This is the accepted manuscript made available via CHORUS. The article has been published as:

Local randomness: Examples and application
 Honghao Fu and Carl A. Miller

Phys. Rev. A 97, 032324 — Published 19 March 2018
DOI: 10.1103/PhysRevA.97.032324

Local Randomness: Examples and Application

Honghao Fu^{1} and Carl A. Miller ${ }^{1,2}$
${ }^{1}$ Joint Institute for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20740
${ }^{2}$ National Institute of Standards and Technology, 100 Bureau Dr., Gaithersbug, MD 20899, USA

Abstract

When two players achieve a superclassical score at a nonlocal game, their outputs must contain intrinsic randomness. This fact has many useful implications for quantum cryptography. Recently it has been observed (C. Miller, Y. Shi, Quant. Inf. \& Comp. 17, pp. 0595-0610, 2017) that such scores also imply the existence of local randomness - that is, randomness known to one player but not to the other. This has potential implications for cryptographic tasks between two cooperating but mistrustful players. In the current paper we bring this notion toward practical realization, by offering near-optimal bounds on local randomness for the CHSH game, and also proving the security of a cryptographic application of local randomness (single-bit certified deletion).

Device-independent quantum cryptography [8, 11] is based on the observation that any Bell inequality violation guarantees the existence of intrinsic randomness. In particular, the outputs of such an inequality are known to be unpredictable to an arbitrary adversary. Work in this field over more than a decade has culminated in recent proofs of security for quantum key distribution and randomness expansion that are immune to any errors in quantum hardware $[5,7,12,14,23,24]$.

It has more recently been observed [13] that when two spatially separated parties violate a Bell inequality, then the outputs of either player must contain some unpredictability to the other player. Whereas global randomness (randomness possessed by both parties) is useful in cryptographic tasks in which two players are cooperating, local randomness (randomness possessed by one party and unknown to the other) is potentially useful in cryptographic settings where the parties are interacting but do not trust one another. This invites an exploration of quantum cryptographic protocols that are immunized both against imperfections in the quantum hardware and (possibly coordinated) cheating by one of the players.

Suppose that a nonlocal game G with complete support ${ }^{1}$ is played by two players, Alice and Bob, where Alice's input and output alphabets are \mathcal{A} and \mathcal{X}, respectively, and Bob's input and output alphabets are \mathcal{B} and \mathcal{Y}, respectively. A referee chooses an input pair (a, b) according to a fixed distribution and distributes a to Alice and b to Bob, who return x and y respectively. The results of [13] assert that

[^0]if the expected score of Alice and Bob's strategy exceeds the best possible classical score by ϵ, then Bob will not be able to guess Alice's output with probability better than $\left(1-\Omega_{G}\left(\epsilon^{2}\right)\right)$, even if he were given Alice's input. In other words, the pair (a, x) is necessarily more random to Bob than the input letter a alone. This is an example of blind randomness expansion, where the word "blind" is used because one player is blind to the randomness generated by the other. (This can be compared to the notion of "bound randomness" in the three-party setting of [1].)

The results of [13] are highly general but numerically weak. The goals of the current paper are (1) to demonstrate techniques that prove numerically strong bounds on local randomness, and (2) to demonstrate the power of local randomness by proving security for a specific application (one-shot certified deletion). Our study is focused on two example games, the CHSH game and the Magic Square game.

Section I reviews some necessary background and then Section II A outlines the Navascues-PironioAcin (NPA) hierarchy [15], which has been previously used to prove lower bounds on global randomness [16]. The key difference in the case of local randomness is that we must bound the behavior of a party (Bob) who is making two sequential measurements on a single system, rather than a single measurements on two separated systems as in the case of global randomness. Fortunately, the NPA hierarchy can be adapted to handle sequential measurements, as observed in $[6,17]$. Using such an adapted approach, we compute a function F such that any superclassical score of s at the CHSH game guarantees that Bob cannot recover Alice's output with probability greater than $F(s)$. The function
F that we obtain is shown to be optimal within a margin of 0.02. (See Figure 1).

A downside of the CHSH game is that, even when a perfectly optimal strategy is used by Alice and Bob, Bob still has approximately an 85% chance of guessing Alice's output bit. For some cryptographic purposes it is more useful for the player to have a bit that approximates a perfect coin flip. In Section III we study the Magic Square game. This game is large enough that is computationally difficult to apply the methods from Section II, and so instead we apply the notion of quantum rigidity, which asserts that certain nonlocal games have unique winning strategies. It was recently shown that the Magic Square game [25] is rigid. We build off of the proof in [25] to show that in any strategy for Magic Square which achieves an expected score of $1-\epsilon$, Alice obtains a bit that Bob cannot guess with probability greater than $1 / 2+O(\sqrt{\epsilon})$. (See Corollary 3.)

Lastly, in Section IV we provide an initial application of device-independent local randomness by showing that it enables single-bit certified deletion. In this cryptographic problem, Bob possesses an encrypted bit m which could be read with a key, k, possessed only by Alice, and the goal is for Alice and Bob to interact through classical communication only so that Bob can certifiably delete his copy of m. The resulting deleted state must be unreadable even if Bob were to later learn k. We prove that any multi-use device that performs well at the Magic Square game can be used for certified deletion. A formal statement is given in Theorem 4. Roughly, the probability that Bob can recover the bit m after deletion is shown to be no more than $\frac{1}{2}+O(\sqrt{\epsilon})$, where ϵ denotes the average probability that the device loses the Magic Square game, and the probability that Bob can recover m before deletion is $1-O(\epsilon)$.

Our result can be compared to other cryptographic tasks for mistrustful parties in the deviceindependent setting. Coin-flipping and bit commitment have been proven in the device-independent setting $[3,4,20]$ with constant (rather than vanishing) bias. Also, strong cryptographic primitives have been proven under additional assumptions such as limited quantum storage $[10,18,19]$ and relativistic assumptions [2]. Exploring the upper limits of device-independence in the mistrustful setting appears to be an interesting open problem.

I. PRELIMINARIES

In this section, we introduce the concepts that formally define nonlocal games and related notations used through out this paper, starting with the definition of a 2-player correlation.

