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We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution
of quantum states, when driven through a region of small gap. Such small gap regions are a common
situation in adiabatic quantum computing and having reliable approximations is important in this
context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase
transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the
defect density across a continuous quantum phase transition. Instead here, we quantify the accuracy
of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we
find that for short times/fast protocols, the AIA outperforms the simple adiabatic approximation.
However, for large times/slow protocols, the situation is actually reversed and the AIA provides a
worse approximation. Nevertheless, we found a variation of the AIA that can perform better than
the adiabatic one. This counter-intuitive modification consists in crossing twice the region of small
gap. Our findings are illustrated by several examples of driven closed and open quantum systems.

I. INTRODUCTION

Progress made during the last thirty years in the field
of atomic and molecular optics, in experiments with
trapped ions, and in cavity and circuit quantum elec-
trodynamics, has drastically improved the experimental
control over the dynamics of quantum many-body sys-
tems. These experimental implementations of control-
lable quantum systems [1–3], opened the possibility to
use quantum physics towards the realization of quantum
technologies like quantum computers [4–6] and quantum
simulators [7]. Among the different approaches to quan-
tum computing, the adiabatic one is recently attracting
a lot of attention [8–13]. The basic idea behind adiabatic
quantum computation is that the ground-state of certain
quantum systems can encode the solution to a mathemat-
ical problem, e.g., the solution of a minimization prob-
lem. The algorithm is to start with a simple Hamiltonian
whose ground-state can easily be prepared. In order to
get from this easy available ground-state, to the target
ground-state, encoding the solution of the minimization
problem, one adiabatically evolves the simple Hamilto-
nian to the desired complicated Hamiltonian. According
to the adiabatic theorem, the system remains in the same
level, if the total evolution time is large enough, such that
the system ends up being in the state describing the so-
lution of the minimization problem.

It is clearly very important to understand the precise
mode of operation of such an adiabatic quantum algo-
rithm, in order to obtain faithful results and to under-
stand the limit of its performance. Key problems are
controlling the precision of the initial ground-state prepa-
ration, having full control over the system’s parameters
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and understanding the main features that control the adi-
abatic evolution of the quantum many-body system, i.e.,
being aware of when the energy gap, the energy differ-
ence between the ground-state and the first excited-state,
becomes small, as well as the effects of dissipation and
decoherence. Examples where the adiabatic dynamics
can be analyzed in full details are rare and only possible
for very small quantum systems, therefore to understand
and fully quantify the performance of adiabatic quantum
computers one needs to relay on approximation methods.

Consequently, in the present work we study the profi-
ciency of the adiabatic-impulse approximation (AIA) to
estimate the time evolution of quantum states. The idea
behind the AIA is that the time evolution can approxi-
mately be divided in an adiabatic and an impulse stage
(the impulse stage is sometimes also called sudden or di-
abatic stage). During the adiabatic stage the external
changes are slow compared to the internal time scale of
the system, such that the adiabatic approximation be-
comes appropriate. Conversely, in the impulse region the
external changes happen so fast that the state has no time
to adjust itself, and the impulse approximation is a good
one. The difficulty of the AIA lies in the determination
of the precise internal time scale of the problem, and/or
in the identification of the switching instants: adiabatic
to impulse and vice versa. Hence, the paradigmatic sit-
uation where the AIA can be applied, appears when the
system is driven across a quantum critical point.

Damski [14] applied the AIA to study the quantum
dynamics of the excitations in the Landau-Zener model.
It was pointed out, that the AIA is based on the Kibble-
Zurek (KZ) theory of non-equilibrium classical phase
transitions [14–16]. The KZ theory provides one way
to determine this internal time scale, namely, assuming
that it is given by the inverse gap. This recipe fixes the
time scale apart from a dimensionless constant, that tra-
ditionally is fixed by comparing the approximation of the
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density of excitation to the analytical expression [14–16].
In this paper we will carefully examine different strategies
to fix this internal time scale, which allows us to estimate
the adiabatic-impulse switching times. The accuracy of
the resulting AIA is evaluated by considering the trace
norm distance between the obtained approximation and
the numerically performed exact evolution.

