor’s scaling advantage
is destroyed by loss, but it nevertheless retains an rms-error advantage in settings in which there is
moderate loss. Our distributed sensing scheme can be used to calibrate continuous-variable quantum
key distribution networks, to perform multiple-sensor cold-atom temperature measurements, and to
do distributed interferometric phase sensing.

I. INTRODUCTION

Single-mode squeezed states enable metrology beyond
the standard quantum limit (SQL). In particular, they
can increase the sensitivity of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1, 2], and en-
able sub-shot-noise biological imaging [3]. Entanglement,
on the other hand, possesses nonlocal properties that
single-mode squeezing does not offer. For example, when
the bipartite entanglement of two-mode squeezed states
is leveraged in target detection, it provides a signal-to-
noise ratio advantage over that of the optimum clas-
sical scheme [4–8]. Prior work has shown that multi-
partite entanglement between distributed sensors could
yield significant sensitivity enhancement in estimating
the weighted sum of unknown parameters in the sensor
network [9, 10]. However, these distributed quantum-
sensing protocols rely on photonic discrete-variable (DV)
multipartite entanglement, which, to date, can only be
probabilistically generated and is extremely vulnerable
to environmental loss. Such scalability disadvantage hin-
ders DV distributed quantum-sensing protocols’ being
applied in practical situations.

Continuous-variable multipartite (CVMP) entangle-
ment, in contrast, is highly scalable, because it can be de-
terministically generated, distributed, and detected [11].
What is equally important is that the quality of CVMP
entanglement degrades gracefully in the presence of loss.
As such, CVMP entanglement opens an attractive path
toward scalable and distributed quantum sensing with
robustness to loss. In this paper, we derive the opti-
mum CVMP entangled state for distributed sensing of
field-quadrature displacement, and find that the opti-
mum state, produced by dividing a single-mode squeezed-
vacuum state with a lossless beam-splitter array, achieves
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Heisenberg-scaling sensitivity [12–18] in the number of
sensing nodes in a network. Moreover, although the en-
tangled state’s performance loses its Heisenberg scaling
in the presence of loss, it retains a performance advan-
tage over individually operating sensing nodes in moder-
ate loss. Furthermore, its implementation only requires
the available technologies of squeezed-vacuum genera-
tion, linear optics, and homodyne detection.

The emergence of quantum networks [19], e.g., with
fiber-optic connections in metropolitan areas [20], or
with satellite-communication connections [21] over longer
distances, offers a variety of application scenarios for
distributed sensing. Many continuous-variable quan-
tum key distribution (CV-QKD) protocols rely on
field-quadrature displacements [22–24], and our sensing
scheme could improve joint calibration of systematic er-
rors in displacement operations in such network settings.
Ultrahigh-precision interferometric phase sensing can be
reduced to field-quadrature displacement measurement
for which quantum enhancement can be valuable. In-
deed, as analyzed in Refs. [25–27] for a model of LIGO
and experimentally demonstrated in Ref. [1], single-
mode squeezed-vacuum injection improves the perfor-
mance of a single interferometer. For multiple, spatially-
separated, interferometers, our distributed displacement
sensor can offer a further quantum enhancement by
replacing each interferometer’s single-mode squeezed-
vacuum input with its portion of a CVMP entangled
state. Additional, more localized, applications of our dis-
tributed field-quadrature sensor arise in cold atom sys-
tems. There, angular momentum [28] and temperature
measurements [29] can be reduced to field-quadrature
displacement measurements, allowing our approach to af-
ford increased sensitivity in multi-node sensing configu-
rations

Before proceeding, it is worth contrasting the approach
we will take with recent work on distributed quantum
sensing [9, 10]. Ref. [9]’s distributed phase sensing re-
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Figure 1. Distributed quantum sensor for measuring field-
quadrature displacement. SV: squeezed-vacuum state with
mean photon number NS and squeezed noise in its real
quadrature. N (η): pure-loss channel with transmissivity
0 < η ≤ 1. Û(α): field-quadrature displacement by real-
valued α. homo: homodyne measurement of the real quadra-
ture.

quired twin Fock-state generation and photon-number
resolving detectors to realize Heisenberg scaling, and
Ref. [10]’s contribution was a general framework for dis-
tributed sensing showing that measurement precision
in estimating the weighted sum of unknown parame-
ters in the sensor network could be improved by em-
ploying the multipartite entanglement of Greenberger-
Horne-Zeilinger states. Our paper presents an explicit
distributed-sensor design whose CVMP entanglement
generation and distributed quantum measurement can
easily be realized.