Our notation follows [13]. Let \mathcal{A}, \mathcal{B} denote Alice's and Bob's input alphabets, respectively, and let \mathcal{X}, \mathcal{Y} denote Alice's and Bob's output alphabets. A 2-player (input-output) correlation is a vector $(P(x y \mid a b))$ of nonnegative reals, where (x, y, a, b) varies over $\mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B}$, such that

$$
\sum_{x y} P(x y \mid a b)=1
$$

for all pairs (a, b), and such that the quantities

$$
P(x \mid a):=\sum_{y} P(x y \mid a b), \quad P(y \mid b):=\sum_{x} P(x y \mid a b)
$$

are independent of b and a, respectively. (The latter conditions are referred to as the "non-signaling" constraints.)

A 2-player game is a pair (q, H) where

$$
\begin{equation*}
q: \mathcal{A} \times \mathcal{B} \rightarrow[0,1] \tag{1}
\end{equation*}
$$

is a probability distribution and

$$
\begin{equation*}
H: \mathcal{A} \times \mathcal{B} \times \mathcal{X} \times \mathcal{Y} \rightarrow[0,1] \tag{2}
\end{equation*}
$$

is a function. If $q(a, b) \neq 0$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$, the game is said to have a complete support. The expected score associated to such a game for a 2 player correlation $(P(x y \mid a b))$ is

$$
\begin{equation*}
\sum_{a, b, x, y} q(a, b) H(a, b, x, y) P(x y \mid a b) \tag{3}
\end{equation*}
$$

A 2-player strategy is a 5 -tuple

$$
\begin{equation*}
\Gamma=\left(D, E,\left\{\left\{A_{a x}\right\}_{x}\right\}_{a},\left\{\left\{B_{b y}\right\}_{y}\right\}_{b}, \Psi\right) \tag{4}
\end{equation*}
$$

such that D, E are finite dimensional Hilbert spaces, $\left\{\left\{A_{a x}\right\}_{x}\right\}_{a}$ is a family of \mathcal{X}-valued positive operator valued measures (POVMs) on D (indexed by \mathcal{A}), $\left\{\left\{B_{b y}\right\}_{y}\right\}_{b}$ is a family of \mathcal{Y}-valued positive operator valued measures on E, and Ψ is a density operator on $D \otimes E$. In this paper, we assume without loss of generality that Ψ is pure, written as $\Psi=|\psi\rangle\langle\psi|$, and that the operators $A_{a x}$ and $B_{b y}$ are all projectors. We say that the strategy Γ achieves the 2-player correlation $(P(x y \mid a b))$ if $P(x y \mid a b)=\operatorname{Tr}\left[\Psi\left(A_{a x} \otimes B_{b y}\right)\right]$ for all a, b, x, y. A correlation is a quantum correlation if it can be achieved by such a 2-player strategy.

II. LOCAL RANDOMNESS FROM THE NPA HIERARCHY

The goal of this section is to derive an upper bound on Bob's probability of guessing Alice's after playing the CHSH game with her. The method we use is based on the Navascues-Pironio-Acin hierarchy which is introduced in the next subsection.

A. Navascues-Pironio-Acin hierarchy

The Navascues-Pironio-Acin hierarchy, or NPA hierarchy, was introduced to characterize quantum correlations. We briefly sketch the idea behind the hierarchy and refer the reader to [15] for the formal treatment. The NPA hierarchy is an infinite series of conditions which must be satisfied by any quantum correlation.

In the measurement scenario, we assume Alice and Bob share state $|\psi\rangle$ and will apply some measurements determined by the inputs. For compatibility with [15], we use a different notation in this section and assume that each output letter is associated to a unique input letter - i.e., each output letter $x \in \mathcal{X}$ is uniquely associated to a single input $A(x)$. If Alice is given input a, then her only valid outputs are those for which $a=A(x)$.

A behavior P in this measurement scenario is a set of nonnegative values $P=\{P(x, y): x \in$ $\mathcal{X}, y \in \mathcal{Y}\}$ such that $\sum_{x \in a, y \in b} P(x, y)=1$ for any $a \in \mathcal{A}, b \in \mathcal{B}$. The definition of a quantum behavior is as follows. (As we will discuss, it is somewhat different from the definition of quantum correlation.)

Definition 1. A behavior P is a quantum behaviour if there exists a pure state $|\psi\rangle$ in a Hilbert space \mathcal{H}, a set of measurement operators $\left\{E_{x}: x \in \mathcal{X}\right\}$ for Alice, and a set of measurement operators $\left\{E_{y}: y \in\right.$ $\mathcal{Y}\}$ for Bob, such that $\forall x \in \mathcal{X}$ and $\forall y \in \mathcal{Y}$

$$
\begin{equation*}
P(x, y)=\langle\psi| E_{x} E_{y}|\psi\rangle \tag{5}
\end{equation*}
$$

with the measurement operators E satisfying

1. $E_{x}^{\dagger}=E_{x}$ and $E_{y}^{\dagger}=E_{y}$,
2. $E_{x} E_{\bar{x}}=\delta_{x \bar{x}} E_{x}$ if $A(x)=A(\bar{x})$ and $E_{y} E_{\bar{y}}=$ $\delta_{y \bar{y}} E_{y}$ if $B(y)=B(\bar{y})$,
3. $\sum_{x \in A^{-1}(a)} E_{x}=\mathbb{I}$ and $\sum_{y \in B^{-1}(b)} E_{y}=\mathbb{I}$ for all a, and
4. $\left[E_{x}, E_{y}\right]=0$.

The first three properties ensure that the operators E_{x} and E_{y} are projectors and define proper measurements. The fourth property ensures that the measurements by Alice and Bob do not interfere with one another. This definition is similar to the definition of a quantum correlation, but is based on commutativity rather than bipartiteness. Under these definitions, every quantum correlation yields a quantum behavior (i.e., by setting $E_{x}=A_{a x} \otimes \mathbb{I}$, $\left.E_{y}=\mathbb{I} \otimes B_{b y}\right)$ but not necessarily vice versa [21].

The idea of the hierarchy is that if we let \mathcal{O} be any finite set of operators that can be expressed as finite products of elements of the set $\left\{E_{x}\right\}_{x} \cup\left\{E_{y}\right\}_{y}$ (for example, E_{x} or $E_{x} E_{y} E_{y^{\prime}}$), then the matrix Γ given by

$$
\begin{equation*}
\Gamma_{i j}=\langle\psi| O_{i}^{\dagger} O_{j}|\psi\rangle \tag{6}
\end{equation*}
$$

where O_{i}, O_{j} vary over the elements of \mathcal{O}, must be positive semidefinite. Additionally, there are some independent equalities (which depend on the setting) that must be satisfied by the entries of Γ.