The scaling prediction of the KZ mechanism have been
confirmed in a series of works [17]. However we note, that
the same scaling predictions can be obtained without re-
sorting to the AIA [18, 19].

The paper is organized as follows. Section II gives a
short review of the AIA in closed systems. Then it is ap-
plied to approximate the time evolution of two paradig-
matic examples, namely the Landau-Zener (LZ) model
and the transverse field Ising (TFI) model. The AIA
method is evaluated by studying the distance between
the exact evolved state, which is computed numerically,
and the one obtained by the AIA. In Sec. III we will
extend the AIA to approximate the time evolution of
open quantum systems. More specifically, we consider a
dissipative quantum system, where the dynamics are de-
scribed by a time-dependent Lindblad master-equation
in the Davies form. As an example, we consider a single
qubit coupled to a thermal bath and study the AIA as in
the closed case. A brief summary is presented in the con-
cluding Sec. IV. Appendixes A and B give some details
on the adiabatic intertwiner that evolves the states corre-
sponding to the eigenvectors of the Liouvillian with zero
eigenvalue and the full adiabatic intertwiner that evolves
all the eigenvectors together, respectively. In Appendix C
we derive the eigenvalues and eigenvectors of the Liou-
villian describing the single qubit coupled to a thermal
bath and Appendix D shows the corresponding evolution
equations. Finally, we note that throughout the text we
set ~ = 1.

II. ADIABATIC-IMPULSE APPROXIMATION
IN CLOSED SYSTEMS

In this section, we examine the accuracy of the
adiabatic-impulse approximation (AIA) method for the
time evolution of isolated quantum systems, that are
driven through a region of minimal gap. First, we will
review the basic ideas of the AIA for closed systems. We
evaluate the AIA by computing the distance between the
fully evolved state, obtained by numerically propagating
the time-dependent Schrödinger equation, and the state
obtained by the AIA. As a comparison we use the sim-
ple adiabatic approximation, and consider the distance
between the fully evolved state and the adiabatic ap-
proximation. This will be illustrated by the examples of
the Landau-Zener model (avoided level crossing) and the
transverse field Ising model (quantum phase transition).

A. General Setting

Let us consider a closed quantum system described by
a time-dependent Hamiltonian Ĥ(t), whose instantaneous
eigenstates and eigenenergies are and given by

Ĥ(t)|ψn(t)〉 = En(t)|ψn(t)〉, (1)

with n = 1, 2, . . . ,dimH, where dimH is the dimension
of the Hilbert spaceH. Just for simplicity we consider the
Hamiltonian to be non-degenerate. We label the ground-
state by n = 1, the first-excited state by n = 2, and so
on. Further, we assume that the time-dependence enters
through a single parameter denoted by λ(t).

We focus on dynamics that include both an adiabatic
and an impulse regime, e.g., the crossing of a quantum
critical point. The unitary time evolution of a closed
quantum system is adiabatic, when the system initialized
in an eigenstate |ψm(ti)〉 will remain in it |ψm(t)〉 for all
t ∈ [ti, tf ], where ti and tf denote the initial and the
final time, respectively. A “folklore” condition that the
evolution is adiabatic can be given by

max
t∈[ti,tf ]

|〈ψn|∂tĤ|ψm〉|
|En − Em|

� min
t∈[ti,tf ]

|En − Em| , ∀n 6= m,

(2)
see [20]. In the region where the gap becomes minimal,
the time evolution becomes diabatic (impulse regime).
During the impulse regime the system can no longer ad-
justs to the external changes in the Hamiltonian and
therefore its state is effectively frozen. The time evolution
of the wave-function is thus approximated by a sudden
jump through this regime, in other words, no changes in
the wave-function occur.

Our protocol will be the following, we initialize the
system at ti = 0 in the ground-state |ψ0(0)〉 and then
tune the parameter λ(t) from its initial value λi = λ(0)
to its final value λf = λ(tf ). We assume that the gap,
∆ ≡ E1−E0, will be minimal at a single instant in time.
Within the AIA the evolution is assumed to be adiabatic
until the instant τ− and again adiabatic after τ+ and the
minimum of the gap occurs within the interval [τ−, τ+].
During the interval [τ−, τ+] the state of the system is
assumed not change, it suddenly jumps from τ− to τ+.