II. DISTRIBUTED FIELD-QUADRATURE
SENSING

Consider a network of M sensing nodes each of whose
optical input (with annihilation operator âm, for 1 ≤
m ≤ M) undergoes an identical real-valued quadrature
displacement α by the unitary transformation Û(α). Our
goal is to find the joint state, ρ̂M,NS

, for the {âm} that:
(1) contains NS photons on average; and (2), after dis-
tribution to the sensor nodes through pure-loss channels
with transmissivity η, minimizes the root-mean-square
(rms) error in estimating α from the ideal-homodyne
quadrature measurements, {Re(â′m) ≡ √

ηRe(âm) +√
1− ηRe(êm) : 1 ≤ m ≤ M} with the {êm} being

vacuum-state modes [30]. (Appendix A shows that our
protocol can be adapted for advantageous sensing of the
weighted sum of different displacements at each node
when the transmissivities to each node are also different
but known.)

In the remainder of this section we will derive the opti-
mum entangled and separable ρ̂M,NS

for this distributed
sensing problem, and compare their rms estimation er-
rors.

A. Optimum Entangled State

The joint state at the inputs to the sensors
nodes’ homodyne detectors is ρ̂M,NS ,η (α) =

Û(α)⊗M [N (η)⊗M (ρ̂M,NS
)]Û(α)⊗M†, where N (η)

denotes a pure-loss channel with transmissivity
0 < η ≤ 1. The displacement α only contributes
to the the homodyne measurements’ mean values,
{〈Re(â′m)〉 = α+

√
η 〈Re(âm)〉}, so we shall use

α̃E ≡
1

M

M∑
m=1

[Re(â′m −
√
η 〈âm〉)], (1)

as our displacement estimator. By introducing b̂1 ≡∑M
m=1 âm/

√
M , we can rewrite α̃E as α̃E = Re(b̂′1 −√

η 〈b̂1〉)/
√
M , where b̂′1 ≡

√
η b̂1 +α+

√
1− η ê, with the

ê mode being in its vacuum state. It immediately follows
that α̃E is an unbiased estimator, 〈α̃E〉 = α, whose rms
estimation error is

δαEη =

√
[ηVar[Re(b̂1)] + (1− η)/4]/M, (2)

where Var(·) denotes variance. So, to make optimum use
of the light available under the {âm}’s average photon-
number constraint, we will assume that these modes are
obtained from passing modes {b̂m : 1 ≤ m ≤M} through
a lossless, M × M balanced beam splitter with the b̂1
mode having average photon number NS while the other
M − 1 inputs, {b̂m : 2 ≤ m ≤ M}, are in their vacuum
states. With this beam-splitter arrangement, each â′m
mode is comprised of a √η b̂1/

√
M component plus vac-

uum contributions from the {b̂m : 2 ≤ m ≤ M} and êm
modes and the quadrature displacement by α, as shown
in Fig. 1. Well known properties of single-mode squeezed
states [31] then imply that δαEη is minimized if the b̂1
mode is in its squeezed-vacuum state with average pho-
ton number NS whose real quadrature is squeezed. The
resulting rms error for this optimum entangled-state in-
put is

δαEη =
1

2

(
η

M
(√
NS + 1 +

√
NS
)2 +

1− η
M

)1/2

. (3)

The preceding performance exhibits Heisenberg scal-
ing, in the lossless case, with respect to the number of
sensor nodes. Specifically, when η = 1 and the average
photon number per node, nS ≡ NS/M � 1, is kept fixed,
we have that δαE1 ' 1/4M

√
nS , whereas for the optimum

separable-state ρ̂M,NS
, which we derive below, the rms

error when η = 1 and ns � 1 is fixed has SQL scaling,
viz., δαP1 ' 1/4

√
Mns. We postpone further discussion

of Eq. (3) until after we obtain the optimum separable-
state ρ̂M,NS

for our distributed-sensing problem.
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Figure 2. (a) Plots of the rms estimation errors, δαEη (solid curves) and δαPη (dashed curves), versus the number of sensor
nodes, M , for various transmissivity values, from top to bottom, η = 0.95, 0.99, 1, with nS ≡ NS/M fixed at ns = 1. (b),(c)
Plots of sensitivity ratio

(
δαPη /δα

E
η

)2 in dB with NS = 10. (b) From bottom to top, η = 0.5, 0.8, 0.9, 0.95, 0.99, 1. (c) From
bottom to top: M = 5, 10, 20, 50, 100, 1000.

