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Quantum weak values arise when the mean outcome of a weak measurement made on certain
preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum
observable. Here, we propose how to determine quantum weak values for superpositions of states
with macroscopically or mesoscopically distinct mode number, that might be realised as two-mode
Bose-Einstein condensate and photonic NOON states. Specifically, we give a model for a weak
measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak meas-
urement arises from a quantum nondemolition measurement of number difference, which for atomic
NOON states can be realised via the ac Stark effect using an optical meter prepared in a coherent
state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the
system under the action of a nonlinear Josephson Hamiltonian, we show how postselection results in
quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally
invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

I. INTRODUCTION

It would seem impossible that the outcome of a mea-
surement of a quantum observable could yield an aver-
age that is outside the eigenvalue range associated with
the observable spectra. Yet such a paradoxical situa-
tion was predicted by Aharonov, Albert and Vaidman in
their paper entitled “How the result of a measurement
of a component of the spin of a spin 1/2 particle can
turn out to be 100” [1]. The situation arises for the out-
comes of so-called weak measurements [1–15]. Weak mea-
surements are measurements that couple weakly to the
quantum system being measured, so as to give a minimal
disturbance to that system. In their paper, Aharonov,
Albert and Vaidman explained how one can perform a
weak measurement of the spin σz of a spin 1/2 particle
and obtain a result where the average 〈σz〉 exceeds 100.

The paradoxical measurement outcomes that lead to
the strange predictions are called quantum weak values
[1–4, 6–15]. Weak values arise as the outcomes of weak
measurements on systems prepared by preselection and
postselection. The weak values are created by the phe-
nomenon of quantum interference and have been used to
interpret quantum mechanics in scenarios where quan-
tum interference leads to counter-intuitive predictions
[3, 11, 12, 16]. The weak measurements and weak val-
ues also have practical application, in providing a means
to monitor a quantum system with a demonstrably mini-
mal disturbance to that system [3]. For this reason, weak
measurements have been used to test Leggett-Garg’s
form of macro- and micro-realism in experiments that
show violation of Leggett-Garg inequalities [3, 7–15].

The topic of weak values has attracted much inter-
est. The experimental prediction of Aharonov, Albert
and Vaidman has been realised at the level of a spin 1/2
system by Pryde et al, who demonstrated weak values for
a photonic qubit [4]. Their weak measurement scheme
involved a single photon interacting with the photonic
qubit in a process that created an entangled state. The
experiment detected weak values outside the eigenvalue

range for the spin σz defined by the polarisation of the
photon.

Goggin et al applied the weak measurement of Pryde
et al in an experiment that demonstrated failure of the
Leggett-Garg premises for the microscopic photonic sys-
tem [9]. The Leggett-Garg premises are: firstly, that the
system must be, prior to the measurement, in one spin
state or the other (“up” or “down”); and, secondly, that a
measurement can in principle be performed on the system
to determine which spin state the system is in, without
interfering with the subsequent two-state spin dynamics
[17]. The measurement perceived by Leggett and Garg is
called the non-invasive measurement. The connection be-
tween quantum weak values and the violation of Leggett-
Garg inequalities was formalised by Ruskov et al, Jordan
et al, and Williams and Jordan, who showed that if a
weak measurement is used as the non-invasive measure-
ment, then the violation of the inequalities is associated
with the appearance of weak values [7, 8].

While there has been much progress and insight gained
into quantum mechanics using weak values, to date this
has not been fully extended to mesoscopic or macroscopic
systems. Weak measurements have been used to probe
quantum states and to demonstrate violation of Leggett-
Garg inequalities in superconducting circuits [10, 14].
Williams and Jordan proposed the implementation of a
weak measurement with quantum weak values for solid-
state qubits, that could be generalised to macroscopic
superconducting systems based on the assumption of a
macroscopic qubit [8]. This was followed by an experi-
mental observation of weak values for a superconducting
circuit [6]. However, to our knowledge, there has been no
experimental report of quantum weak values for superpo-
sition states involving even moderate numbers of photons
or atoms. The potential for weak values in mesoscopic
atomic systems was illustrated by Huang and Agarwal
[20], who studied the quantum interference arising from
two close-lying atomic coherent states, and showed how
the phase shift due to the quantum interference can be
amplified using weak measurements.
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In this paper, we consider a quantum weak value
gedanken experiment that applies to NOON states, given
as [21, 22]

|NOON〉 = dN |N〉a|0〉b + d0|0〉a|N〉b (1)

Here |N〉a and |N〉b are number states for two modes
(that we denote by a and b) and d0, dN are probability
amplitudes. We give a model for a quantum measure-
ment of the spin of the two-mode quantum system, the
spin being defined as Ŝz/2N where Ŝz is the two-mode
Schwinger operator for the number difference between
the two modes. The interaction due to the measurement
couples a meter system to the quantum system, with a
coupling strength γ, creating an entanglement between
the meter and quantum system [23, 24]. In the limit
of large γ, a final homodyne detection would collapse
the quantum system into a state of definite spin, thus
completing the von Neumann measurement process. For
weak coupling γ, this collapse does not take place and
the system is minimally disturbed by the measurement.
For all γ, however, the average spin 〈Ŝz〉 can be correctly
evaluated.

Similar to Ref. [8], we demonstrate weak values by
considering a unitary evolution from a time t2 to a time
t3 that rotates the probability amplitudes associated with
the NOON state, while retaining the two-state nature of
the system. The weak values are obtained by postse-
lecting the result for the measurement at time t2 given
a result at time t3. We show that the two-state NOON
unitary evolution can be realised to an excellent approx-
imation by the Hamiltonian used to model two trapped
Bose-Einstein condensates with a Josephson coupling,
in certain parameter regimes that include nonlinear ef-
fects [25–32]. In fact, by solving the two-mode nonlinear
Josephson Hamiltonian, we find that weak values are pre-
dicted over a range of parameter values, including where
the system is not the ideal NOON state at time t3, but
rather a superposition of two mesoscopically distinguish-
able states with a range of outcomes for Ŝz. This suggests
an experimental realisation to be feasible.