The Kibble-Zurek argument used in [14–16] presumes
the impulse instants τ± to be determined by the time,
when the transition time, | λ∂tλ |, is equal to the inverse

gap, 1/∆, ∣∣∣∣ λ(t)

∂tλ(t)

∣∣∣∣
t=τ

=
1

∆(λ(τ))
. (3)

This equation is the adaptation from the so-called
Kibble-Zurek theory of topological defect production
during classical phase transition [21–25], where the corre-
sponding crossover time is determined by the condition
trel(τ) = τ , trel being the relaxation time scale of the
system. In order to adapt the KZ theory to quantum
systems, the identification trel = 1/∆ was made in [14],
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to obtain Eq. (3). Within the following examples, the
Landau-Zener model and the transverse field Ising model,
we will examine, if the condition (3) faithfully estimates
the impulse instants or if one needs to find a more refined
estimate to improve the AIA.

The fully time evolved state, |ψ(t)〉, is given by
the solution of the Schrödinger equation, ∂t|ψ(t)〉 =

−i Ĥ(t)|ψ(t)〉, which can formally be written as

|ψ(tf )〉 =
←−
Texp

[∫ tf

0

dt(−i)Ĥ(t)

]
|ψ(0)〉, (4)

where
←−
T is the time-ordering operator, which arranges

operators in a chronological order with time increasing
from right to left. We note, that for all the examples
considered here we computed the time evolution numer-
ically.

The adiabatic approximation of the state |ψ(tf )〉 is
given by

|ψadi(tf )〉 = Û(tf , 0)|ψ(0)〉, (5)

where Û(tf , 0) =
∑
n e

iφn(tf ,0)|ψn(tf )〉〈ψn(0)|, is the full
adiabatic intertwiner [26], and φn(tf , 0) = −δn(tf , 0) +
γn(tf , 0) is the sum of the dynamic phase of the n-th

eigenstate δn(tf , 0) =
∫ tf

0
En(t) dt and the corresponding

geometric phase γn(tf , 0) =
∫ tf

0
i 〈ψn|∂t|ψn〉 dt. If the

initial state is the ground-state |ψ(0)〉 = |ψ1(0)〉, the last
equation reduces to

|ψadi(tf )〉 = eiφ1(tf ,0)|ψ1(tf )〉. (6)

A more refined approximation might be given by the
AIA, where the evolution is adiabatic before τ−, (0 < t <
τ−), and again after τ+, (τ+ < t < tf ), but it suddenly
jumps from τ− to τ+. Consequently, within the AIA
scheme the time evolved state is approximated by

|ψaia(tf )〉 = Û(tf , τ+) 1̂ Û(τ−, 0)|ψ(0)〉, (7)

and which for |ψ(0)〉 = |ψ1(0)〉 reduces to

|ψaia(tf )〉 =∑
n

eiφn(tf ,τ+)eiφ0(τ−,0)〈ψn(τ+)|ψ1(τ−)〉|ψn(tf )〉. (8)

As a measure to quantify the adiabatic approximation
and the AIA, we use the distance between two given
wave-functions, |ψ〉 ∈ H and |φ〉 ∈ H,

d[|ψ〉, |φ〉] =

√
1− |〈ψ |φ〉|2, (9)

which we note is defined in terms of the fidelity
F(|ψ〉, |φ〉) = |〈ψ |φ〉|2. The distance between the
fully evolved state |ψ(tf )〉 and the adiabatic approxi-
mation is denoted by dadi(tf ) = d[|ψ(tf )〉, |ψadi(tf )〉],
while the distance between the fully evolved state and
the one obtained by the AIA is labeled daia(tf ) =
d[|ψ(tf )〉, |ψaia(tf )〉].