B. Optimum Separable State

To begin our derivation of the separable state that min-
imizes our distributed displacement sensor’s rms estima-
tion error, it is convenient to first constrain its input
state to be a product state, ρ̂M,NS

= ⊗Mm=1ρ̂m, with av-
erage photon number NS . Our entangled-state result,
with M = 1, tells us that the optimum single-mode state
is the squeezed-vacuum state with average photon num-
ber NS whose real quadrature is squeezed. It follows
then that ρ̂M,NS

must be a product of squeezed-vacuum
states with squeezed real quadratures whose average pho-
ton numbers, {Nm}, satisfy

∑M
m=1Nm = NS . Thus, be-

cause the M = 1 version of δαEη is a convex function
of NS for all 0 < η ≤ 1, the best product state for our
sensor employs Nm = NS/M for 1 ≤ m ≤ M , leading
to α̃P ≡

∑M
m=1 Re(â′m)/M being an unbiased estimator

with rms error given by

δαPη =
1

2

 η

M
(√

NS/M + 1 +
√
NS/M

)2 +
1− η
M


1/2

.

(4)
From this result we have that the optimum separable
state with average photon number NS must be a K-fold
mixture of the preceding best product states whose av-
erage photon numbers, {NSk

: 1 ≤ k ≤ K}, sum to NS .
But the rms error in Eq. (4) is a convex function of NS ,
hence the optimum separable state for our problem must
be the optimum product state specified above.

In Appendix B we show that restricting ρ̂M,NS
to be

a Gaussian separable state with average photon number
NS , and placing no restriction on how the {â′m} modes
are measured to estimate α, then the rms error is min-
imized by the optimum product state that we have just
found, i.e., that state saturates the quantum Cramér-Rao
bound. That said, a non-Gaussian product state could
have a lower Cramér-Rao bound for this sensing prob-
lem, but it would still have SQL scaling in the number of
sensor nodes, even when η = 1 [32].

C. Performance Comparison

We have already seen that δαEη /δαPη ' 1/
√
M when

η = 1 and nS ≡ NS/M � 1 is kept fixed. Loss, however,
quickly destroys the entangled state’s Heisenberg scal-
ing, as shown in Fig. 2(a), which plots log10(δαEη ) and
log10(δαPη ) versus log10(M) for nS = 1 and various η
values. The transmissivity required to maintain Heisen-
berg scaling in the number of sensor nodes when nS � 1
is quite high: we need 1 − η ' 1/4MnS � 1 in this
case to get δαEη ' 1/2M

√
2nS . Thus, absent means to

realize near-lossless CVMP entanglement distribution—
see below for some discussion of this point—our sensing
scheme’s Heisenberg scaling will be limited to local ap-
plications in which η ' 1 can be ensured. Nevertheless,
an appreciable performance gain can still be obtained,
for moderate loss, by using CVMP entanglement, as we
now show by examining performance when NS , instead
of nS , is fixed.

Increasing M with nS fixed ceases to be practical for
M � 1, e.g., for Fig. 2(a)’s M = 104 points the re-
quired initial squeezing is more than 40 dB, an amount
that is far beyond experimental state of the art. So, tak-
ing NS = 10, an attainable value for squeezed-vacuum
generation, we plot the sensitivity ratio,

(
δαPη /δα

E
η

)2,
in dB, versus M for fixed η in Fig. 2(b), and versus
loss (1/η in dB) for fixed M in Fig. 2(c). Here we see
two trends: (1) for fixed M the advantage enjoyed by
entangled-state operation degrades as the transmissivity
decreases; and (2) for fixed η the advantage enjoyed by
entangled-state operation increases and asymptotes to a
finite value as M increases. The first behavior is eas-
ily understood, i.e., it is the usual vacuum-noise degra-
dation of nonclassical performance making the benefit
of entanglement less pronounced as transmissivity de-
creases. The second behavior is interesting. For loss-
less (η = 1) operation with M → ∞ and NS fixed,
the individual states in the product-state scenario con-
verge to vacuum states and hence δαP1 → 1/2

√
M , while

δαE1 ' 1/4
√
MNS . In this regime the δαE1 /δα

P
1 =
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Figure 3. Distributed phase-sensing interferometry. SV:
squeezed-vacuum state with mean photon number NS and
squeezed noise in its imaginary quadrature. N (η): pure-loss
channel with transmissivity 0 < η ≤ 1.