We define a sequence of such matrices (certificates) as follows. Since some of the O_{i} 's can be expressed in multiple ways as products of operators from $\left\{E_{x}\right\}_{x} \cup\left\{E_{y}\right\}_{y}$, we define the length of the operator to be the minimum number of projectors needed to generate it. For any $k \geq 1$, the k th certificate ma$\operatorname{trix} \Gamma^{(k)}$ is the matrix associated to the set \mathcal{O} of all operators of length at most k. The fact that $\Gamma^{(k)}$ must be positive semidefinite constrains the possible entries in $\Gamma^{(k)}$, and in particular constrains the values $P(x, y)=\langle\psi| E_{x} E_{y}|\psi\rangle$ which can occur in a quantum behavior. Thus we obtain a hierarchy of constraints on the set of all quantum behaviors.

Measuring the amount of local randomness after a nonlocal game is not as simple as constraining quantum behaviors (Definition 1) since in particular, measurements that Bob uses to guess Alice's output may not commute with the measurements he used to play the game. Fortunately, the NPA hierarchy can also be adapted to scenarios which involve sequential measurements [6, 17]. In the next subsection, we apply an adaptation of the NPA hierarchy to study local randomness for the CHSH game.

B. Application of the NPA hierarchy

The CHSH game is defined on alphabets $\mathcal{X}=\mathcal{Y}=$ $\mathcal{A}=\mathcal{B}=\{0,1\}$, and the input probability

$$
\begin{equation*}
q(a, b)=1 / 4 \tag{7}
\end{equation*}
$$

for all a, b. The score function is

$$
\begin{equation*}
H(a, b, x, y)=x \oplus y \oplus \neg(a \wedge b) \tag{8}
\end{equation*}
$$

for all a, b, x, y.
As usual, we assume that Alice and Bob share some pure state $|\psi\rangle$. First, Alice gets input $a \in \mathcal{A}$ and outputs $x \in \mathcal{X}$. Bob gets input $b \in \mathcal{B}$ and outputs $y \in \mathcal{Y}$. Then, Bob gets Alice's input a and outputs $x^{\prime} \in \mathcal{X}$. Alice's projective measurement for input a and output x is $A_{a x}$. Similarly, the projective measurement operator for input b and output y is $B_{b y}$. To guess Alice's output, Bob's projective measurement is $B_{a b x^{\prime}}^{\prime}$ after he gets Alice's input a and outputs $x^{\prime} \in \mathcal{X}$.

In the semidefinite programming instance, the objective value is Bob's guessing probability, denoted by P_{2}. The constraints include the expression of P_{1} and the commutation relations. Both P_{1} and P_{2} can be expressed by $A_{a x}, B_{b y}$ and $B_{a b x^{\prime}}^{\prime}$. The expressions can be found in Appendix A. We use the third-order certificate to maximize P_{2} for a given P_{1} and get the following data.

The P_{2} values are $1,0.995645,0.977018,0.95783$, $0.938371,0.918742,0.898992,0.879149$ and 0.859229 when P_{1} is ranging from 0.75 to 0.85 (see Figure 1). These points indicate the proved upper bound on Bob's guessing probability. Next, we derive a lower bound on P_{2} to show how close the upper bound is to the actual optimal guessing probability.

First note that the optimal strategy for CHSH involves Alice and Bob sharing a Bell state $\left|\Phi^{+}\right\rangle=$ $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, and Alice performing the X or Z measurement when her input is 0 or 1 , respectively, and Bob performing the $(X+Z) / \sqrt{2}$ or $(X-Z) / \sqrt{2}$ measurement when his input is 0 or 1 , respectively. This strategy achieves a score of $\frac{1}{2}+\frac{\sqrt{2}}{4}$ at CHSH, and moreover Bob can guess Alice's output given her input with probability $\frac{1}{2}+\frac{\sqrt{2}}{4}$, by simply guessing $x \oplus(a \wedge b)$.

Consider the scenario where Alice and Bob share a random coin R. With probability r or $1-r$, the coin R has value 0 or 1 , respectively. If $R=0$, then Alice and Bob always output 0 , and if $R=1$, then Alice and Bob play the optimal CHSH strategy. In the former case, Bob can perfectly guess Alice's output, while in the latter case, he can guess her output with probability $\frac{1}{2}+\frac{\sqrt{2}}{4}$.

Therefore, the expressions of P_{1} and P_{2} in terms of r for this strategy are

$$
\begin{align*}
& P_{1}(r)=\frac{3}{4} r+\frac{2+\sqrt{2}}{4}(1-r) \tag{9}\\
& P_{2}(r)=1 \cdot r+\frac{2+\sqrt{2}}{4}(1-r) . \tag{10}
\end{align*}
$$

Then the expression of P_{2} in terms of P_{1} is

$$
\begin{equation*}
P_{2}=1+\frac{3 \sqrt{2}}{4}-\sqrt{2} P_{1} \tag{11}
\end{equation*}
$$

To generate the plot in Figure 1, we plot the lower bound first. Then we mark the proved data points of the upper bound and connect then with dashed lines to indicate the approximate shape of the upper bound. For the upper bound point above 1, we cut it off by the line $y=1$.

FIG. 1. Plot of the lower and approximate upper bounds of P_{2} against $P_{1} \in(0.75,0.85)$.

The optimal (blind) rate curve for CHSH must lie in between the orange and blue curves in Figure 1.

III. LOCAL RANDOMNESS FROM RIGIDITY

For games with larger alphabets than the CHSH game, using the above adaptation of the NPA hierarchy is more difficult because of the size of the certificates. In the current section we explore how techniques from quantum rigidity can be used to prove blind rate curves. The approach in the current section requires less computation than the NPA hierachy approach, and although the rate curve we achieve lacks the near-optimal properties of our rate curve for CHSH (Figure 1), it is optimal as the score threshold approaches the optimal quantum score.