B. Landau-Zener model

As a first example, we consider the Landau-Zener
model, described by the Hamiltonian

ĤLZ(t) = x(t)σ̂x + z(t)σ̂z =

(
z(t) x(t)
x(t) −z(t)

)
, (10)

where σ̂x and σ̂z are the usual Pauli matrices, and
|ϕ1〉 = (1, 0)T , |ϕ2〉 = (0, 1)T , denote the eigenstates
of σ̂z. The parameter x characterizes the coupling be-
tween the two levels and z the detuning. The eigenen-
ergies of this system are E1,2 = ∓b, where we defined

b ≡
√
x2 + z2, and the corresponding eigenstates read

|ψ1,2(t)〉 = ∓
√
b∓ z
2 b
|ϕ1〉+

√
b± z
2 b
|ϕ2〉. (11)

We assume the protocol, where x is constant in time, z(t)
changes linear, z(t) = zi + (zf − zi) t/tf , with t ∈ [0, tf ],
and the system is initially prepared in the ground-state,
|ψ(0)〉 = |ψ1(0)〉. For the initial point, zi, we choose
a negative value, and for the final point, zf , a posi-
tive value, such that the protocol passes the avoided
level crossing at z = 0. Let us note, that our proto-
col is similar to the paradigmatic Landau-Zener prob-
lem [27–30], however, in the Landau-Zener problem one
has, z(t) = t/tf , with t ∈ [−∞,∞]. The Schrödinger

equation, ∂t|ψ〉 = −i ĤLZ|ψ〉, written in the fixed basis,

|ψ(t)〉 =
∑2
i=1 ci(t)|ϕi〉, becomes

i ∂tc1 = z(t) c1 + x c2, i ∂tc2 = x c1 − z(t) c2, (12)

with the initial conditions given by the ground-state

c1(0) = −
√
bi − zi

2 bi
, c2(0) =

√
bi + zi

2 bi
, (13)

where bi ≡
√
x2 + z2

i . This system can be solved in
terms of parabolic cylinder functions [31], and therefore
provides a convenient benchmark to study the accuracy
of the adiabatic-impulse approximation.

We begin by studying the simple adiabatic approxi-
mation of the time evolved state, |ψ(tf )〉, which is given
by

|ψadi(tf )〉 = e−iδ1(0,tf )|ψ1(tf )〉, (14)

and where the dynamical phase of the ground-state reads

δ1(0, tf ) ≡
∫ tf

0

E1(t) dt =
tf

2 δz

[
b z + x2 log(z + b)

]∣∣zf
zi
,

(15)
with δz ≡ zf − zi. Note that there is no Berry phase,

γ1(0, tf ) =
∫ tf

0
dt i〈ψ1|∂t|ψ1〉 = 0, since the Landau-

Zener Hamiltonian is real. In Fig. 1 we plot dadi(tf ) on
a logarithmic scale for zi = −1, zf = 1 and x = 0.1. It
can be seen that for large tf the distance decreases with

t−1
f , as expected by the adiabatic theorem [32].
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Next, we analyze the first-order correction in 1/tf of
the adiabatic approximation, which can be expressed by

|ψadi,1(tf )〉 = N−1

[
|ψadi(tf )〉+

1

tf
|ψ(1)

adi(tf )〉
]
, (16)

where

|ψ(1)
adi(tf )〉 = i e−iδ1(0,tf )J21(tf )|ψ1(tf )〉

− i e−iδ1(0,tf )M21(tf )|ψ2(tf )〉
+ i e−iδ2(0,tf )M21(0)|ψ2(tf )〉, (17)

and where we used the notations

J21(t) = tf

∫ t

0

|〈ψ2|∂t′ĤLZ|ψ1〉|
2

(E2 − E1)3
dt′, (18)

M21(t) = tf
〈ψ2|∂tĤLZ|ψ1〉

(E2 − E1)2
. (19)

The dynamical phase of the excited-state is given by
δ2(0, tf ) = −δ1(0, tf ), and the normalization reads

N2 = 1 + 〈ψ(1)
adi(tf )|ψ(1)

adi(tf )〉. For a derivation of
Eq. (16) see Ref. [33]. The distance between the exactly
evolved state and the first order correction, dadi,1(tf ) =
d[|ψ(tf )〉, |ψadi,1(tf )〉], is also plotted in Fig. 1. Cor-

rectly, the distance dadi,1(tf ) decreases with, 2.06 t−2.03
f ,

for large tf , and hence gets much smaller than dadi(tf ).