1/2
√
NS afforded by entangled-state operation matches

that of lossless single-node squeezed-state operation ver-
sus lossless single-node vacuum-state operation. Note
that quadrature-displacement sensing is possible with
vacuum-state inputs, because Û(α) converts the vacuum
state to the coherent state |α〉. The final point to be
drawn from Fig. 2(b) is that entangled-state operation
can offer a performance gain over product-state opera-
tion for moderate loss values, e.g., at NS = 10,M =
20, η = 0.9, we get an 8 dB sensitivity advantage.

III. APPLICATIONS

There are a variety of applications in which field-
quadrature displacement sensing plays a central role.
CV-QKD protocols using coherent states [22–24], for ex-
ample, rely on precise displacement operations for their
security. Our scheme can thus enable accurate joint cali-
bration of displacement operations among multiple nodes
in a quantum-secured communication network. As seen
in earlier, however, the utility of our distributed sensor
for CV-QKD will be severely limited if the low trans-
missivity of long fiber connections cannot be mitigated.
Toward that end, continuous-variable entanglement dis-
tillation [33–36] and quantum repeaters [37, 38], once im-
plemented, can accomplish that mitigation.

While awaiting developments that will permit long-
distance operation of our entanglement-based displace-
ment sensor, it has local (high-transmissivity) applica-
tions in cold-atom systems. Quantum nondemolition de-
tection of such systems’ spin degree of freedom imprint
the atoms’ spin angular momentum on a light beam’s
field quadrature [28]. Based on this effect, measuring the
temperature of a cold-atom system can be reduced to
measuring an optical field’s quadrature displacement [29].
In this scenario our scheme can reduce the rms estimation
error in measuring the average temperature of a collec-
tion of locations within a cold-atom ensemble.

Interferometric phase sensing is arguably the oldest
and still widely employed optics-based sensor. Hence suc-
cessful application of our distributed displacement sensor

to interferometric phase sensing would be of great signifi-
cance. Single-mode squeezed-vacuum and coherent state
inputs have already been used [25, 26] to obtain quantum-
enhanced performance from a phase-sensing interferom-
eter. Figure 3 illustrates how that arrangement can
be extended to a network of Mach-Zehnder homodyne-
detection interferometers that are driven by a combina-
tion of a CVMP entangled state and coherent states. For
now we assume that: all interferometers have the same
|∆φ| � 1 phase shift; the CVMP entangled state is ob-
tained by passing a squeezed-vacuum state—with aver-
age photon number NS with squeezed noise in its imag-
inary quadrature—through the same beam splitter used
in Fig. 1; and the {v̂m} modes are all in their coherent
state |√Nv〉m. Then, to first order, we have that

â′m =
√
η [(1−i∆φ/2)âm+iv̂m∆φ/2)]+

√
1− η êm, (5)

where the {êm} are in their vacuum states, from which
we see that ∆φ is embedded in a field-quadrature dis-
placement, α = i

√
Nv ∆φ/2, of the {â′m}. Thus, ∆̃φE ≡

2
∑M
m=1 Im(â′m)/

√
ηNvM, is an unbiased estimator of

∆φ whose rms estimation error, δ∆φEη = 2δαEη /
√
Nv,

is

δ∆φEη =
1√
Nv

√
η

M(
√
NS + 1 +

√
NS)2

+
1− η
M

. (6)

In the absence of loss, with nS ≡ NS/M and Nv
fixed, this system has Heisenberg scaling in the num-
ber of interferometers. Loss can kill this Heisenberg
scaling, but for moderate loss an entanglement-based
advantage—over a separable state system—still exists.
Once again, continuous-variable entanglement distilla-
tion or repeaters will be needed to make our approach
suitable for widely separated interferometers. Note that
an individual interferometer from Fig. 3 was considered
in [25–27] as a model for improving LIGO [1, 2] by
squeezed-vacuum injection (SVI). Thus if multiple inter-
ferometers located observe correlated phase shifts—and
transmission loss can be mitigated—our entanglement-
based scheme can be further improve phase-sensing pre-
cision, and to do so only requires replacing product-state
SVI with CVMP entangled-state injection.

