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When two players achieve a superclassical score at a nonlocal game, their outputs must contain
intrinsic randomness. This fact has many useful implications for quantum cryptography. Recently
it has been observed (C. Miller, Y. Shi, Quant. Inf. & Comp. 17, pp. 0595-0610, 2017) that such
scores also imply the existence of local randomness — that is, randomness known to one player but
not to the other. This has potential implications for cryptographic tasks between two cooperating
but mistrustful players. In the current paper we bring this notion toward practical realization, by
offering near-optimal bounds on local randomness for the CHSH game, and also proving the security
of a cryptographic application of local randomness (single-bit certified deletion).

Device-independent quantum cryptography [8, 11]
is based on the observation that any Bell inequality
violation guarantees the existence of intrinsic ran-
domness. In particular, the outputs of such an in-
equality are known to be unpredictable to an arbi-
trary adversary. Work in this field over more than
a decade has culminated in recent proofs of security
for quantum key distribution and randomness ex-
pansion that are immune to any errors in quantum
hardware [5, 7, 12, 14, 23, 24].

It has more recently been observed [13] that when
two spatially separated parties violate a Bell inequal-
ity, then the outputs of either player must contain
some unpredictability to the other player. Whereas
global randomness (randomness possessed by both
parties) is useful in cryptographic tasks in which two
players are cooperating, local randomness (random-
ness possessed by one party and unknown to the
other) is potentially useful in cryptographic settings
where the parties are interacting but do not trust
one another. This invites an exploration of quantum
cryptographic protocols that are immunized both
against imperfections in the quantum hardware and
(possibly coordinated) cheating by one of the play-
ers.

Suppose that a nonlocal game G with complete
support! is played by two players, Alice and Bob,
where Alice’s input and output alphabets are A and
X, respectively, and Bob’s input and output alpha-
bets are B and ), respectively. A referee chooses
an input pair (a,b) according to a fixed distribution
and distributes a to Alice and b to Bob, who return
x and y respectively. The results of [13] assert that

1 A nonlocal game G has complete support if the input dis-
tribution is nonzero on all elements of A x B.

if the expected score of Alice and Bob’s strategy ex-
ceeds the best possible classical score by €, then Bob
will not be able to guess Alice’s output with proba-
bility better than (1 —Qg(€2)), even if he were given
Alice’s input. In other words, the pair (a,x) is nec-
essarily more random to Bob than the input letter
a alone. This is an example of blind randomness
expansion, where the word “blind” is used because
one player is blind to the randomness generated by
the other. (This can be compared to the notion of
“bound randomness” in the three-party setting of
[1].)

The results of [13] are highly general but numer-
ically weak. The goals of the current paper are
(1) to demonstrate techniques that prove numeri-
cally strong bounds on local randomness, and (2)
to demonstrate the power of local randomness by
proving security for a specific application (one-shot
certified deletion). Our study is focused on two ex-
ample games, the CHSH game and the Magic Square
game.

Section I reviews some necessary background and
then Section ITA outlines the Navascues-Pironio-
Acin (NPA) hierarchy [15], which has been previ-
ously used to prove lower bounds on global random-
ness [16]. The key difference in the case of local
randomness is that we must bound the behavior of
a party (Bob) who is making two sequential mea-
surements on a single system, rather than a single
measurements on two separated systems as in the
case of global randomness. Fortunately, the NPA
hierarchy can be adapted to handle sequential mea-
surements, as observed in [6, 17]. Using such an
adapted approach, we compute a function F such
that any superclassical score of s at the CHSH game
guarantees that Bob cannot recover Alice’s output
with probability greater than F'(s). The function



F' that we obtain is shown to be optimal within a
margin of 0.02. (See Figure 1).

A downside of the CHSH game is that, even when
a perfectly optimal strategy is used by Alice and
Bob, Bob still has approximately an 85% chance of
guessing Alice’s output bit. For some cryptographic
purposes it is more useful for the player to have a bit
that approximates a perfect coin flip. In Section III
we study the Magic Square game. This game is large
enough that is computationally difficult to apply the
methods from Section II, and so instead we apply
the notion of quantum rigidity, which asserts that
certain nonlocal games have unique winning strate-
gies. It was recently shown that the Magic Square
game [25] is rigid. We build off of the proof in [25]
to show that in any strategy for Magic Square which
achieves an expected score of 1 — €, Alice obtains a
bit that Bob cannot guess with probability greater
than 1/2 + O(y/€). (See Corollary 3.)