We study the Magic Square game, which, like CHSH, is a game with two players, Alice and Bob. The input alphabets for Alice and Bob are $\mathcal{A}=\mathcal{B}=\{0,1,2\}$, the input distribution q is uniform, and the output alphabets are the sets of bit strings $\mathcal{X}=\{000,011,101,110\}$ for Alice and $\mathcal{Y}=\{100,010,001,111\}$ for Bob. The game is won
if the inputs a, b and outputs x, y satisfy $x_{b}=y_{a}$, meaning that the b-th bit of x equals the a-th bit of y.

A strategy for the Magic Square game consists of a pure state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and projective measurement families $\left\{\left\{A_{a x}\right\}_{x}\right\}_{a}$ on \mathcal{H}_{A} and $\left\{\left\{B_{b y}\right\}_{y}\right\}_{b}$ on \mathcal{H}_{B}. Note that we can let

$$
\begin{align*}
F_{a b}^{z} & =\sum_{x_{b}=z} A_{a x} \tag{12}\\
G_{a b}^{z} & =\sum_{y_{a}=z} B_{b y} \tag{13}\\
F_{a b} & =F_{a b}^{0}-F_{a b}^{1} \tag{14}\\
G_{a b} & =G_{a b}^{0}-G_{a b}^{1}, \tag{15}
\end{align*}
$$

and then the measurements will satisfy

$$
\begin{align*}
\prod_{b} F_{a b} & =I \tag{16}\\
\prod_{a} G_{a b} & =-I \tag{17}\\
F_{a b} F_{a b^{\prime}} & =F_{a b^{\prime}} F_{a b} \tag{18}\\
G_{a b} G_{a^{\prime} b} & =G_{a^{\prime} b} G_{a b} \tag{19}\\
F_{a b}^{2} & =I \tag{20}\\
G_{a b}^{2} & =I . \tag{21}
\end{align*}
$$

The measurement operators $A_{a x}$ and $B_{b y}$ can be recovered from $\left\{F_{a b}\right\},\left\{G_{a b}\right\}$, and thus to specify a strategy it suffices to specify $|\psi\rangle,\left\{F_{a b}\right\},\left\{G_{a b}\right\}$ satisfying the above conditions. We refer to the triple $\left(|\psi\rangle,\left\{F_{a b}\right\},\left\{G_{a b}\right\}\right)$ as a reflection strategy for the Magic Square game.

Suppose that a reflection strategy $\left(|\psi\rangle,\left\{F_{a b}\right\},\left\{G_{a b}\right\}\right)$ achieves a score of $1-\delta$. Appendix B proves the following inequalities for any $a, a^{\prime}, b, b^{\prime} \in\{0,1,2\}$ with $a \neq a^{\prime}, b \neq b^{\prime}$, using steps from the proof of rigidity for the Magic Square game [25]:

$$
\begin{align*}
\| F_{a b} \otimes G_{a b}|\psi\rangle-|\psi\rangle \| & \leq 6 \sqrt{\delta} \tag{22}\\
\| F_{a b} F_{a^{\prime} b^{\prime}} \otimes I|\psi\rangle+F_{a^{\prime} b^{\prime}} F_{a b} \otimes I|\psi\rangle \| & \leq 6 \sqrt{\delta} \tag{23}
\end{align*}
$$

The next proposition uses the above inequalities to prove that in a high-performing strategy, if Alice measures with $F_{a b}$ and Bob measures with $G_{a^{\prime} b^{\prime}}$, with $a \neq a^{\prime}, b \neq b^{\prime}$, then the outcome of Alice's measurement is nearly undetectable to Bob.

Proposition 2. Let $a, a^{\prime}, b, b^{\prime} \in\{0,1,2\}, z \in\{0,1\}$ be such that $a \neq a^{\prime}, b \neq b^{\prime}$. Let $\left(|\psi\rangle,\left\{F_{a b}\right\},\left\{G_{a b}\right\}\right)$ be a reflection strategy for the Magic Square game
which achieves an expected score of $1-\delta$. Then, the post-measurement states

$$
\begin{equation*}
\operatorname{Tr}_{A}\left[\left(F_{a b}^{0} \otimes G_{a^{\prime} b^{\prime}}^{z}\right)|\psi\rangle\langle\psi|\left(F_{a b}^{0} \otimes G_{a^{\prime} b^{\prime}}^{z}\right)\right] \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Tr}_{A}\left[\left(F_{a b}^{1} \otimes G_{a^{\prime} b^{\prime}}^{z}\right)|\psi\rangle\langle\psi|\left(F_{a b}^{1} \otimes G_{a^{\prime} b^{\prime}}^{z}\right)\right] \tag{25}
\end{equation*}
$$

are separated by trace distance at most $18 \sqrt{\delta}$.
Proof. Applying inequality (23), we have the following, in which we use the notation $u=_{x} v$ to denote that the Euclidean distance between the vectors u and v is no more than x :

$$
\begin{aligned}
F_{a^{\prime} b^{\prime}} F_{a b}^{0} \otimes I|\psi\rangle & =F_{a^{\prime} b^{\prime}}\left(\frac{I+F_{a b}}{2}\right) \otimes I|\psi\rangle \\
& ={ }_{3 \sqrt{\delta}}\left(\frac{I-F_{a b}}{2}\right) F_{a^{\prime} b^{\prime}} \otimes I|\psi\rangle \\
& =F_{a b}^{1} F_{a^{\prime} b^{\prime}} \otimes I|\psi\rangle .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
F_{a^{\prime} b^{\prime}} F_{a b}^{0} \otimes G_{a^{\prime} b^{\prime}}^{z}|\psi\rangle & ={ }_{3 \sqrt{\delta}} & F_{a b}^{1} F_{a^{\prime} b^{\prime}} \otimes G_{a^{\prime} b^{\prime}}^{z}|\psi\rangle \\
& ={ }_{6 \sqrt{\delta}} & F_{a b}^{1} \otimes G_{a^{\prime} b^{\prime}}^{z} G_{a^{\prime} b^{\prime}}|\psi\rangle \\
& = & (-1)^{2} F_{a b}^{1} \otimes G_{a^{\prime} b^{\prime}}^{z}|\psi\rangle
\end{aligned}
$$

Therefore, since $\left\|u u^{*}-v v^{*}\right\|_{1} \leq 2\|u-v\|$ for any unit vectors u, v, we find that the trace distance between the projectors

$$
\begin{equation*}
\left(F_{a^{\prime} b^{\prime}} F_{a b}^{0} \otimes G_{a^{\prime} b^{\prime}}^{z}\right)|\psi\rangle\langle\psi|\left(F_{a b}^{0} F_{a^{\prime} b^{\prime}} \otimes G_{a^{\prime} b^{\prime}}^{z}\right) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(F_{a b}^{1} \otimes G_{a^{\prime} b^{\prime}}^{z}\right)|\psi\rangle\langle\psi|\left(F_{a b}^{1} \otimes G_{a^{\prime} b^{\prime}}^{z}\right) \tag{27}
\end{equation*}
$$

is upper bounded by $18 \sqrt{\delta}$. Applying the partial trace over \mathcal{H}_{A} to both projectors (and dropping the $F_{a^{\prime} b^{\prime}}$ terms, which become irrelevant), we obtain the desired result.