IV. CONCLUSIONS

We have shown how the precision of field-quadrature
displacement in a quantum network setting can be
improved by use of CVMP entanglement. Previous
work [15] has shown that similar improvement can be
obtained in a sequential manner by repeated measure-
ment of a single system. Our scheme, however, enables
all measurements to be performed simultaneously, albeit
at the cost of having multiple measurement nodes, and
hence is much better suited to sensing transient events.
Immediate applications of our work will likely be confined
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to localized sensor networks, for which high transmissiv-
ity entanglement distribution is possible. Applications to
sensor networks that span long distances will require loss-
mitigation technology development to make our scheme
practical.
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Appendix A: Different transmissivities and different
displacements

Here we show how CVMP entanglement can be
used to advantage in Fig. 1 when known channel
transmissivities, η = (η1, η2, . . . , ηM ), and un-
known real-valued field-quadrature displacements,
{αm}, are different for each individual sensor. In
this scenario the joint state at the input to the
sensor nodes’ homodyne detectors is ρ̂M,NS ,η =

[⊗Mm=1Ûm(αm)][⊗Mm=1Nm(ηm)](ρ̂M,NS
)[⊗Mm=1Û

†
m(αm)].

The goal is to obtain a minimum rms error estimate
of ᾱ ≡ ∑M

m=1 wmαm, where the weights, {wm}, are
non-negative and sum to one. Suppose that the balanced
beam splitter in Fig. 1 is replaced with an unbalanced
beam splitter that, when its nonvacuum input is a
single-mode squeezed-vacuum state with average photon
number NS and squeezed noise in its real quadrature,
results in b̂1 ≡

∑M
m=1 wm

√
ηm âm/W̄ being in that same

squeezed-vacuum state, where W̄ ≡
√∑M

m=1 w
2
mηm.

Then, paralleling the optimality derivation presented
earlier, we have that α̃ ≡ ∑M

m=1 wmRe(â′m) is an
unbiased estimator of ᾱ with the minimum rms error,

δαEη =
w̄

2

(
η̄

(
√
NS + 1 +

√
NS)2

+ 1− η̄
)1/2

, (A1)

under the average photon-number constraint, where w̄ ≡√∑M
m=1 w

2
m and η̄ ≡∑M

m=1 w
2
mηm/w̄

2.
The optimal Gaussian separable-state scheme, for the

scenario under consideration here, again employs a prod-
uct state, but its performance

δαPη = min∑M
m=1Nm=NS[

M∑
m=1

w2
m

(
ηm(√

Nm + 1 +
√
Nm
)2 + 1− ηm

)
/4

]1/2
,

(A2)

cannot be found in closed form.

For a given transmissivity vector η, with αm = α for
allm, we can further optimize over the {wm} in Eqs. (A1)
and (A2) to obtain minimum rms-error estimates of α.

Appendix B: Cramér-Rao bound for the optimum
Gaussian separable state

Here we shall obtain the quantum Cramér-Rao (CR)
lower bound on the root-mean-square (rms) estimation
error δαSη of the optimum unbiased estimator for an un-
known displacement α in the Fig. 1 setup when the joint
input state to the M pure-loss channels in that figure
is a Gaussian separable state with total average photon
number NS , and no restriction is placed on the way in
which the {â′m} modes are measured. From Refs. [39–41]
we have that

δαSη ≥ δαCR
η ≡

√
1/IF [ρ̂M,NS ,η(α)], (B1)

where

IF [ρ̂M,NS ,η(α)] ≡

lim
ε→0

8

{
1−

√
F [ρ̂M,NS ,η(α), ρ̂M,NS ,η(α+ ε)]

}
/ε2(B2)

gives the Fisher information [42] in terms of the Uhlmann

fidelity [43], F(σ̂1, σ̂2) ≡
[
Tr
(√√

σ̂1σ̂2
√
σ̂1

)]2
, between

states σ̂1 and σ̂2. The convexity of Fisher information
implies that δαSη = δαPη , where δαPη is the rms error
of the optimum unbiased estimator of α for a Gaussian
product state, under the same average photon-number
constraint.