The proposed weak measurement opens a way to test
mesoscopic realism using weak values and NOON states.
This is because a measurement can be constructed for
the system at a time t2 that can be justified as nonin-
vasive for the test of the Leggett-Garg inequality. We
give details of how one can experimentally demonstrate
the non-invasiveness of the weak measurement, and give
predictions for such an experiment, confirming the con-
nection between the observation of weak values and the
violation of the Leggett-Garg inequalities for a macro-
scopic superposition. A preliminary description of this
proposal for a Leggett-Garg test of macro-realism has
been presented in a Letter [33].

The paper is organised as follows. In Sections II and
III we give details of the weak measurement model of
the spin Ŝz. In Section IV we show how the weak values
emerge for the postselected spin at time t2. The Leggett-
Garg test of meso-realism and the Josephson Hamilto-

nian is explained in Section V. In Section VI, we give
predictions for weak values and violation of Leggett-Garg
inequalities using the Josephson model in the non-ideal
case.

II. A QND MEASUREMENT FOR SPIN

We consider a two-mode system. The boson creation
and destruction operators for the modes are â†, â and
b̂†, b̂ respectively and we will denote the modes by the
symbols a and b. The operators Ĵz = (â†â − b̂†b̂)/2,
Ĵx = (â†b̂ + b̂†â)/2, Ĵy = (â†b̂ − b̂†â)/2i, N̂ = â†â +

b̂†b̂ are the Schwinger spin operators (we take ~ = 1).
For convenience, we introduce the population (number)
difference operator Ŝz = 2ĴZ . Thus,

Ŝz = â†â− b̂†b̂ = n̂a − n̂b (2)

where n̂a = â†â and n̂b = b̂†b̂. The objective is to give
a (non-invasive) measurement of the spin Jz (or Ŝz) of
the two-mode system. The two-mode system could be a
Bose-Einstein condensate (BEC) in a double well poten-
tial [25–29, 32], a two-component BEC where each com-
ponent is associated with a distinct atomic levels and a
distinct mode [31], or a two-mode photonic state [21]. In
the weak value gedanken experiment that we discuss in
Section III, a weak measurement is to be performed at a
time t2 (Figure 1).

We consider the quantum non-demolition (QND) mea-
surementM for Ĵz = Ŝz/2 described by the measurement
Hamiltonian [23, 24]

HM = ~GŜzn̂c/2 (3)

The measurement is performed by coupling the two-mode
system to an optical field. The field is modelled as a sin-
gle mode with boson operator ĉ and number operator
n̂c = ĉ†ĉ. The optical “meter” field is prepared in a co-
herent state |γ〉 and coupled to the two-mode system for
a time τ . The measurement interaction is modelled by
the Hamiltonian HM where G is the coupling constant.

In this paper, we consider systems that are eigenstates
of N̂ = â†â+b̂†b̂. We denote the total number of particles
(atoms or photons) as N . Assuming a pure state, the
general form of the two-mode state immediately prior to
measurement is

|ψ〉in =

N∑
m=0

dm|m〉a|N −m〉b (4)

where dm are probability amplitudes. As a first step, we
consider how to measure 〈Sz〉 of this state. The output
after the measurement is given by

|ψ〉out = e−iHτ/~
∑
m

dm|m〉a|N −m〉b|γ〉c

=

N∑
m=0

dm|m〉a|N −m〉b|γeiGτ(N−2m)〉c (5)
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Figure 1. Schematic of an experiment to detect weak values
for NOON states: A system is prepared in a NOON state
at the time t2. Here, the preparation involves N bosons in
a mode a incident on a nonlinear medium at time t1 as de-
scribed in Sections IV and V. A second mode b is initially
in a vacuum state. The nonlinear interaction is modelled by
the Hamiltonian HI . This interaction is symbolised by the
nonlinear beam splitter NLBS1, where θ denotes the time
of interaction t2 − t1 in scaled units (see main text). The
spin Si is defined to be +1 or −1 according to the sign of the
mode number difference at time ti. Once the NOON state is
prepared by the first nonlinear beam splitter, a weak QND
measurement M of the spin S2 takes place at time t2, as de-
picted by the purple shading. The measurement interaction
is described by the Hamiltonian HM . After the measurement,
the system evolves under the action of HI for a time denoted
φ (in scaled units), as symbolised by the second nonlinear
beam splitter NBS2. Assuming an near-instantaneous meas-
urement, the time φ is t3−t2 in scaled units. After the second
interaction, a strong measurement of S3 takes place at time
t3. Weak values are observed when the value 〈S2〉S3=1 of the
spin S2 conditional on the result S3 = 1 exceeds the eigen-
value bounds given by |〈S2〉| ≤ 1.

The state after an interaction time τ = π/2NG is:

|ψ〉 =
N∑
m=0

dm|m〉a|N −m〉b|γeiπ(N−2m)/2N 〉c (6)

Homodyne detection on the optical system enables meas-
urement of the meter quadrature phase amplitude p̂ =
(ĉ − ĉ†)/i. For γ large, the different values of Ŝz are
measurable by outcomes for p̂ and the two-mode system
after the homodyne measurement collapses to a state of
definite Ŝz. This is the limit of a strong or projective
measurement. More generally, for all values of γ, it has
been shown by Ilo-Okeke and Byrnes [24] that

〈Ŝz〉 = −
1

2γ
〈p̂〉 (7)

The average of p̂ gives the value for the average of the
Schwinger spin Ŝz of the incident two-mode state. This
relation is true for all values of γ including the limit where
γ → 0, called the weak measurement limit.