The next corollary follows easily.
Corollary 3. Let $\left(|\psi\rangle,\left\{\left\{A_{a x}\right\}_{x}\right\}_{a},\left\{\left\{B_{b y}\right\}_{y}\right\}_{b}\right)$ be a strategy for the Magic Square game which achieves an expected score of $1-\delta$. Let $a, b, b^{\prime} \in\{0,1,2\}$ be such that $b \neq b^{\prime}$, and suppose that the strategy is executed on inputs a, b and outputs x, y are obtained. Then the probability that Bob can subsequently guess $x_{b^{\prime}}$ given b^{\prime} is no more than $\frac{1}{2}+9 \sqrt{\delta}$.

IV. THE DELETION CERTIFICATION PROTOCOL

We next focus on the problem of certified deletion, which we describe as follows. Alice wishes to interact with an untrusted device $\left(D^{a}\right)$ and a second party (Bob) so as to prepare for herself a random bit m and a classical string k, such that after the interaction is complete the following conditions hold:
(A) If Alice were to give k to Bob immediately, then Bob could recover the bit m.
(B) There is a deletion procedure that Alice and Bob can carry out, involving classical communication only, such that after the protocol is over Bob will not be able to recover m even if he were given k.

Note that this procedure can be used as a form of encryption: if Alice has a predetermined secret message bit $y \in\{0,1\}$ which she wishes to encrypt, then she can execute the same preparation procedure and then transmit the XOR bit $y \oplus m$ to Bob. Recovering or deleting y is then equivalent to recovering or deleting m.

Variants of this problem have been studied in other settings (e.g., [22] in a computational setting, [10, 19] in a bounded storage model). Our setting is the device-independent setting, where the honest user Alice does not trust the quantum processes used in the protocol. Our protocol is based on the Magic Square game. We make the following assumptions:

1. Alice and Bob possess an untrusted 2-part device $D=\left(D^{a}, D^{b}\right)$ which is compatible with the Magic Square game.
2. Alice has the ability to generate private (trusted) randomness.
3. Alice's device D^{a} does not communicate information to Bob or to D^{b} once the protocol is underway.
4. Alice and Bob have the ability to communicate classically.

No assumptions are made about Bob's behavior in particular, he may perform arbitrary operations on any quantum information that is contained inside of the device D^{b} that he possesses. ${ }^{2}$

[^1]It is helpful to change notation from the previous section. The protocol will contain two sequence of inputs to the Magic Square game, one for Alice and one for Bob, which will be denoted by $\boldsymbol{v}^{a}=\left(v_{1}^{a}, v_{2}^{a} \ldots v_{N}^{a}\right)$ and $\boldsymbol{v}^{b}=\left(v_{1}^{b}, v_{2}^{b} \ldots v_{N}^{b}\right)$. The sequences of the outputs will be $\boldsymbol{h}^{a}=\left(h_{1}^{a}, h_{2}^{a} \ldots h_{N}^{a}\right)$ for Alice and $\boldsymbol{h}^{b}=\left(h_{1}^{b}, h_{2}^{b} \ldots h_{N}^{b}\right)$ for Bob. The initial preparation protocol is given Figure 2.

Participants: Alice, Bob
Equipment: A 2-part untrusted device $D=$ $\left(D^{a}, D^{b}\right)$ which is compatible with the Magic Square game.
Parameters: $N \in \mathbb{N}, \epsilon \in[0,1 / 9]$.

1. Alice generates uniformly random sequences $\boldsymbol{v}^{a}, \boldsymbol{v}^{b} \in\{0,1,2\}^{N}$ and chooses a random round $t \in\{1,2, \ldots, N\}$. She chooses $r \in$ $\{0,1,2\} \backslash\left\{v_{t}^{b}\right\}$ at random.
2. Alice gives inputs $v_{1}^{a}, \ldots, v_{N}^{a}$ sequentially to her device and records outputs $h_{1}^{a}, \ldots, h_{N}^{a}$.
3. Alice sets m to be equal to the r th bit of h_{t}^{a} and sets k be equal to the 4 -tuple ($\boldsymbol{v}^{b}, t, r, v_{t}^{a}$).

FIG. 2. The preparation protocol (PREP)
We wish to show first that it is possible for Bob to determine m if he were given k. This is straightforward: if the device $D=\left(D^{a}, D^{b}\right)$ were such that it wins the Magic Square game with probability $1-\epsilon$ at each use, then the protocol in Figure 3 successfully determines m with probability $1-\epsilon$.
4. Alice sends k to Bob.
5. Bob gives the inputs $v_{1}^{b}, \ldots, v_{t-1}^{b}, r, v_{t+1}^{b}, \ldots, v_{N}^{b} \quad$ in sequence to his device and records outputs $h_{1}^{b}, \ldots, h_{N}^{b}$.
6. Bob sets m^{\prime} to be equal to the $\left(v_{t}^{a}\right)$ th bit of h_{t}^{b}.