Lastly, in Section IV we provide an initial appli-
cation of device-independent local randomness by
showing that it enables single-bit certified deletion.
In this cryptographic problem, Bob possesses an en-
crypted bit which could be read with a key, k,
possessed only by Alice, and the goal is for Alice
and Bob to interact through classical communica-
tion only so that Bob can certifiably delete his copy
of [m]. The resulting deleted state must be unread-
able even if Bob were to later learn k. We prove
that any multi-use device that performs well at the
Magic Square game can be used for certified dele-
tion. A formal statement is given in Theorem 4.
Roughly, the probability that Bob can recover the
bit m after deletion is shown to be no more than
2 4 O(V/€), where € denotes the average probability
that the device loses the Magic Square game, and the
probability that Bob can recover m before deletion
is 1 —O(e).

Our result can be compared to other crypto-
graphic tasks for mistrustful parties in the device-
independent setting. Coin-flipping and bit commit-
ment have been proven in the device-independent
setting [3, 4, 20] with constant (rather than vanish-
ing) bias. Also, strong cryptographic primitives have
been proven under additional assumptions such as
limited quantum storage [10, 18, 19] and relativis-
tic assumptions [2]. Exploring the upper limits of
device-independence in the mistrustful setting ap-
pears to be an interesting open problem.

I. PRELIMINARIES

In this section, we introduce the concepts that for-
mally define nonlocal games and related notations
used through out this paper, starting with the defi-
nition of a 2-player correlation.

Our notation follows [13]. Let A, B denote Al-
ice’s and Bob’s input alphabets, respectively, and
let X,) denote Alice’s and Bob’s output alpha-
bets. A 2-player (input-output) correlation is a vec-
tor (P(xylab)) of nonnegative reals, where (z,y, a,b)
varies over X x ) x A x B, such that

Z P(zylab) =1

for all pairs (a,b), and such that the quantities
P(zl|a) =32, P(zylab),  P(y|b) := 3=, P(zylab)

are independent of b and a, respectively. (The lat-
ter conditions are referred to as the “non-signaling”
constraints.)

A 2-player game is a pair (¢, H) where

q: Ax B —10,1] (1)
is a probability distribution and
H: AxBxXxY—][0,1] (2)

is a function. If ¢(a,b) # 0 for all a € A and b € B,
the game is said to have a complete support. The
expected score associated to such a game for a 2-
player correlation (P(zylab)) is

> qla,b)H(a,b,z,y)P(zylab). (3)

a,b,x,y
A 2-player strategy is a 5-tuple

I'=(D,E,{{Aaw}ata: {{Boy}ty}o. ¥) (4

such that D, F are finite dimensional Hilbert spaces,
{{Auz}z}a is a family of X-valued positive operator
valued measures (POVMs) on D (indexed by A),
{{Buy}y}s is a family of Y-valued positive operator
valued measures on F, and ¥ is a density operator on
D®E. In this paper, we assume without loss of gen-
erality that ¥ is pure, written as ¥ = |¢) (¢|, and
that the operators A,, and By, are all projectors.
We say that the strategy I' achieves the 2-player cor-
relation (P(zyl|ab)) if P(zylab) = Tr[¥(Ass ® Buy)]
for all a,b, z,y. A correlation is a quantum correla-
tion if it can be achieved by such a 2-player strategy.



II. LOCAL RANDOMNESS FROM THE
NPA HIERARCHY

The goal of this section is to derive an upper
bound on Bob’s probability of guessing Alice’s af-
ter playing the CHSH game with her. The method
we use is based on the Navascues-Pironio-Acin hier-
archy which is introduced in the next subsection.

A. Navascues-Pironio-Acin hierarchy

The Navascues-Pironio-Acin hierarchy, or NPA
hierarchy, was introduced to characterize quantum
correlations. We briefly sketch the idea behind the
hierarchy and refer the reader to [15] for the formal
treatment. The NPA hierarchy is an infinite series of
conditions which must be satisfied by any quantum
correlation.

In the measurement scenario, we assume Alice and
Bob share state |¢) and will apply some measure-
ments determined by the inputs. For compatibility
with [15], we use a different notation in this section
and assume that each output letter is associated to a
unique input letter — i.e., each output letter x € X
is uniquely associated to a single input A(z). If Al-
ice is given input a, then her only valid outputs are
those for which a = A(z).