III. A WEAK MEASUREMENT ON NOON
STATES

Our interest in this paper is where the incident state
(4) before the measurementM is a macro- or mesoscopic
superposition state. Specifically, we consider the case

where the two-mode system (4) is the ideal NOON state
given by

|ψ〉in = d0|0〉a|N〉b + dN |N〉|0〉b (8)

In this case, the outcome of the measurement Ŝz is ei-
ther N or −N . For later convenience, we suppose the
measurement is made on the system at the time t2, so
that the state |ψin〉 before the measurement is created at
time t2 (Figure 1). We define S2 to be the outcome of
the normalised measurement Ŝ defined as Ŝ = Ŝz/N at
this time t2. More generally, we define the outcome of
the measurement of Ŝ at time ti to be Si.

Where the input state incident (4) on the measurement
device is the NOON state (8), the final state (6) after
measurement M can be written:

|ψ〉 = d0|0〉a|N〉b|iγ〉c + dN |N〉a|0〉b| − iγ〉c (9)

This state describes an entanglement of the two-mode
quantum system with the meter field. The two outputs
(the two-mode state and the meter field) are next spa-
tially separated, and a measurement is then made of the
quadrature p̂ = 1

i (ĉ− ĉ
†) of the meter field. For γ large,

the two different values ±N for Ŝz (and hence of S2) are
measurable by the different sign of the outcomes for p̂.
The two-mode system after the homodyne measurement
collapses to a state of definite Ŝz, either the eigenstate
|N〉a|0〉b with eigenvalue N or the eigenstate |0〉a|N〉b
with eigenvalue −N .

A measurement of the meter quadrature p thus yields a
measurement of the spin S2. We can evaluate 〈p̂〉 directly
from (9) to give the relationship

〈p̂〉 = 2γ(|d0|2 − |dN |2)
= −2γ 〈S2〉 (10)

Details are given in the Appendix. Here we have used
〈S2〉 = |dN |2−|d0|2, which is the expectation value of S2

for the initial two-mode state (8). We see that 〈S2〉 =
− 1

2γ 〈p̂〉 consistent with the general result (7) given in
Ref. [24]. The average of p̂ will give the value for the
average of the Schwinger spin of the incident two-mode
state.

We suppose as in Figure 1 that the measurement M
takes place at a time t2. The time t1 is reserved for earlier
events that lead to the preparation of the NOON state
at time t2. We next consider that the two-mode state
evolves for a time t under an interaction Hamiltonian
HI , and that a projective measurement is made at the
later time t3. The Hamiltonian is unspecified at this
stage, except that it conserves the total particle number
N . We will consider that the measurement time τ is
small compared to the later evolution time t so that we
take t = t3 − t2. Under the evolution due to HI , the
output state (6) (or (9)) produced immediately after the
measurement at time t2 evolves to a new state at the
time t3. The Hamiltonian HI is such that the two-mode
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state |m〉|N −m〉 evolves to the state given by∑
n

c(m)
n |n〉|N − n〉 (11)

where c(m)
n are probability amplitude constants. The final

output state including the meter field is:

|ψ(t3)〉 =
∑
m

dm|γeiπ(N−2m)/2N 〉c
∑
n

c(m)
n |n〉a|N − n〉b

(12)
An experimentalist can measure S3 at the final time t3.
The experimentalist can also measure the outcome p of
the measurement p̂ of the meter field, and obtain the
correlation 〈pS3〉. We next evaluate 〈pS3〉 and compare
with 〈S2S3〉.

In this section, we take the case where just prior to
the measurement at time t2 the two-mode system is in
the NOON state (8). At time t3, after measurement and
after the subsequent evolution, the overall state is given
by Eq. (12) which we simplify as:

|ψ(t3)〉 = d0|γe+iπ/2〉c
∑
n

c(0)
n |n〉a|N − n〉b

+dN |γe−iπ/2〉c
∑
n

c(N)
n |n〉a|N − n〉b

(13)

We evaluate 〈pS3〉 = 〈ψ(t3)|pS3|ψ(t3)〉. Using that

〈S2S3〉 = |dN |2
(
−
∑

n<N/2

∣∣∣c(N)
n

∣∣∣2 + ∑
n>N/2

∣∣∣c(N)
n

∣∣∣2)
− |d0|2

(
−
∑

n<N/2

∣∣∣c(0)
n

∣∣∣2 + ∑
n>N/2

∣∣∣c(0)
n

∣∣∣2)
(14)

we find

〈S2S3〉 = −
1

2γ
〈pS3〉 (15)

Details of the calculation are given in the Appendix. In
summary, if immediately prior to measurement at time
t2 the two-mode system is in the generalised NOON state
(8), then we have confirmed the relation (15). This re-
lation is true for all values of the measurement coupling
strength γ. The weak measurement result where γ → 0
gives the same average as the strong (projective) mea-
surement result (large γ).

The expression (15) enables a weak measurement strat-
egy to be employed for a Leggett-Garg test of macro-
scopic or mesoscopic realism. The measurement M at
time t2 is made with a very small γ. The measurement
can then be demonstrated to be noninvasive in the limit
of γ → 0. The average 〈pS3〉 can be determined accu-
rately by measuring over many trials, to give an accurate
value for 〈S2S3〉 that can be used to test the LG inequal-
ity. This approach was used in the experiment of Goggin
et al, for N = 1 [9].