The power law t−2
f is predicted by the adiabatic theo-

rem, namely the distance between the n-th order cor-
rection and the fully evolved state is of the order
(1/tf )n+1 [34, 35].

Let us now turn to the AIA and study how its accuracy
compares to the adiabatic expansion. The time evolved
state within the AIA for our Landau-Zener model reduces
to

|ψaia(tf )〉 =

2∑
j=1

e−iδj(τ+,tf )eiδ1(0,τ−)〈ψj(τ+)|ψ1(τ−)〉|ψj(tf )〉, (20)

where the Berry phase of the excited-state is also zero,
due to the fact that the Hamiltonian is real. As men-
tioned above, the difficulty of the AIA is the determina-
tion of the time instants τ− and τ+, where the evolution
switches from adiabatic to impulse and back from the im-
pulse regime to adiabatic, respectively. In the following
we will discuss different scenarios providing the instants
τ±.

1. Switching instants τ1,±: standard Kibble-Zurek argument

First, we consider the Kibble-Zurek argument, as pro-
posed in [14–16]. The argument is based on the heuris-
tic, that sufficiently close to the critical point, here
the avoided level crossing, the dynamics appears to be

dadi exact

dadi num

dadi ,1num

0.074 tf-1.02

2.06 tf-2.03

0 1 2 3 4
-8

-6

-4

-2

0

log10(tf )

lo
g
10
(d
)

Figure 1. (Color online) We plot dadi and dadi,1 as a func-
tion of the total evolution time tf for zi = −1, zf = 1 and
x = 0.1. The gray solid line corresponds to the distance be-
tween the adiabatic approximation |ψadi(tf )〉 and the time
evolved state |ψ(tf )〉 obtained by in terms of the parabolic
cylinder functions, denoted by d exact

adi . To check our numer-
ical procedure for solving the Schrödinger equation we plot-
ted also d num

adi (blue dashed line with circles), which corre-
sponds to the distance between the adiabatic approximation
|ψadi(tf )〉 and the time evolved state |ψ(tf )〉 found by numer-
ically solving Eq. (12). We see a perfect agreement between
the exact and the numerically obtained distance and therefore
use the same numerical procedure for the other examples in
the text. The orange dotted line shows the distance between
the first order correction to the adiabatic approximation and
the fully time evolved state, dadi,1.

“frozen”. The system’s dynamics has not enough time
to adjust to the changes of the external parameters, due
to the smallness of the gap ∆ ≡ E2 − E1 = 2b. Accord-
ing to the Kibble-Zurek argument this critical slowing
down occurs, when the inverse of the gap is on the order
of the inverse rate of change of the external parameter,
therefore τ± are determined by

1

∆(τ)
=

∣∣∣∣ z(t)∂tz(t)

∣∣∣∣
t=τ

. (21)

This equation has two real solutions

τ̃1,± = −zi
δz
tf ±

x√
2 δz

tf

√√√√−1 +

√
1 +

(
δz

x2

1

tf

)2

. (22)

We note that the instants τ± have to be positive and
smaller than or equal to the total evolution time tf , since
for our protocol t ∈ [0, tf ], and therefore we find

τ1,± =


{
tf
0

, 0 < tf <
1
2

δz

zf
√
x2+z2

f

τ̃1,±,
1
2

δz

zf
√
x2+z2

f

< tf <∞
. (23)

In Fig. 2 we plot the resulting impulse interval, ∆τ1 ≡
τ1,+ − τ1,−, as a function of tf for zi = −1, zf = 1
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and x = 0.1 (red dotted line). We note, the inter-
val ∆τ1 reaches the constant value 1/x in the limit of
tf approaching infinity. The distance between the AIA
|ψaia−1(tf )〉 and the fully evolved state (numerical so-
lution of Eq. (12)), daia−1(tf ) = d[|ψ(tf )〉, |ψaia−1(tf )〉],
using the transition times τ1,±, is plotted in Fig. 3 (red
dotted line). One can see that the AIA provides a slightly
better approximation to the fully evolved state than the
adiabatic expansion only for very small tf . For large

tf we find, daia−1(tf ) = 99.08 t−1
f , providing a much

worse approximation than the adiabatic one, which is
dadi(tf ) = 0.074 t−1

f . We attribute this discrepancy
to the overestimation of the impulse interval, given by
the Kibble-Zurek argument (12), in the adiabatic limit
(tf →∞).