A behavior P in this measurement scenario is a
set of nonnegative values P = {P(z,y) : =z €
X,y € Y} such that >° ., P(z,y) = 1 for any
a € A,b € B. The definition of a quantum behavior
is as follows. (As we will discuss, it is somewhat
different from the definition of quantum correlation.)

Definition 1. A behavior P is a quantum behaviour
if there exists a pure state |¢) in a Hilbert space H,
a set of measurement operators {E, : © € X} for
Alice, and a set of measurement operators {E, : y €
Y} for Bob, such that Vx € X and Vy € Y

with the measurement operators E satisfying
1. El = E, and E; =FE,,

2. EyE; = 0,zE, if A(x) = A(Z) and E By =
Sy By if B(y) = B(Y),

8 Ywea1@Pe=Tand 3° 514y Ey =1 for
all a, and

4. [Ea, E,] = 0.

The first three properties ensure that the oper-
ators F, and E, are projectors and define proper
measurements. The fourth property ensures that
the measurements by Alice and Bob do not inter-
fere with one another. This definition is similar to
the definition of a quantum correlation, but is based
on commutativity rather than bipartiteness. Under
these definitions, every quantum correlation yields
a quantum behavior (i.e., by setting F, = A, ® 1,
E, =1® By,) but not necessarily vice versa [21].

The idea of the hierarchy is that if we let O be
any finite set of operators that can be expressed as
finite products of elements of the set {E,}, U{E,},
(for example, E, or E,E,E,), then the matrix I’
given by

Ty = (¥|0]0; ) (6)
where O;, O; vary over the elements of O, must be
positive semidefinite. Additionally, there are some
independent equalities (which depend on the set-
ting) that must be satisfied by the entries of T".

We define a sequence of such matrices (certifi-
cates) as follows. Since some of the O;’s can be
expressed in multiple ways as products of operators
from {E,},U{E,},, we define the length of the oper-
ator to be the minimum number of projectors needed
to generate it. For any k > 1, the kth certificate ma-
triz T™) is the matrix associated to the set O of all
operators of length at most k. The fact that I'(*)
must be positive semidefinite constrains the possi-
ble entries in T'*)| and in particular constrains the
values P(z,y) = (¢ | E,E, | ¢¥) which can occur in
a quantum behavior. Thus we obtain a hierarchy of
constraints on the set of all quantum behaviors.

Measuring the amount of local randomness after
a nonlocal game is not as simple as constraining
quantum behaviors (Definition 1) since in particular,
measurements that Bob uses to guess Alice’s output
may not commute with the measurements he used to
play the game. Fortunately, the NPA hierarchy can
also be adapted to scenarios which involve sequen-
tial measurements [6, 17]. In the next subsection, we
apply an adaptation of the NPA hierarchy to study
local randomness for the CHSH game.

B. Application of the NPA hierarchy

The CHSH game is defined on alphabets X =) =
A =8B ={0,1}, and the input probability

q(a,b) =1/4 (7)
for all a,b. The score function is
H(a,b,z,y) =x®y®-(aAb). (8)



for all a,b,x,y.

As usual, we assume that Alice and Bob share
some pure state |¢). First, Alice gets input a € A
and outputs x € X. Bob gets input b € B and out-
puts y € Y. Then, Bob gets Alice’s input a and
outputs ’ € X. Alice’s projective measurement for
input a and output x is A,,. Similarly, the projec-
tive measurement operator for input b and output
y is Byy. To guess Alice’s output, Bob’s projective
measurement is B!, , after he gets Alice’s input a
and outputs 2’ € X.

In the semidefinite programming instance, the ob-
jective value is Bob’s guessing probability, denoted
by P,. The constraints include the expression of
P; and the commutation relations. Both P; and P»
can be expressed by A, By, and B(/sz/- The ex-
pressions can be found in Appendix A. We use the
third-order certificate to maximize P» for a given P;
and get the following data.

The P, values are 1, 0.995645, 0.977018, 0.95783,
0.938371, 0.918742, 0.898992, 0.879149 and 0.859229
when P is ranging from 0.75 to 0.85 (see Figure 1).
These points indicate the proved upper bound on
Bob’s guessing probability. Next, we derive a lower
bound on P, to show how close the upper bound is
to the actual optimal guessing probability.