IV. WEAK VALUES

Continuing with the case where we make a weak mea-
surement at time t2 on a NOON state (8), we now show
how weak values emerge from the weak measurement
(Figure 1). In the case where the system is in a NOON
state, the possible values of Si at time ti are +1 and −1.
Where the values of Ŝz may be different to ±N at time
t3, as is the case for non-ideal states examined in Section
VI, we define the binned measurement S̃3 made at time
t3 to be +1 if the outcome Sz of Ŝz satisfies Sz ≥ 0, and
−1 if Sz < 0. To realise quantum weak values, we will
evaluate the mean value for S2, given that the result +1 is
detected for S̃3. Weak values are observed when the value
〈S2〉S̃3=1 of the spin S2 conditional on the result S̃3 = 1

exceeds the eigenvalue bounds given by |〈S2〉| ≤ 1.
At time t3, after the weak measurement and after the

subsequent evolution, the state is given by Eq. (12). We
expand into a superposition of states giving a positive
value of S̃3 and states giving a negative value of S̃3:

|ψ(t3)〉 = d0|γe+iπ/2〉c
∑

n≥N/2

c(0)
n |n〉a|N − n〉b

+ dN |γe−iπ/2〉c
∑

n≥N/2

c(N)
n |n〉a|N − n〉b

+ d0|γe+iπ/2〉c
∑

n<N/2

c(0)
n |n〉a|N − n〉b

+ dN |γe−iπ/2〉c
∑

n<N/2

c(N)
n |n〉a|N − n〉b (16)

Here we have allowed that a state more general than a
NOON state may be generated at time t3. An experimen-
talist can measure S3 at the final time t3 and postselect
for the outcome S̃3 = 1. Where the system at time t3
is in a NOON state, the postselection is conditional on
S3 = 1. The experimentalist can also measure p̂ of the
meter field, and obtain the mean value for the outcomes
p (and hence the inferred S2) conditional on the result
S̃3 = 1. We denote these conditional moments as 〈p〉S̃3=1,
or 〈S2〉S3=1. We see that

〈p〉S̃3=1 =

∫
pP (p, S3 ≥ 0)dp

P (S3 ≥ 0)
(17)

where

P (S3 ≥ 0) =

∫
P (p, S3 ≥ 0)dp (18)

Using the general state given in Eq. (16) we obtain

P (p, S3 ≥ 0) = |d0|2
∣∣∣〈p|γe+iπ/2〉

∣∣∣2 ∑
n≥N/2

∣∣∣c(0)
n

∣∣∣2
+ |dN |2

∣∣∣〈p|γe−iπ/2〉∣∣∣2 ∑
n≥N/2

∣∣∣c(N)
n

∣∣∣2
+Int (19)



5

where

Int = d∗0dN 〈γe+iπ/2|p〉c〈p|γe−iπ/2〉
∑

n≥N/2

c(0)∗
n c(N)

n

d∗Nd0〈γe−iπ/2|p〉c〈p|γe+iπ/2〉
∑

n≥N/2

c(N)∗
n c(0)

n

(20)

is a quantum interference term. In fact

〈
p|γe±iπ2

〉
=

exp
(
−p

2

4 + γ2e±iπ

2 − γ2

2 − ipγe
±iπ2

)
(2π)1/4

(21)

and
∣∣〈p|γe±iπ/2〉∣∣2 = e

−
(
p√
2
−
√

2γ

)2

√
2π

. Hence we can evalu-
ate the conditional moments once we specify the evolu-
tion during the time from t2 to t3.

In the next Section, we consider an evolution HI that
gives rise to a violation of a Leggett-Garg inequality. We
will restrict to this case. We thus consider the interac-
tion Hamiltonian HI defined in Section V that evolves
an initial state |0〉a|N〉b at time t2 into the state

cos(t3 − t2)|0〉a|N〉b + i sin(t3 − t2)|N〉a|0〉b (22)

at the later time t3. Here time ti is expressed in suitably
scaled units, which will be defined in the next section.
The interaction also evolves the state |N〉a|0〉b at time t2
into the state

i sin(t3 − t2)|0〉a|N〉b + cos(t3 − t2)|N〉a|0〉b (23)

defined at time t3. Hence we substitute in the expression
(16)

c
(0)
0 = cos(t3 − t2)

c
(0)
N = i sin(t3 − t2)

c
(N)
0 = i sin(t3 − t2)

c
(N)
N = cos(t3 − t2) (24)

All other coefficients are zero. In this case, S̃3 = S3 since
an ideal NOON state is created at time t3. Using Eq.
(17), we find

P (p, S3 ≥ 0) =
|d0|2|c(0)

N |2√
2π

e
−
(
p√
2
−
√

2γ
)2

+
|dN |2|c(N)

N |2√
2π

e
−
(
p√
2

+
√

2γ
)2

+ Int (25)

Hence∫
pP (p, S3 ≥ 0)dp = 2γ

(
|d0|2|c(0)

N |
2 − |dN |2|c(N)

N |2
)

= −γ cos2 θ (26)

where we note the interference terms do not contribute
to this term, since

∫∞
−∞ exp

(
−p

2

2 − 2γ2
)
pdp = 0. Also,

P (S3 ≥ 0) = |d0|2|c(0)
N |

2 + d∗0dNc
(0)∗
N c

(N)
N e−2γ2

+d∗Nd0c
(N)∗
N c

(0)
N e−2γ2

+ |dN |2|c(N)
N |2

(27)

which simplifies to

P (S3 ≥ 0) =
1

2

(
1− sin θe−2γ2

)
(28)

We find

〈S2〉S3=1 = − 1

2γ
〈p〉S3=1

=
cos θ

1− sin θe−2γ2 (29)

The form of this result agrees with that derived by Wil-
liams and Jordan, based on a similar two-state evolution
and assuming a stroboscopic “kicked” weak QND meas-
urements [8, 34].

As one example that is relevant to tests of Leggett-
Garg inequalities, we consider where the initial state pre-
pared at time t2 is a generalised NOON state with amp-
litudes dN = cos(θ/2) and d0 = i sin(θ/2) and θ = π/3,
and we select t3 − t2 = π/4. The limits of 〈S2〉S3=1 for
γ → 0 and γ → ∞ are then 3.73 and 0.5 respectively.
The threshold for the weak value where 〈S2〉S3=1 > 1 is
γ < γ0 given by γ0 = 0.5241. In Figure 2 we plot the
value 〈S2〉S3=1 versus γ. Weak values that are outside
the eigenvalue range of | 〈S2〉S3=−1 | ≤ 1 are evident for
where γ < γ0.