FIG. 3. The recovery protocol (REC)

Next we wish to show that there is a protocol which makes m unrecoverable for Bob (even while
to possess a quantum system Q and to perform arbitrary operations on it. We have chosen to allow him to have a device because it is easier to express his behavior in the case where he is honest.
it allows Bob to know the key k after the protocol is completed, and allows him to have access to all remaining quantum information in the device D^{b}). We use the protocol $D E L$ in Figure 4, which is also meant to follow the protocol PREP in Figure 2. The protocol has Bob play his side of the Magic Square game and then has Alice check the resulting score. Then at the conclusion of the protocol, Alice reveals the key k to Bob (which is merely a convenience for stating the security of the protocol).
4. For $i=1,2, \ldots, N$, Alice sends Bob the input v_{i}^{b} and Bob sends back an output h_{i}^{b}.
5. Alice computes the average score at the Magic Square game (across N rounds) achieved by the input sequences $\boldsymbol{v}^{a}, \boldsymbol{v}^{b}$ and output sequences $\boldsymbol{h}^{a}, \boldsymbol{h}^{b}$. If this average is greater than or equal to $1-\epsilon$, she accepts Bob's responses; otherwise, she aborts the protocol.
6. Alice sends k to Bob.

FIG. 4. The deletion protocol ($D E L$)

Note that at step 4 in Figure 4, the interactions must be done in sequence (i.e., Alice waits to receive h_{i}^{b} before revealing v_{i+1}^{b}). Bob can use his device D^{b} to obtain his outputs, but we do not require that.

The following theorem asserts the security of the deletion protocol $D E L$. Let $S U C C$ denote the event that Alice "accepts" at step 5 in Figure 4.

Theorem 4. Assume that $P(S U C C)>0$ in protocol DEL. Then, the probability that Bob can guess m at the conclusion of the protocol, conditioned on $S U C C$, is upper bounded by

$$
\begin{equation*}
\frac{1}{2}+9 \sqrt{\epsilon+N^{-1 / 4}}+\frac{e^{-\sqrt{N} / 2}}{P(S U C C)} \tag{28}
\end{equation*}
$$

Note that if we fix a constant $\gamma>0$, assume that $P(S U C C)>\gamma$, and let N tend to infinity, then the upper bound (28) tends to $\frac{1}{2}+9 \sqrt{\epsilon}$.

For the proof of Theorem 4, we will need the following lemma.

Lemma 5. Let I_{i} denote indicator variable for the event that the ith round is won. Let

$$
\begin{equation*}
I_{i}^{\prime}=E\left(I_{i} \mid I_{i-1} I_{i-2} \cdots I_{1}\right) \tag{29}
\end{equation*}
$$

and let $\bar{I}^{\prime}=\left(\sum_{i} I_{i}^{\prime}\right) / N$. Then for any $\mu>0$,

$$
\begin{equation*}
\operatorname{Pr}\left(S U C C \wedge\left(\bar{I}^{\prime}<1-\epsilon-\mu\right)\right) \leq e^{-\frac{N \mu^{2}}{2}} \tag{30}
\end{equation*}
$$

Proof. Let $\bar{I}=\left(\sum_{i} I_{i}\right) / N$. Let

$$
\begin{equation*}
Z_{i}=\sum_{j=1}^{i}\left(I_{j}-I_{j}^{\prime}\right) \tag{31}
\end{equation*}
$$

Then $\left\{Z_{0}, Z_{1}, \ldots, Z_{N}\right\}$ is a martingale:
$E\left(Z_{i+1} \mid Z_{i}, \ldots, Z_{1}\right)=Z_{i}+E\left(I_{i+1} \mid I_{i} \cdots I_{1}\right)-I_{i+1}^{\prime}=Z_{i}$.
Therefore by Azuma's inequality, the probability of the event $\sum_{i}\left(Z_{i}\right)>\mu$ is upper bounded by $e^{-\frac{N \mu^{2}}{2}}$. The event in inequality (30) implies $\sum_{i}\left(Z_{i}\right)>\mu$, and the desired result follows.

Now we can prove the main theorem of this section.

Proof of Theorem 4. By Corollary 3, for any i and any $c \in\{0,1,2\} \backslash v_{i}^{b}$, the probability that Bob can guess the c th bit of h_{i}^{a} is upper bounded by $\frac{1}{2}+$ $9 \sqrt{1-I_{i}^{\prime}}$. Therefore, the probability that Bob can guess m at the conclusion of the protocol $D E L$ is no more than

$$
\begin{equation*}
\left[\sum_{i=1}^{N}\left(\frac{1}{2}+9 \sqrt{1-I_{i}^{\prime}}\right)\right] / N \tag{32}
\end{equation*}
$$

which by the concavity of the square root function is upper bounded by

$$
\begin{equation*}
\frac{1}{2}+9 \sqrt{1-\bar{I}^{\prime}} \tag{33}
\end{equation*}
$$

For any $\mu>0$, we have by Lemma 5 ,

$$
\operatorname{Pr}\left[\bar{I}^{\prime} \geq 1-\epsilon-\mu \mid S U C C\right] \geq 1-\frac{e^{-N \mu^{2} / 2}}{\operatorname{Pr}(S U C C)}
$$

and therefore, conditioned on $S U C C$, Bob's probability of guessing m is upper bounded by

$$
\begin{equation*}
\frac{1}{2}+9 \sqrt{\epsilon+\mu}+\frac{e^{-N \mu^{2} / 2}}{\operatorname{Pr}(S U C C)} \tag{34}
\end{equation*}
$$

Setting $\mu=N^{-1 / 4}$ yields the desired result.