First note that the optimal strategy for CHSH in-
volves Alice and Bob sharing a Bell state |®1) =
% (|00) + |11)), and Alice performing the X or Z
measurement when her input is 0 or 1, respectively,
and Bob performing the (X +Z)/v2 or (X —2Z)/v/2
measurement when his input is 0 or 1, respectively.
This strategy achieves a score of % + % at CHSH,
and moreover Bob can guess Alice’s output given her
input with probability % + %, by simply guessing
@ (aAD).

Consider the scenario where Alice and Bob share a
random coin R. With probability r or 1 —r, the coin
R has value 0 or 1, respectively. If R = 0, then Alice
and Bob always output 0, and if R = 1, then Alice
and Bob play the optimal CHSH strategy. In the
former case, Bob can perfectly guess Alice’s output,
while in the latter case, he can guess her output with
probability % + %.

Therefore, the expressions of P; and P, in terms
of r for this strategy are

Then the expression of P, in terms of P is

2
P2=1+¥—\/§P1. (11)

To generate the plot in Figure 1, we plot the lower
bound first. Then we mark the proved data points
of the upper bound and connect then with dashed
lines to indicate the approximate shape of the upper
bound. For the upper bound point above 1, we cut
it off by the line y = 1.

100jkemmmmmn % « Upper bound
g . Lower bound
.

Bob’s guessing probability

P

078 078 080 082

CHSH winning probability

FIG. 1. Plot of the lower and approximate upper bounds
of P, against P, € (0.75,0.85).

The optimal (blind) rate curve for CHSH must lie
in between the orange and blue curves in Figure 1.

IIT. LOCAL RANDOMNESS FROM
RIGIDITY

For games with larger alphabets than the CHSH
game, using the above adaptation of the NPA hi-
erarchy is more difficult because of the size of the
certificates. In the current section we explore how
techniques from quantum rigidity can be used to
prove blind rate curves. The approach in the cur-
rent section requires less computation than the NPA
hierachy approach, and although the rate curve we
achieve lacks the near-optimal properties of our rate
curve for CHSH (Figure 1), it is optimal as the score
threshold approaches the optimal quantum score.

We study the Magic Square game, which, like
CHSH, is a game with two players, Alice and
Bob. The input alphabets for Alice and Bob are
A = B = {0,1,2}, the input distribution ¢ is
uniform, and the output alphabets are the sets of
bit strings X = {000,011,101, 110} for Alice and
Y = {100,010,001,111} for Bob. The game is won



if the inputs a,b and outputs x,y satisfy x, = ya,
meaning that the b-th bit of  equals the a-th bit of

Y.
A strategy for the Magic Square game consists of
a pure state 1)) € Ha ® Hp, and projective mea-

surement families {{ A4z}, }, on Ha and {{Bby}y}b
on Hp. Note that we can let

;b = Z Aaw (12)

Tp==z
ab = Z By, (13)
Ya=2
Fop = ng - F;b (14)
Gap = ng - Gzlzb’ (15)

and then the measurements will satisfy

HFab =1 (16)
b
HGab =-1 (17)

FopFop = Fay Fap (18)
GaGarb = GarpGap (19)
Fy = (20)
G% =1 (21)

The measurement operators A,, and By, can be
recovered from {F,p},{Gap}, and thus to specify a
strategy it suffices to specify |[¢), {Fap}, {Gap} satis-
fying the above conditions. We refer to the triple
(|0),{Fab},{Gar}) as a reflection strategy for the
Magic Square game.

Suppose that a reflection strategy
(|),{Fab},{Gap}) achieves a score of 1 — 4.
Appendix B proves the following inequalities for
any a,a’,b,b’ € {0,1,2} with a # a’,b # b, using
steps from the proof of rigidity for the Magic Square
game [25]:

[Fab ® Gap [1) — [0)]| <6V (22)
| Fap Farty @ I [)) + Fory Fap @ T |1)|| <6V (23)

The next proposition uses the above inequalities to
prove that in a high-performing strategy, if Alice
measures with Fj; and Bob measures with G,
with @ # a,b # b/, then the outcome of Alice’s
measurement is nearly undetectable to Bob.