0 1 2
0

2

4

0 1 2
0.2

0.3

0.4

0.5

Figure 2. Weak values for NOON states: The measured value
of 〈S2〉S3=1 and 〈S2〉S3=−1 versus γ for θ = t2 − t1 = π/3
and φ = t3 − t2 = π/4. The predictions for 〈S2〉S3=1 show
values outside the eigenvalue range bounded by ±1, for all
γ < 0.5241.

In a similar fashion, we calculate the prediction for
〈S2〉S3=−1. Calculation gives∫

pP (p, S3 < 0)dp = 2γ(|d0|2|c(0)
0 |2 − |dN |2|c

(N)
0 |2)

(30)

and

P (S3 < 0) = |d0|2|c(0)
0 |2 + |dN |2|c

(N)
0 |2

+d∗0dNc
(0)∗
0 c

(N)
0 e−2γ2

+ d∗Nd0c
(N)∗
0 c

(0)
0 e−2γ2

(31)
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leading to

〈S2〉S3=−1 = − 1

2γ
〈p〉S3=−1

=
cos θ

1 + sin θe−2γ2 (32)

For the choice θ = π/3, we find 〈S2〉S3=−1 < 0.5 for all γ,
implying no weak value prediction for these parameters.

V. LEGGETT-GARG TEST USING WEAK
MEASUREMENTS

One may consider a Leggett-Garg test of macroscopic
realism using NOON states and the weak measurements
proposed in this paper. Leggett and Garg proposed to
test macroscopic realism, by considering a two-state sys-
tem where the two states are in some sense “macroscopic-
ally distinct” e.g. a cat that is dead or alive [17]. Leggett
and Garg defined two premises that embody the meaning
of macroscopic realism. The two premises are summar-
ised in the Introduction.

Leggett and Garg (LG) showed how the two premises
(referred to as macro-realism (MR)) constrain the dy-
namics of a two-state system. Considering three success-
ive times t3 > t2 > t1, the variable Si denotes which of
the two states the system is in at time ti, the respective
states being denoted by Si = +1 or −1. The LG premises
imply the LG inequality [7, 17]

〈S1S2〉+ 〈S2S3〉 − 〈S1S3〉 ≤ 1 (33)

Defining the parameter LG ≡ 〈S1S2〉 + 〈S2S3〉 − 〈S1S3〉
this is also expressed as −3 ≤ LG ≤ 1. It is also possible
to define the “no disturbance” or “no signalling in time”
condition given by the equality

dσ = 〈S3|σ〉M − 〈S3|σ〉 = 0

that are also implied by the Leggett-Garg macro-realism
premises, where M represents the non-invasive measure-
ment [35, 36]. Here 〈S3|σ〉M (and 〈S3|σ〉) is the expect-
ation value of S3 given that the measurement M̂ is per-
formed (or not performed) at time t2, conditional on the
system being prepared in a state denoted σ at time t1.
The Leggett-Garg inequalities are predicted to be viol-
ated for quantum systems [10, 17].

Figure 1 illustrates the proposed LG experiment based
on the NOON states and weak measurement. The sys-
tem at time t1 is prepared in a state with definite spin
S1 = 1. The system we consider evolves at time t2 to
a NOON state (8). The QND measurement M given by
(3) is made on this state at time t2. The measurement
M can be made as a weak measurement, or as a strong
projective measurement, depending on the value of γ. In
fact because the state at time t1 is deterministically pre-
pared in the state with positive spin, 〈S1S2〉 = 〈S2〉 and
〈S1S3〉 = 〈S3〉. In this proposal, the 〈S2S3〉 is measured

using a weak QND measurement M of S2 at time t2 and
a strong measurement of S3 at time t3.

We consider that between times t1 and t2, and from
after the measurement at time t2 until time t3, the system
evolves according to the Josephson two-mode Hamilto-
nian [25, 28, 30, 31]

HI = 2~κĴx + ~gĴ2
z (34)

The κ represents the intermode coupling and g the non-
linear self-interaction due to the medium. Regimes exist
where a two-state oscillation (of period TN ) takes place
(Fig. 3 ) [28, 32]. If the system is prepared in |N〉a|0〉b
at time t1, then, in this parameter regime, at a later time
t2 the state vector is to a good approximation given by
(apart from an overall phase factor)

|ψ(t)〉 = cos(t2 − t1)|N〉|0〉+ i sin(t2 − t1)|0〉|N〉(35)

Here ti = E∆t
′
i/~ is the time defined in scaled units so

that t′i is the actual time in seconds and E∆ is the energy
splitting of the energy eigenstates |N〉|0〉 ± |0〉|N〉 under
HI . In one state, |N〉a|0〉b, all N atoms are in the mode
a and in the second state, |0〉a|N〉b, all atoms are in the
mode b [28]. As in Figure 1, we suppose that the system
also evolves under this unitary evolution from t2 (after
the measurement M) to t3. However, between times t1
and t2, we note that the NOON state at time t2 might
be prepared by a different method [21].

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Figure 3. Near-ideal two-state dynamics: We show the meso-
scopic two-state oscillation predicted for the Hamiltonian HI
with N = 5 and g/κ = 2 and time t is in units of κ−1.