Let ρ̂M,NS
= ⊗Mm=1ρ̂Nm

be the Gaussian product-
state input to the pure-loss channels in Fig. 1, where
ρ̂Nm

, the Gaussian state sent to the mth sensor node,
has average photon number Nm and

∑M
m=1Nm = NS .

The joint state at the inputs to the sensors nodes’ quan-
tum measurements is thus ρ̂M,NS ,η(α) = ⊗Mm=1ρ̂Nm,η(α),
with ρ̂Nm,η(α) ≡ Û(α)[N (η)(ρ̂Nm

)]Û†(α), which is also
a Gaussian product state.

For product states we have that IF [ρ̂M,NS ,η(α)] =∑M
m=1 IF [ρ̂Nm,η(α)], so the optimum product state’s rms

error satisfies

δαPη ≥ δαCR
η = min

ρ̂M,NS

√√√√1
/ M∑
m=1

IF [ρ̂Nm,η(α)]. (B3)

To evaluate this minimum we will first find
maxρ̂Nm

IF [(ρ̂Nm,η(α)], when ρ̂Nm
is a single-mode

Gaussian state with average photon number Nm.
The single-mode Gaussian state ρ̂Nm

is completely
characterized [44] by its quadratures’ mean vector am
and covariance matrix Vm, where we take those quadra-
tures to be Re(âm) and Im(âm). Then, writing ρ̂Nm

as the Gaussian state ρ̂G(am,Vm), we get ρ̂G(
√
η am +
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α, ηVm + (1 − η)I/4) for the Gaussian state ρ̂Nm,η(α),
where α ≡ [α, 0] and I is the 2 × 2 identity matrix, and
we get ρ̂G(

√
η am+α+ε, ηVm+(1−η)I/4) for the Gaus-

sian state ρ̂Nm,η(α+ ε), where ε ≡ [ε, 0]. The quadrature
covariance matrix of an arbitrary ρ̂G(am,Vm) can al-
ways be written in the form Vm = RθVdiagR

T
θ , where

Vdiag = Diag[(2nm + 1)e−rm/4, (2nm + 1)erm/4] with
rm ≥ 0, nm ≥ 0, and

Rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. (B4)

With this Vm representation we can use Ref. [45] to eval-
uate the Uhlmann fidelity between ρ̂G(

√
η am+α, ηVm+

(1 − η)I/4) and ρ̂G(
√
η am + α + ε, ηVm + (1 − η)I/4).

Using the result of that evaluation in Eq. (B2) gives us

IF [ρ̂Nm,η(α)] =
4{erm(1− η) + (2nm + 1)η[e2rm cos2(θ) + sin2(θ)]}
(erm(1− η) + (2nm + 1)η)[(2nm + 1)ηerm + 1− η]

. (B5)

This expression’s maximum over θ and nm occurs
when θ = nm = 0, in which case we get
maxθ,nm IF [ρ̂Nm,η(α)] = 4/(ηe−rm + 1 − η) with Nm =
aTmam+[cosh(rm)−1]/2. From this result it is clear that
am = 0 is optimum, and we find that

max
ρ̂Nm

IF [ρ̂Nm,η(α)] =

(
η

4(
√
Nm + 1 +

√
Nm)2

+
1− η

4

)−1
. (B6)

At this point we have that

δαSη = δαPη ≥ δαCR
η = min∑M

m=1Nm=NS

1

2


√√√√ M∑
m=1

(
η

(
√
Nm + 1 +

√
Nm)2

+ 1− η
)−1−1 .(B7)

Because maxρ̂Nm
IF (ρ̂Nm,η (α)) is a concave function of

Nm, the preceding minimum is achieved by Nm = NS/M
for 1 ≤ m ≤ M , hence we have the quantum CR bound
for Gaussian separable states:

δαSη = δαPη ≥ δαCR
η =

1

2

×

 η

M
(√

NS/M + 1 +
√
NS/M

)2 +
1− η
M


1/2

.(B8)

We showed in Sec. II B that this CR bound perfor-
mance is achieved by modal homodyne detection using
the estimator α̃P =

∑M
m=1 Re(â′m)/M when ρ̂NS ,M is an

M -fold tensor product of squeezed-vacuum states each
with average photon number NS/M and squeezed noise
in their real quadratures, i.e., an M -fold tensor prod-
uct of zero-mean Gaussian states with covariance matrix
V = Diag[e−r/4, er/4] and cosh(r) = 2NS/M + 1, as
found above.
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