Proposition 2. Let a,a’,b,b' € {0,1,2}, z € {0,1}
be such that a # a’,b #b'. Let (|V),{Fup},{Gap})
be a reflection strategy for the Magic Square game

which achieves an expected score of 1 —§. Then, the
post-measurement states

Tra [(Fo, ® GLu) [ONUI(FQ, ® GLy)] - (24)
and

Tra [(Fap ® Gou ) YOI (Fap ® GLy)] - (25)
are separated by trace distance at most 18v/6.
Proof. Applying inequality (23), we have the follow-

ing, in which we use the notation v =, v to denote
that the Euclidean distance between the vectors u

and v is no more than z:
I+ F,
Foy ( b) @ I[)

I— Fab
:3\/3 ( 2 > Fa’b/ ® I|'l/)>
= FYFayI).
Therefore,

Fay Fy @ Gy 1) —=3V5 FoFay @ Gy [¥)
=65 Falb ® Gé/b/Ga’b’ ‘¢>
= (F1)F,®Giy )

Therefore, since ||uu* —vv*|; < 2||u — v for any
unit vectors u, v, we find that the trace distance be-
tween the projectors

(Farv Fy @ Gl [N (Fy Fary @ Ginyr) (26)
and
(Fy ® G ) [OXY|(Fly @ Gy (27)

is upper bounded by 18v/5. Applying the partial
trace over H 4 to both projectors (and dropping the
F,py terms, which become irrelevant), we obtain the
desired result. O

The next corollary follows easily.

Corollary 3. Let <|1/J>,{{Aam}x}a , {{Bby}y}b) be
a strategy for the Magic Square game which achieves
an expected score of 1 — 4. Let a,b,b' € {0,1,2} be
such that b # b, and suppose that the strategy is
executed on inputs a,b and outputs x,y are obtained.
Then the probability that Bob can subsequently guess
Ty given b’ is mo more than % +9V/0.



IV. THE DELETION CERTIFICATION
PROTOCOL

We next focus on the problem of certified deletion,
which we describe as follows. Alice wishes to interact
with an untrusted device (D®) and a second party
(Bob) so as to prepare for herself a random bit m and
a classical string k, such that after the interaction is
complete the following conditions hold:

(A) If Alice were to give k to Bob immediately,
then Bob could recover the bit m.

(B) There is a deletion procedure that Alice and
Bob can carry out, involving classical commu-
nication only, such that after the protocol is
over Bob will not be able to recover m even if
he were given k.

Note that this procedure can be used as a form of
encryption: if Alice has a predetermined secret mes-
sage bit y € {0, 1} which she wishes to encrypt, then
she can execute the same preparation procedure and
then transmit the XOR bit y & m to Bob. Recover-
ing or deleting y is then equivalent to recovering or
deleting m.

Variants of this problem have been studied in
other settings (e.g., [22] in a computational setting,
[10, 19] in a bounded storage model). Our setting
is the device-independent setting, where the honest
user Alice does not trust the quantum processes used
in the protocol. Our protocol is based on the Magic
Square game. We make the following assumptions:

1. Alice and Bob possess an untrusted 2-part de-
vice D = (D%, D®) which is compatible with
the Magic Square game.

2. Alice has the ability to generate private
(trusted) randomness.

3. Alice’s device D* does not communicate infor-
mation to Bob or to D’ once the protocol is
underway.

4. Alice and Bob have the ability to communicate
classically.

No assumptions are made about Bob’s behavior —
in particular, he may perform arbitrary operations
on any quantum information that is contained inside
of the device D that he possesses.?

2 We could model Bob’s behavior simply by allowing him

It is helpful to change notation from the pre-
vious section. The protocol will contain two se-
quence of inputs to the Magic Square game, one for
Alice and one for Bob, which will be denoted by
v? = (v§,v§...v%) and v* = (v, 08 ... v%). The se-
quences of the outputs will be h* = (h{,h§ ... hY%)
for Alice and h® = (k%  hS ... hY) for Bob. The ini-
tial preparation protocol is given Figure 2.

Participants: Alice, Bob

Equipment: A 2-part untrusted device D =
(D*, D) which is compatible with the Magic Square
game.

Parameters: N € N, € € [0,1/9].

1. Alice generates uniformly random sequences
v*, v’ € {0,1,2}" and chooses a random
round ¢ € {1,2,...,N}. She chooses r €
{0,1,2} ~ {vP} at random.