The two-time correlation for a measurement of spin Si
at time ti followed by a later measurement of spin Sj at
time tj is 〈SiSj〉 = cos [2(tj − ti)]. This is independent
of the outcome at time ti, which determines whether the
system is projected into |N〉|0〉 or |0〉|N〉. Choosing t1 =
0, t2 = π/6, t3 = π/3, it is well-known that for this
two-time correlation the quantum prediction is LG = 1.5
which gives a violation of (33) [17]. Alternatively, one
can select the values t1 = 0, t2 = π/6 and t3 = 5π/12 in
units of E∆/~, to give a value LG = 1.37. Figure 3 shows
solutions of the Hamiltonian HI for N = 5 and g = 1,
confirming the correlation functions that give violations
of the LG inequality in this regime.
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In any experimental test of the Leggett-Garg inequal-
ities, the question becomes how to perform the ideal non-
invasive measurement at the time t2. For any real meas-
urement made at time t2, it could be argued that the
measurement is not in fact non-invasive, and therefore
that the Leggett-Garg inequalities would not apply. The
approach taken here, which is well-documented in the
literature, is to perform a weak measurement at time t2
[7, 9, 14]. We will show that the weak measurement in
the limit of γ → 0 can be justified as noninvasive for the
input state at time t2, and yet yields the required av-
erage 〈S2S3〉 for the test of the Leggett-Garg inequality.
While this provides a convincing test of the Leggett-Garg
macro-realism, we point out that alternative approaches
are possible. The “clumsiness” of a QND measurement
can be accounted for, by performing additional meas-
urements and using a modified Leggett-Garg inequality
[36, 37]. This approach is particularly useful for strong
QND measurements where γ is large, and has been ap-
plied to superconducting qubits [36]. The recent papers
of Zhou et al [38] and Formaggio et al [39] demonstrate
violation of modified Leggett-Garg inequalities that are
based on the assumption of stationarity.

Our proposed experiment is as follows. We assume in
this Section that we do indeed generate the ideal statist-
ics of the two-state system, so that the evolution is given
by Eq. (35). After preparation in the state |N〉|0〉 at
time t1, the system evolves for a time t2− t1 = θ/2. The
state at time t2 is therefore

|ψ(t2)〉 = cos
θ

2
|N〉|0〉+ i sin

θ

2
|0〉|N〉 (36)

We then assume the time t3 is such that t3 − t2 = π/4.
In this gedanken experiment, we distinguish between

moments that are measured with the weak measurement
M occurring at the time t2, or not. The former moments
are denoted by the subscript M . In Figure 4, the cor-
relation functions 〈S1S2〉M = 〈S2〉M , 〈S1S3〉M = 〈S3〉M
and 〈S2S3〉M are plotted versus θ . We note that for all
γ,

〈S2〉M = 〈S2〉 = −
1

2γ
〈p〉 = cos θ (37)

This value is independent of γ i.e. whether the meas-
urement at time t2 is a weak measurement or a strong
measurement. The moment

〈S2S3〉M = − 1

2γ
〈pS3〉 = cos(2(t3 − t2)) (38)

is also independent γ and is independent of θ. Hence we
can write 〈S2S3〉 = 〈S2S3〉M , although we note that the
measurements made with smaller values of γ will have
increased statistical error [9]. In this paper, we examine
the case where t3 − t2 = π/4 and hence 〈S2S3〉 = 0 for
all γ.

0 2 4 6
-1

0

1

0 2 4 6
-1

0

1

0 2 4 6
-1

0

1

0 2 4 6
-1

0

1

Figure 4. Correlations associated with the violation of the LG
inequality: The graphs show 〈S1S2〉M , 〈S2S3〉M , 〈S1S3〉M and
〈S1S3〉. The 〈SiSj〉M are evaluated with the measurement at
time t2 as illustrated in Figure 1. The 〈S1S3〉 is evaluated
without a measurement at time t2. The averages 〈S1S2〉M and
〈S2S3〉M are independent of the strength γ of the measure-
ment M . By contrast, 〈S1S3〉M → 〈S1S3〉 only when γ → 0.

A significant difference occurs, however, between
〈S1S3〉M and 〈S1S3〉. We see that without the meas-
urement M at time t2, the moment is

〈S1S3〉 = cos(2(t3 − t1)) = − sin θ

For a finite γ with the QND measurement M occurring
at the intermediate time t2, we calculate the 〈S1S3〉M as
follows

〈S1S3〉M = P (S3 ≥ 0)− P (S3 < 0)

= − sin θe−2γ2

The relevant probabilities were defined and calculated in
the previous section. In Figure 4, it is clear that as γ → 0,
〈S1S3〉M → 〈S1S3〉, indicating a minimal disturbance of
the system being measured by the weak measurement.
This no-disturbance can be measured in a control ex-
periment, and is used to justify the non-invasive nature
of the measurement M for the purpose of testing the
Leggett-Garg inequality, given as

〈S1S2〉M + 〈S2S3〉M − 〈S1S3〉M ≤ 1 (39)

By contrast, there is a distinct difference between
〈S1S3〉M and 〈S1S3〉 for γ large, which corresponds to a
strong projective measurement of the spin S2 at time t2.
In Figure 5 we plot the difference dσ = 〈S1S3〉M−〈S1S3〉
as the disturbance equality [35, 36].



8

0 2 4 6
-1

0

1

Figure 5. Measure of disturbance for the weak measurement:
We calculate the value of the moments 〈S1S3〉M and 〈S1S3〉.
The difference is defined as the disturbance dσ, plotted here
for various measurement strength γ.