2. Switching instants τ2,±: modified Kibble-Zurek argument

Consequently, as a second scenario we consider a slight
modification of the Kibble-Zurek argument. Namely, we
replace the inverse rate of change of the external param-
eter z/∂tz in Eq. (21) by the inverse rate of change of the
Hamiltonian. The resulting condition becomes

1

∆(τ)
=
‖ĤLZ(t)‖∞
‖∂tĤLZ(t)‖∞

∣∣∣∣∣
t=τ

, (24)

where ‖·‖∞ is the operator norm defined by ‖Ô‖∞ ≡
maxi si(Ô), and si(Ô) are the singular values of Ô, i.e.,

eigenvalues of |Ô| ≡
√

Ô†Ô. The two real solutions of
Eq. (24) are

τ̃2,± = −zi
δz
tf ±

x√
2 δz

tf

√
−2 +

δz

x2

1

tf
, (25)

and hence we obtain for the adiabatic-impulse switching
times

τ2,± =



{
tf
0

, 0 < tf <
1
2

δz
x2+z2

i

τ̃2,±,
1
2

δz
x2+z2

i
< tf <

1
2
δz
x2

tf
2 ,

1
2
δz
x2 < tf <∞

. (26)

The corresponding impulse interval reads, ∆τ2 ≡ τ2,+ −
τ2,−, and is also shown in Fig. 2 (dashed green line).
It vanishes, if tf > δz/(2x2), and therefore the distance
daia−2(tf ) = d[|ψ(tf )〉, |ψaia−2(tf )〉], where the switching
times τ2,± are used, recovers the adiabatic approximation
at tf = δz/(2x2) (see Fig. 3 dashed green line with ∗
symbols).

3. Switching instants τ3,±: simple gap condition

Within the third approach, we consider the time, when
the adiabatic approximation fails, as the instant deter-
mining the adiabatic-impulse switching times τ±. The

simplest and crudest estimate for the adiabatic evolution
to be valid, might be given by tf � 1/∆, as a conse-
quence we propose the simple equation

1

∆(τ)
= tf , (27)

to determine the time instants when the adiabaticity
breaks down. We find the two solutions

τ̃3,± = −zi
δz
tf ±

x

δz
tf

√
−1 +

(
1

2x

1

tf

)2

, (28)

from which we get for the adiabatic-impulse switching
times

τ3,± =



{
tf
0

, 0 < tf <
1
2

1√
x2+z2

f

τ̃3,±,
1
2

1√
x2+z2

f

< tf <
1

2x

− ziδz tf ,
1

2x < tf <∞

. (29)

Figure 2 shows also a plot of, ∆τ3 ≡ τ3,+−τ3,− (blue dot-
dashed line). In the present case the impulse interval
vanishes for tf > 1/(2x), which is much smaller than
in the previous case, and hence the resulting distance
daia−3(tf ) = d[|ψ(tf )〉, |ψaia−3(tf )〉], becomes the same as
for the adiabatic approximation at tf = 1/(2x) (see Fig. 3
blue dot-dashed line with + symbols). This scenario does
also not provide an improvement of the AIA, since the
estimate of the time when the adiabatic approximation
fails is by far underestimated.

4. Switching instants τ4,±: “folklore” adiabatic condition

A more refined estimate for the validity of the adia-
batic evolution, if the system is initially prepared in the
ground-state, might be provided by

max
t∈[0,tf ]

|〈ψ2(t)|∂tĤLZ(t)|ψ1(t)〉|
∆2

� 1, (30)

see [20]. Consequently, we propose the following equation

|〈ψ2(t)|∂tĤLZ(t)|ψ1(t)〉|t=τ = ∆(τ)2, (31)

to determine the adiabatic-impulse switching times.
Equation (31) has the two solutions