2. Alice gives inputs v{,...,v% sequentially to
her device and records outputs h{,...,h%.

3. Alice sets m to be equal to the rth bit of h{
and sets k be equal to the 4-tuple (v°, ¢, 7, v¢).

FIG. 2. The preparation protocol (PREP)

We wish to show first that it is possible for Bob to
determine m if he were given k. This is straightfor-
ward: if the device D = (D%, D) were such that it
wins the Magic Square game with probability 1—e at
each use, then the protocol in Figure 3 successfully
determines m with probability 1 — e.

4. Alice sends k to Bob.

5. Bob gives the
b b b b .
Viye ooy Ug—1,T, V15 -+, UN m

to his device and records outputs kS, ..

inputs
sequence
. R
6. B;)b sets m’ to be equal to the (vf)th bit of
hi.

FIG. 3. The recovery protocol (REC)

Next we wish to show that there is a protocol
which makes m unrecoverable for Bob (even while

to possess a quantum system @ and to perform arbitrary
operations on it. We have chosen to allow him to have a
device because it is easier to express his behavior in the
case where he is honest.



it allows Bob to know the key k after the protocol
is completed, and allows him to have access to all
remaining quantum information in the device DP).
We use the protocol DEL in Figure 4, which is also
meant to follow the protocol PRE P in Figure 2. The
protocol has Bob play his side of the Magic Square
game and then has Alice check the resulting score.
Then at the conclusion of the protocol, Alice reveals
the key k to Bob (which is merely a convenience for
stating the security of the protocol).

4. Fori=1,2,...,N, Alice sends Bob the input
v? and Bob sends back an output h?.

5. Alice computes the average score at the Magic
Square game (across N rounds) achieved by
the input sequences v, v® and output se-
quences h®, h®. If this average is greater than
or equal to 1 —¢, she accepts Bob’s responses;
otherwise, she aborts the protocol.

6. Alice sends k to Bob.

FIG. 4. The deletion protocol (DEL)

Note that at step 4 in Figure 4, the interactions
must be done in sequence (i.e., Alice waits to receive
h? before revealing v?, ;). Bob can use his device D"
to obtain his outputs, but we do not require that.

The following theorem asserts the security of the
deletion protocol DEL. Let SUCC denote the event
that Alice “accepts” at step 5 in Figure 4.

Theorem 4. Assume that P(SUCC) > 0 in proto-
col DEL. Then, the probability that Bob can guess

m at the conclusion of the protocol, conditioned on
SUCC, is upper bounded by

e“/ﬁ/2

1
- N-1/4 .
g TOVer t psueo)

(28)

Note that if we fix a constant v > 0, assume that
P(SUCC) > 7, and let N tend to infinity, then the
upper bound (28) tends to 1 + 9/c.

For the proof of Theorem 4, we will need the fol-
lowing lemma.

Lemma 5. Let I; denote indicator variable for the
event that the ith round is won. Let

I'=E( | L; 1I;_o--- 1), (29)

and let T = (>>,I))/N. Then for any p > 0,

— .2
Pr(SUCCA(T <1—e—p))<e * . (30)
Proof. Let I = (3, 1;)/N. Let
Zi =Y (I - Ij). (31)
j=1
Then {Zy, Z1,...,ZN} is a martingale:
E(Zi|Ziy. . Z1) = Zi+ E(Liga|I;--- 1) — IZ{Jrl =

Therefore by Azuma’s inequality, the probability of

2
the event ) .(Z;) > p is upper bounded by e~
The event in inequality (30) implies > .(Z;) > p,
and the desired result follows. O

Now we can prove the main theorem of this sec-
tion.

Proof of Theorem 4. By Corollary 3, for any 4 and
any ¢ € {0,1,2} \ v%, the probability that Bob can
guess the cth bit of A{ is upper bounded by % +
94/1 — I/. Therefore, the probability that Bob can
guess m at the conclusion of the protocol DEL is no
more than

N
1
[Z (2 +9/1— Ig)] /N, (32)
i=1

which by the concavity of the square root function
is upper bounded by

1 _
5 TOV1- T, (33)
For any i > 0, we have by Lemma 5,
Pril’ >1 sUce) s 1- S
>1—e— >1—- -
il 21 -e—p| 121- 5 sucoy

and therefore, conditioned on SUCC, Bob’s proba-
bility of guessing m is upper bounded by