Acknowledgements. This work includes contributions from the National Institute of Standards and Technology and is not subject to U.S. copyright. This research was supported in part by NSF grant 1526928.
[1] Antonio Acín, Daniel Cavalcanti, Elsa Passaro, Stefano Pironio, and Paul Skrzypczyk. Necessary detection efficiencies for secure quantum key distribution and bound randomness. Phys. Rev. A, 93:012319, Jan 2016.
[2] Emily Adlam and Adrian Kent. Device-independent relativistic quantum bit commitment. Physical Review $A, 92(022315), 2015$.
[3] N Aharon, S Massar, S Pironio, and J Silman. Device-independent bit commitment based on the chsh inequality. New Journal of Physics, 18(2):025014, 2016.
[4] Nati Aharon, Andre Chailloux, Iordanis Kerenidis, Serge Massar, and Stefano Pironio. Weak coin flipping in a device-independent setting. In Dave Bacon, Martin Roetteler, and Miguel Martin-Delgado, editors, Proceedings of the 6th Conference on Theory of Quantum Computation, Communication, and Cryptography (TQC), number 6745 in Lecture Notes in Computer Science, pages 1-12, 2011.
[5] Rotem Arnon-Friedman, Renato Renner, and Thomas Vidick. Simple and tight deviceindependent security proofs. arXiv:1607.01797, 2016.
[6] Costantino Budroni, Tobias Moroder, Matthias Kleinmann, and Otfried Gühne. Bounding temporal quantum correlations. Physical Review Letters, 111(2):020403, 2013.
[7] Frederic Dupuis, Omar Fawzi, and Renato Renner. Entropy accumulation. arXiv:1607.01796, 2016.
[8] Artur K. Ekert. Quantum cryptography based on bell's theorem. Phys. Rev. Lett., 67:661-663, Aug 1991.
[9] Rahul Jain, Carl A. Miller, and Yaoyun Shi. Parallel device-independent quantum key distribution. arXiv:1703.05426, 2017.
[10] Jedrzej Kaniewski and Stephanie Wehner. Deviceindependent two-party cryptography secure against sequential attacks. New Journal of Physics, 18, May 2016.
[11] Dominic Mayers and Andrew Yao. Quantum cryptography with imperfect apparatus. In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on, pages 503-509. IEEE, 1998.
[12] Carl A. Miller and Yaoyun Shi. Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices. J. ACM, 63(4):33:1-33:63, October 2016.
[13] Carl A. Miller and Yaoyun Shi. Randomness in nonlocal games between mistrustful players. Quantum Information \mathcal{E} Computation, 17(7\&8):0595-0610, 2017.
[14] Carl A. Miller and Yaoyun Shi. Universal security for randomness expansion from the spot-checking protocol. SIAM Journal on Computing, 46(4):13041335, 2017.
[15] Miguel Navascues, Stefano Pironio, and Antonio Acin. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 10, 2008.
[16] S Pironio, A Acín, S Massar, AB de la Giroday, DN Matsukevich, P Maunz, S Olmschenk, D Hayes, L Luo, TA Manning, et al. Random numbers certified by bell's theorem. Nature, 464(7291):1021, 2010.
[17] Stefano Pironio, Miguel Navascués, and Antonio Acin. Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM Journal on Optimization, 20(5):2157-2180, 2010.
[18] Jeremy Riberio, Glaucia Murta, and Stephanie Wehner. Fully general device-independence for two-party cryptography and position verification. arXiv:1609.08487, 2016.
[19] Jeremy Riberio, Le Phuc Thinh, Jedrzej Kaniewski, Jonas Helsen, and Stephanie Wehner. Deviceindependence for two-party cryptography and position verification. arXiv:1606.08750, June 2016.
[20] J. Silman, A. Chailloux, N. Aharon, I. Kerenidis, S. Pironio, and S. Massar. Fully distrustful quantum bit commitment and coin flipping. Phys. Rev. Lett., 106:220501, Jun 2011.
[21] William Slofstra. Tsirelson's problem and an embedding theorem for groups arising from non-local games. arXiv:1606.03140, 2016.
[22] Dominique Unruh. Revocable quantum timedrelease encryption. J. ACM, 62(6):49:1-49:76, December 2015.
[23] Umesh Vazirani and Thomas Vidick. Certifiable quantum dice: Or, true random number generation secure against quantum adversaries. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC '12, pages 61-76, New York, NY, USA, 2012. ACM.
[24] Umesh Vazirani and Thomas Vidick. Fully deviceindependent quantum key distribution. Phys. Rev. Lett., 113:140501, Sep 2014.
[25] Xingyao Wu, Jean-Daniel Bancal, Matthew McKague, and Valerio Scarani. Device-independent parallel self-testing of two singlets. Physical Review A, 93:062121, Jun 2016.

Appendix A: Expressions of P_{1} and P_{2}

The winning probability of the CHSH game is

$$
\begin{aligned}
P_{1}= & 1 / 4(P(00 \mid 00)+P(11 \mid 00)+P(00 \mid 01)+P(11 \mid 01) \\
& +P(00 \mid 10)+P(11 \mid 10)+P(01 \mid 11)+P(10 \mid 11))
\end{aligned}
$$

where $\operatorname{Pr}(x y \mid a b)=\langle\psi| A_{a x} B_{b y}|\psi\rangle$. Since for any input a and $b, A_{a 1}=\mathbb{I}-A_{a 0}$ and $B_{b 1}=\mathbb{I}-B_{b 0}$, we can express P_{1} in terms of the projectors as

$$
\begin{align*}
& P_{1}=\langle\psi|\left(\frac{3}{4}-\frac{1}{2} A_{00}-\frac{1}{2} B_{00}+\frac{1}{2} A_{00} B_{00}\right. \tag{A1}\\
& \left.+\frac{1}{2} A_{00} B_{10}+\frac{1}{2} A_{10} B_{00}-\frac{1}{2} A_{10} B_{10}\right)|\psi\rangle
\end{align*}
$$

When Bob wants to guess Alice's output x given
a and b, the probability that he can guess correctly is

$$
\begin{array}{r}
P_{2}=1 / 4 \sum_{b, y}(\operatorname{Pr}(0 y 0 \mid 0 b)+\operatorname{Pr}(1 y 1 \mid 0 b) \tag{A2}\\
+\operatorname{Pr}(0 y 0 \mid 1 b)+\operatorname{Pr}(1 y 1 \mid 1 b))
\end{array}
$$

where

$$
\begin{aligned}
\operatorname{Pr}\left(x y x^{\prime} \mid a b\right) & =\langle\psi| A_{a x}^{\dagger} B_{b y}^{\dagger} B_{a b x^{\prime}}^{\dagger} B_{a b x^{\prime}}^{\prime} B_{b y} A_{a x}|\psi\rangle \\
& =\langle\psi| A_{a x}^{\dagger} B_{b y}^{\dagger} B_{a b x^{\prime}}^{\prime} B_{b y}|\psi\rangle
\end{aligned}
$$

The measurement $\left\{\left\{B_{a b x^{\prime}}^{\prime}\right\}_{x^{\prime}}\right\}_{a b}$ is a set of measurements indexed by $(a, b) \in \mathcal{A} \times \mathcal{B} .^{3}$ The two measurements $\left\{\left\{B_{b y}\right\}_{y}\right\}_{b}$ and $\left\{\left\{B_{a b x^{\prime}}^{\prime}\right\}_{x^{\prime}}\right\}_{a b}$ commute with $\left\{\left\{A_{a x}\right\}_{x}\right\}_{a}$.