τ̃4,± = −zi
δz
tf ±

x√
2 δz

tf

√
−2 +

(
δz√
2x2

1

tf

)2/3

, (32)

which provides the adiabatic-impulse switching times

τ4,± =



{
tf
0

, 0 < tf <
1
4

xδz
x2+z2

i

τ̃4,±,
1
4

xδz
x2+z2

i
< tf <

1
4
δz
x2

tf
2 ,

1
4
δz
x2 < tf <∞

. (33)
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Likewise, we plot the impulse interval, ∆τ4 ≡ τ4,+−τ4,−,
in Fig. 2, which is depicted by the orange solid line. The
interval now vanishes for tf > δz/(4x2), which lies in be-
tween the one found by the Kibble-Zurek argument using
the Hamiltonian’s inverse rate of change and the inter-
val found by the simple adiabaticity breaking argument,
1/∆ = tf . As in the previous case, the resulting distance
daia−4(tf ) = d[|ψ(tf )〉, |ψaia−4(tf )〉], recovers the adia-
batic approximation, but now at tf = δz/(4x2). This
estimate of the impulse regime does therefore also not
show any major improvement of the AIA (solid orange
line with circles in Fig. 3).
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Δ
τ
[1
/x
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Figure 2. (Color online) We show the impulse interval ∆τ(tf )
for zi = −1, zf = 1 and x = 0.1, found by the four different
scenarios determining the impulse instants τ±. 1) The red
dotted line shows ∆τ1, obtained by the Kibble-Zurek argu-
ment 1/∆ = z/∂tz. 2) A modified Kibble-Zurek argument

1/∆ = ‖Ĥ‖ / ‖∂tĤ‖ provided ∆τ2, which is shown by the
green dashed line. 3) Using the breakdown of the adiabatic
theorem as an estimate for the impulse instants, 1/∆ = tf ,
we found ∆τ3, depicted by the blue dot-dashed. Finally, 4)
the solid orange line shows ∆τ4, given by the adiabaticity
condition |〈ψ2|∂tĤ|ψ1〉| = ∆2.

5. Switching instants τopt,±: optimization

Neither of the scenarios determining the impulse in-
terval, which we studied above, show an improvement
with respect to the simple adiabatic approximation. One
might therefore wonder, if there exist an optimal length
of the impulse interval, such that the AIA provides a
better approximation to the time evolved state than the
adiabatic. Consequently, we minimized the distance daia,
with respect to the impulse interval ∆τ , where we set
τopt,± = tf/2 ± ∆τ/2. The numerically obtained result
of ∆τopt(tf ) is depicted in Fig. 4, for zi = −1, zf = 1
and x = 0.1. The functional form of ∆τopt(tf ) is simi-

lar to π 1
2
x2

∆z tf exp
(
−π 1

2
x2

∆z tf

)
, although to our surprise,

in the limit of large tf the optimal interval manifests
an oscillatory behavior around zero, which means that
it can become negative (Fig. 4 inset). This shows that

dadi

dadi ,1

daia -1

daia -2

daia -3

daia -4
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0

log10(tf )
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(d
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* * * * * * * * * *
*

*
* * *

*
*

+
+ + + + + +

+
+

+

+
+ +

+

Figure 3. (Color online) The distances between the AIA and
the fully evolved state for the four different scenarios consid-
ered in the main text is plotted, with zi = −1, zf = 1 and
x = 0.1. 1) The red dotted line shows daia−1, where the tran-
sition times τ1,± were used, obtained by the Kibble-Zurek ar-
gument 1/∆ = z/∂tz. 2) A modified Kibble-Zurek argument

1/∆ = ‖Ĥ‖ / ‖∂tĤ‖ provided τ2,±, which was used to calculate
daia−2 and is shown by the green dashed line with ∗ symbols.
3) Using the breakdown of the adiabatic theorem as an esti-
mate for the impulse instants, 1/∆ = tf , we found τ3,±, for
which daia−3 was calculated and which is depicted by the blue
dot-dashed with + symbols. Finally, 4) the solid orange line
with circles shows daia−4, calculated for the transition times
τ4,±, given by the adiabaticity condition |〈ψ2|∂tĤ|ψ1〉| = ∆2.
As a reference we also plotted the adiabatic distance dadi and
the next first-order correction dadi,1.