1 e~ NK*/2 4

-+ 9y —_—. 3

p PIVET It Blsto) (34)
Setting p1 = N~1/* yields the desired result. O
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Appendix A: Expressions of P, and P>

The winning probability of the CHSH game is

Py = 1/4(P(00/00) 4 P(11]00) + P(00]01) + P(11]01)
+P(00[10) + P(11]10) + P(01]11) 4+ P(10[11)),

where Pr(zylab) = (¥|AazBpy|1). Since for any in-
put @ and b, A,y =1 — A, and Bp; = I — Byg, we
can express P in terms of the projectors as

3 1 1 1
b = <¢|(Z - 51400 - 5300 + 51400300

1 1 1
+§A00310 + 51410300 - §A10310)|¢>~

(A1)

When Bob wants to guess Alice’s output = given

J

a and b, the probability that he can guess correctly
is

Py =1/4> " (Pr(0y0]0b) + Pr(1y1|0b)
by (A2)
+Pr(0y0|1b) + Pr(1y1[1b))

where
Pr(wya’|ab) = (¥| AL, Bl B} Bl Buy Aaa )
= (MAijgy :zbr’Bby|w>'

The measurement {{B/, .}, }ab i & set of measure-
ments indexed by (a,b) € Ax B.2 The two measure-
ments {{Bypy}y}e and {{B;, }+ tap commute with
{Aaate o

The probability P, can be expressed in terms of
the projectors as P, = 1(1)|S|¢)) with S defined as

1 1 1
ZS =I- §(A00 + Auo) — Z(B(')oo + B + Bloo + Biio)

1
+§(A003600 + Aoo By + A10 B0 + A10B110)

1
JrZ(BOOBEJOO+BéooBOOJFBlOB(I)loWLB(I)loBloJFBOOBiooJFBiooBOO+BlOBhoJFBhoBlO)

1
2

1
(AooBooB{go + AooBiooBoo + BooBogoBoo) — 3

(A3)
(AooB10Bjro + AooBhigBio + BioB{1Bio)

1 1
*5(14103003/100 + A10B' 09 Boo + BooB1ooBoo) — 5(14103103110 + A10B119B1o + BioB119Bio)
+ Ao Boo Bhoo Boo + Aoo B1oBj19B1o + A10Boo B’ Boo + A10B1o B¢ Bio-

. ;L p .
Here we use the relation By, =1 — B, again.

Appendix B: Proof of Inequalities (22)—(23)

We follow steps from the proof of rigidity for the
Magic Square game in [25]. (See also [9], which per-
forms a similar derivation based on [25].) By sym-
metry, it suffices to address the single case where
a=0b=0,d =¥V =1, so we will assume those
values from now on. Denote the probability that

3 Note that it not necessary to make Bob’s second measure-
ment depend on the outcome of his first measurement, since
that outcome (y) is recoverable from the postmeasurement
state of his first measurement.

(

Alice and Bob lose the Magic Square game on in-
puts (7,j) by d;;. The average of these quantities
over all 7,7 € {0,1,2} is equal to ¢. By linearity, we
can compute the quantities 6;; from the reflection
strategy via the following expression:

(Y Fij @ Gij [¢) = 1 — 20;. (B1)

Therefore,

1Fj © Gig [9) = [9)]| = \/2 = 2(¢[ Fyj ® Gij [¢)
=2 57lj7

which proves (22), since 2./8;; < 2v/96 = 61/0.

Let ¢ = 2% We then have the following, in
which we let the expression v =, v denote that the
Euclidean distance between the vectors u and v is



no more than z. Therefore, using the concavity of the square root

function,
FooF11 @ 1Y) =¢,, Foo @ G11 |¢)
= —FyFy ® G21Go |¢)
=cor —Fo2 ® Ga1 1) oo @ G )+ P @ Goo J0)1] = Z v
=cor 1 ® G21Go2 V) g
= I®GuGpGi2|y) B 2%’: Vi
=15 Fl2 ® G21Ga2 |1/)>
=epo F12F22 ® G21 [¢) Y ; Vsl

=ep1 F12F20F5 ® I |1))

= FioFyeI|Y) <2.9. Z5ij/9
e20 F19® Gy |’(/)> ij

= —F11Fi0 ® GooGio [¥) = 6V/6,
=ci0 —F11 ® Goo [¢)
=coo —F11F00 @ I [1)) which implies (23) as desired.
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