The probability P_{2} can be expressed in terms of the projectors as $P_{2}=\frac{1}{4}\langle\psi| S|\psi\rangle$ with S defined as

$$
\begin{align*}
\frac{1}{4} S & =\mathbb{I}-\frac{1}{2}\left(A_{00}+A_{10}\right)-\frac{1}{4}\left(B_{000}^{\prime}+B_{010}^{\prime}+B_{100}^{\prime}+B_{110}^{\prime}\right) \\
& +\frac{1}{2}\left(A_{00} B_{000}^{\prime}+A_{00} B_{010}^{\prime}+A_{10} B_{100}^{\prime}+A_{10} B_{110}^{\prime}\right) \\
& +\frac{1}{4}\left(B_{00} B_{000}^{\prime}+B_{000}^{\prime} B_{00}+B_{10} B_{010}^{\prime}+B_{010}^{\prime} B_{10}+B_{00} B_{100}^{\prime}+B_{100}^{\prime} B_{00}+B_{10} B_{110}^{\prime}+B_{110}^{\prime} B_{10}\right) \tag{A3}\\
& -\frac{1}{2}\left(A_{00} B_{00} B_{000}^{\prime}+A_{00} B_{000}^{\prime} B_{00}+B_{00} B_{000}^{\prime} B_{00}\right)-\frac{1}{2}\left(A_{00} B_{10} B_{010}^{\prime}+A_{00} B_{010}^{\prime} B_{10}+B_{10} B_{010}^{\prime} B_{10}\right) \\
& -\frac{1}{2}\left(A_{10} B_{00} B_{100}^{\prime}+A_{10} B_{100}^{\prime} B_{00}+B_{00} B_{100}^{\prime} B_{00}\right)-\frac{1}{2}\left(A_{10} B_{10} B_{110}^{\prime}+A_{10} B_{110}^{\prime} B_{10}+B_{10} B_{110}^{\prime} B_{10}\right) \\
& +A_{00} B_{00} B_{000}^{\prime} B_{00}+A_{00} B_{10} B_{010}^{\prime} B_{10}+A_{10} B_{00} B_{100}^{\prime} B_{00}+A_{10} B_{10} B_{110}^{\prime} B_{10}
\end{align*}
$$

Here we use the relation $B_{a b 1}^{\prime}=\mathbb{I}-B_{a b 0}^{\prime}$ again.

Appendix B: Proof of Inequalities (22)-(23)

We follow steps from the proof of rigidity for the Magic Square game in [25]. (See also [9], which performs a similar derivation based on [25].) By symmetry, it suffices to address the single case where $a=b=0, a^{\prime}=b^{\prime}=1$, so we will assume those values from now on. Denote the probability that

[^2]Alice and Bob lose the Magic Square game on inputs (i, j) by $\delta_{i j}$. The average of these quantities over all $i, j \in\{0,1,2\}$ is equal to δ. By linearity, we can compute the quantities $\delta_{i j}$ from the reflection strategy via the following expression:

$$
\begin{equation*}
\langle\psi| F_{i j} \otimes G_{i j}|\psi\rangle=1-2 \delta_{i j} . \tag{B1}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\| F_{i j} \otimes G_{i j}|\psi\rangle-|\psi\rangle \| & =\sqrt{2-2\langle\psi| F_{i j} \otimes G_{i j}|\psi\rangle} \\
& =2 \sqrt{\delta_{i j}}
\end{aligned}
$$

which proves (22), since $2 \sqrt{\delta_{i j}} \leq 2 \sqrt{9 \delta}=6 \sqrt{\delta}$.
Let $\epsilon_{i j}=2 \sqrt{\delta_{i j}}$. We then have the following, in which we let the expression $u={ }_{x} v$ denote that the Euclidean distance between the vectors u and v is
no more than x.

$$
\begin{aligned}
F_{00} F_{11} \otimes I|\psi\rangle & ={ }_{\epsilon_{11}} F_{00} \otimes G_{11}|\psi\rangle \\
& =-F_{02} F_{01} \otimes G_{21} G_{01}|\psi\rangle \\
& =\epsilon_{01}-F_{02} \otimes G_{21}|\psi\rangle \\
& ={ }_{\epsilon_{02}} I \otimes G_{21} G_{02}|\psi\rangle \\
& =I \otimes G_{21} G_{22} G_{12}|\psi\rangle \\
& ={ }_{\epsilon_{12}} F_{12} \otimes G_{21} G_{22}|\psi\rangle \\
& =\epsilon_{\epsilon_{22}} F_{12} F_{22} \otimes G_{21}|\psi\rangle \\
& =\epsilon_{21} F_{12} F_{22} F_{21} \otimes I|\psi\rangle \\
& =F_{12} F_{20} \otimes I|\psi\rangle \\
& ={ }_{\epsilon_{20}} F_{12} \otimes G_{20}|\psi\rangle \\
& =-F_{11} F_{10} \otimes G_{00} G_{10}|\psi\rangle \\
& =\epsilon_{\epsilon_{10}}-F_{11} \otimes G_{00}|\psi\rangle \\
& =\epsilon_{\epsilon_{00}}-F_{11} F_{00} \otimes I|\psi\rangle
\end{aligned}
$$

Therefore, using the concavity of the square root function,

$$
\begin{aligned}
\| F_{00} \otimes G_{11}|\psi\rangle+F_{11} \otimes G_{00}|\psi\rangle \| & \leq \sum_{i j} \epsilon_{i j} \\
& =2 \sum_{i j} \sqrt{\delta_{i j}} \\
& =2 \cdot 9 \cdot \sum_{i j} \sqrt{\delta_{i j}} / 9 \\
& \leq 2 \cdot 9 \cdot \sqrt{\sum_{i j} \delta_{i j} / 9} \\
& =6 \sqrt{\delta}
\end{aligned}
$$

which implies (23) as desired.

[^0]: ${ }^{1}$ A nonlocal game G has complete support if the input distribution is nonzero on all elements of $\mathcal{A} \times \mathcal{B}$.

[^1]: ${ }^{2}$ We could model Bob's behavior simply by allowing him

[^2]: ${ }^{3}$ Note that it not necessary to make Bob's second measurement depend on the outcome of his first measurement, since that outcome (y) is recoverable from the postmeasurement state of his first measurement.