In Figures 6 and 7 we plot the violation of the LG in-
equality by plotting the LG parameter LG = 〈S1S2〉M +
〈S2S3〉M −〈S1S3〉M versus θ, for different values of weak
measurement strength γ. At θ/2 = π/6, the optimal
value of LG = 1.37 is possible for small γ. The viola-
tion is possible because for small γ the measurement is
non-invasive. For strong γ, violations are not possible
using this particular approach with the inequality (39),
because the invasive measurement acts on the system at
time t2 causing a collapse of the wave function into a
state of definite spin. The violations that occur in the
weak measurement regime are directly associated with
the presence of weak values [7]. The correlation between
the weak values and the violation of the Leggett-Garg
inequality is evident in Figures 6 and 7.
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Figure 6. Correlation between violation of the LG inequal-
ity and weak values: The top graph shows 〈S2〉S3=1 versus
θ. In the left lower graph, we plot LG = 〈S1S2〉M +
〈S2S3〉M − 〈S1S3〉M . In the right lower graph, we plot
LG = −〈S1S2〉M − 〈S2S3〉M − 〈S1S3〉M defined with the sign
of S2 changed. The Leggett-Garg inequalities are violated
when LG > 1. This corresponds to a weak value regime,
observed when |〈S2〉S3=1| > 1.
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Figure 7. As for Figure 6, but here the top graph shows
〈S2〉S3=−1. In the left graph, we plot LG = 〈S1S2〉M −
〈S2S3〉M + 〈S1S3〉M defined with the sign of S3 changed. In
the right graph, plotted is LG = −〈S1S2〉M + 〈S2S3〉M +
〈S1S3〉M defined with the signs of S2 and S3 changed.

VI. WEAK VALUES WITH NON-IDEAL
STATES

A. With an ideal NOON state at time t2

Let us assume an ideal generalised NOON state has
been generated at time t2. This is not unrealistic for
small N > 1. For example, for N = 2 the Hong-Ou-
Mandel effect creates a NOON state [21, 22]. Proposals
for more macroscopic NOON states use conditioning on
measurements of Jz [40]. However, for the generation
of the quantum state according to the dynamics of HI ,
the state formed at t3 is not an ideal NOON state. We
examine the effect of this on the weak values and the
violation of the LG inequalities.

First, we note that the pure general input state at time
ti is of the form

|ψ〉in =

N∑
m=0

dm|m〉a|N −m〉b (40)

given by (4). It is straightforward to show that 〈Si〉 =
− 1

2γ 〈p〉 for all input states of this type where the total
number N of bosons is fixed. This means that the ex-
pression can be used in the more general case for the
evaluation of the spin averages. This is also true of the
〈S2S3〉 where the state at time t2 is the NOON state.
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Figure 8. Violation of the LG inequality and weak values for
non-ideal evolution after time t2: Plots show the weak values
and violation of the Leggett-Garg inequality as for Figure 6,
but where the state generated at time t3 evolves after time
t2 according to the Hamiltonian HI . Here N = 5, g = 2
(top and lower left) and g = 104.43 (top and lower right).
We use t3 − t2 = TN/4 where TN is the oscillation period in
dimensionless units (see main text).
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Figure 9. As for Figure 8, but with the parameters defined
in Figure 7. Here N = 5, g = 2 (top and lower left) and
g = 104.43 (top and lower right).

To evaluate the weak values accounting for the general
evolution with HI , we consider the generalised equations
(16-19) that allow for a non-ideal state at time t3. Specifi-
cally, the HamiltonianHI is such that the two-mode state
|0〉|N〉 evolves to the state given by

∑
n c

(0)
n |n〉|N − n〉

and two-mode state |N〉|0〉 evolves to the state given by∑
n c

(N)
n |n〉|N − n〉 where c(m)

n are constants. In Figures
8, 9 and 10, we plot the predictions for 〈p̂〉S3=1 where we
use the values of the precise coefficients c(N)

n and c(0)
n gen-

erated by the evolution with H, for N = 5 and N = 10.

These have been evaluated by the numerical program
that yielded the plots of Figure 3. The oscillation time is

given by TN = 2π
ωN

where ωN = 2~g N
(N−1)!

(
κ
g

)N
[28].

The weak values and Leggett-Garg violations are tol-
erant to the non-ideal coefficients, at least for smaller N .
For larger N corresponding to a BEC, it is known that
the parameter regime for oscillation is more difficult to
achieve, a phenomenon known as macroscopic quantum
self-trapping [26]. This regime may not be impossible
however using alternative realisations of the nonlinear
Josephson Hamilton [41–43].
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Figure 10. As for Figure 8, with parameters defined as for
Figure 6. Here N = 10, g = 6.6.

B. Non-ideal NOON state at time t2

We conclude by noting that where the state at time t2
is not an ideal NOON state, evaluating 〈S2S3〉 by way
of the measurement given by HM is more subtle. To
illustrate, let us consider where the two-mode state im-
mediately prior to the measurement at time t2 is

|ψ〉 = dna |na〉a|N − na〉b + dN−na |N − na〉a|na〉b (41)

In this case, the state immediately after the measurement
at time t2 is

|ψ〉 = dna |na〉a|N − na〉b|γeiπ(N−2na)/2N 〉c
+dN−na |N − na〉a|na〉b|γe−iπ(N−2na)/2N 〉c

(42)

based on Eq. (6). We consider that the state
|na〉a|N − na〉b, (|N − na〉a|na〉b) evolves as described
by a Hamiltonian to the state

∑
n c

(na)
n |n〉|N − n〉(∑

n′ c
(N−na)
n′ |N − n′〉|n′〉

)
in a time t3 − t2. We then

find (see the Appendix)

〈pS3〉 = −2γ sin
( π

2N
(N − 2na)

)
〈S2S3〉 (43)

This is similar to the earlier result (15) except that the
measurement strength is diminished by the sin factor.
The calculation indicates that where a general superpo-
sition (4) is prepared at time t2, the simple weak mea-
surement relation of type (15) does not hold. A more
careful analysis is required to place a bound on the value
of 〈S2S3〉 given the measured 〈pS3〉. This is feasible, but
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will not be addressed in this paper. The result (43) is
useful however. This is because in some cases, the meso-
scopic superposition state (41) is easier to prepare than
the NOON state. It has been shown that the state (41)
is generated over shorter timescales than the traditional
NOON state, in BEC systems [26, 28]. Considerations
of timescale are important where decoherence effects are
significant.

VII. CONCLUSION

In summary, we have demonstrated the possibility of
detecting quantum weak values using NOON states. We
consider a specific QND measurement of the Schwinger
spin, defined as the population difference for two levels
with a bosonic occupation. This QND measurement can
be realised for atomic systems using an ac Stark shift
[24]. The measurement is also applicable to states pre-
pared in polarisation modes, as in polarisation squeezing
experiments, where the observables are defined in terms
of Stokes operators [44]. The QND measurement in the
limit of small coupling corresponds to a weak measure-
ment of the Schwinger spin, meaning that it gives the
correct average spin for the prepared quantum state, but
with a vanishingly small disturbance of the state. By
analysing the case where the measurement is made on a
quantum system prepared in a NOON state, we demon-
strate how one can detect quantum weak values for the
NOON states, for allN . The detection of the weak values
is made possible by a unitary evolution of the quantum
system after the measurement, as given by the nonlinear
two-mode Josephson Hamiltonian. This gives a way to
demonstrate the existence of quantum weak values, for
mesoscopic and macroscopic superposition states.

The work of this paper suggests a Leggett-Garg test of
meso- or macro-realism using NOON states. In this case,
the measurement of a two-time correlation involving the
weak measurement is required. We have discussed how to
demonstrate the non-invasiveness of the weak measure-
ment for the purpose of a Leggett-Garg test, and have ex-
amined the feasibility of the experiment using the Joseph-
son model, with finite parameter values.

Finally, we note that regimes associated with more gen-
eral parameters of the Josephson model do not always
lead to a second NOON superposition state being cre-
ated at the time t3. The outcomes for the S3 are not
simply ±N but are spread over all values. We comment
that tests of quantum weak values and of the Leggett-
Garg inequality may still be possible, using the approach
of overlapping regions presented in Refs. [33, 45]

Appendix A: Calculation of 〈S2〉

We can evaluate 〈p〉 from (9), using that p̂ = 1
i (ĉ− ĉ

†),
thus

〈p〉 = |d0|2 〈γeiπ/2|p|γeiπ/2〉+ |dN |2 〈γe−iπ/2|p|γe−iπ/2〉
(A1)

Next, we use the result for the inner product of coherent
states 〈α|β〉 = exp

[
α∗β − |α|2/2− |β|2/2

]
, to find

〈α|p|β〉a =
1

i
(β − α∗) exp

[
α∗β − |α|2/2− |β|2/2

]
(A2)

and hence

〈γe−iπ/2|p|γe−iπ/2〉 = −2γ
〈γeiπ/2|p|γeiπ/2〉 = 2γ (A3)

This implies

〈p〉 = 2γ(|d0|2 − |dN |2)
= −2γ 〈S2〉 (A4)

Here we have used that 〈S2〉 = |dN |2−|d0|2, which is the
expectation value of S2 for the initial two-mode state (4)
for the NOON state. We see that:

〈S2〉 = −
1

2γ
〈p〉 (A5)

The average of p will give the value for the average of the
Schwinger spin of the incident two-mode state.

Appendix B: Calculation of 〈S2S3〉

We suppose that the Hamiltonian HI is such that
the two-mode state |m〉|N − m〉 evolves to the state∑
n c

(m)
n |n〉|N − n〉 where c(m)

n are constants. The final
output state including the meter field is:

|ψ(t3)〉 =
∑
m

dm|γeiπ(N−2m)/2N 〉c
∑
n

c(m)
n |n〉a|N − n〉b

(B1)
We next evaluate 〈pS3〉 and compare to 〈S2S3〉. We take
the case where prior to the measurement at time t2 the
two-mode system is in the NOON state:

|ψ〉 = d0|0〉a|N〉b + dN |N〉a|0〉b (B2)

At time t3, after measurement and after the subsequent
evolution, the state is given by Eq. (B1) which we sim-
plify as (13). We evaluate 〈pS3〉 = 〈ψ(t3)|pS3|ψ(t3)〉,
using (A3). Here it is useful to define S3|m〉a|N −m〉b =
sgn(2m−N)|m〉a|N−m〉ba where sgn(S) is +1 if S > 0,
0 of S = 0, and −1 otherwise. From (A2) we see that

〈γe−iπ/2|p|γeiπ/2〉c = 0 = 〈γeiπ/2|p|γe−iπ/2〉c
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Hence we obtain

〈pS3〉 = |d0|2 2γ
(
−
∑

n<N/2

∣∣∣c(0)
n

∣∣∣2 + ∑
n>N/2

∣∣∣c(0)
n

∣∣∣2)

− |dN |2 2γ
(
−
∑

n<N/2

∣∣∣c(N)
n

∣∣∣2 + ∑
n>N/2

∣∣∣c(N)
n

∣∣∣2)
(B3)

Using that 〈S2S3〉 is given by Eq. (14), we find

〈S2S3〉 = −
1

2γ
〈pS3〉 (B4)

Appendix C: Calculation of non-ideal case

We consider that the state |na〉a|N − na〉b evolves
as described above by a Hamiltonian HI to the state∑
n c

(na)
n |n〉|N −n〉 in a time t3− t2. Similarly, the state

|N−na〉a|na〉b evolves to
∑
n′ c

(N−na)
n′ |N−n′〉|n′〉. Hence

S3|ψ(t3)〉 = dna |γe+iπ(N−2na)/2N 〉c
×
∑
n

c(na)
n sgn(2n−N)|n〉a|N − n〉b

+dN−na |γe−iπ(N−2na)/2N 〉c
×
∑
n′

c
(N−na)
n′ sgn(N − 2n′)|N − n′〉a|n′〉b

(C1)

Therefore

〈pS3〉 = 2γ sin
( π

2N
(N − 2na)

)
×(

|dna |
2
∑
n

∣∣∣c(na)
n

∣∣∣2 sgn(2n−N)

− |dN−na |
2
∑
n′

∣∣∣c(N−na)
n′

∣∣∣2 sgn(N − 2n′)

)
= −2γ sin

( π

2N
(N − 2na)

)
〈S2S3〉. (C2)
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