after a certain final time it can become favorable to pass
the avoided level crossing adiabatically up to τ+, then
make the “impulse jump” back to τ−, and finally go again
through the avoided level crossing adiabatically. The re-
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-0.01

0.00
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Figure 4. (Color online) A plot of the optimal impulse in-
terval, ∆τopt(tf ), obtained by numerically minimizing daia,
for zi = −1, zf = 1 and x = 0.1. For comparison we also
show the impulse intervals found by the four different scenar-
ios considered in the main text.

sulting distance, daia−opt(tf ) = d[|ψ(tf )〉, |ψaia−opt(tf )〉],
is shown in Fig. 5 (solid purple line). As a comparison, we
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also plotted the adiabatic distance dadi and the first-order
correction dadi,1. We can see an overall improvement of
the AIA compared to the adiabatic ones. More surpris-
ingly, we find that daia−opt(tf ) = 2.08 t−2.03

f , as for the
distance obtained by the first order adiabatic correction.

dadi

dadi ,1

daia -opt

2.08 tf-2.03

0 1 2 3 4
-8

-6
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-2

0

log10(tf )

lo
g
10
(d
)

Figure 5. (Color online) We show the minimal distance attain-
able by the adiabatic-impulse approximation, daia−opt(tf ), for
zi = −1, zf = 1 and x = 0.1. As a reference we also plot-
ted the adiabatic distance dadi and the first-order correction
dadi,1.

C. Transverse Field Ising model

In the following we will study the accuracy of the AIA
for a closed quantum many-body system. We consider
the illustrative example of the transverse field Ising (TFI)
model, whose Hamiltonian is given by

ĤTFI(t) =

L∑
j=1

σ̂xj σ̂
x
j+1 + h(t)

L∑
j=1

σ̂zj , (34)

where σ̂αj , with α = x, y, z, are the Pauli matrices de-
scribing the spin on the j-th site of the chain. We as-
sume periodic boundary conditions, σ̂αL+1 = σ̂α1 , such
that the system remains translation invariant. h(t) ≥ 0
is the transverse magnetic field acting in the z-direction
and L gives the total number of spins in the chain. For
convenience we choose L to be even. We note that
the Jordan-Wigner mapping separates the Hamiltonian
into two sub-spaces with an even or an odd number of
fermions. In the odd sector, the fermions satisfy periodic
boundary conditions, whereas in the even sector they
obey anti-periodic boundary conditions. The Jordan-
Wigner fermions are always created/destroyed in pairs,
and therefore the even/oddness of their number is con-
served [36, 37]. Consequently, we can fix a particular
fermionic parity (here even), which provides a unique

ground-state |ΨGS(h)〉. In the even sector ĤTFI can
be mapped to a non-interacting spin−1/2 model using

a Jordan-Wigner followed by a Fourier transformation:

ĤTFI =
∑
k c
†
kH̃kck, where

H̃k = −
(
h− cos k −i sin k
i sin k −(h− cos k)

)
, (35)

with the pseudo-momenta given by

k = ±1

2

2π

L
,±2

2

2π

L
, . . .±

(
L

2
− 1

2

)
2π

L
, (36)

and c†k = (ĉ−k, ĉ
†
k), with ĉk being the Fourier transform of

the Jordan-Wigner fermions [36–38]. As a consequence,
the dynamics of the transverse field Ising model can be
decomposed into a collection of uncoupled two-level sys-
tems [39, 40]. Finally, through a Bogoliubov transforma-

tion, ĤTFI, can be mapped to a free fermionic Hamilto-

nian, ĤTFI =
∑
k εk(γ̂†kγ̂k−

1
2 ), with excitation spectrum

εk = 2

√
(h− cos k)2 + sin2 k, (37)

and γ̂k = cos θk2 ĉk − i sin θk
2 ĉ†−k, where θk =

arctan( sin k
h−cos k ). The ground-state of the transverse field

Ising model is the vacuum of the Bogoliubov operators,
i.e., it is annihilated by all γ̂k, and thus reads

|ΨGS(h)〉 =
∏
k

(
cos

θk
2
|0〉k|0〉−k + i sin

θk
2
|1〉k|1〉−k

)
,

(38)

where |1〉k = c†k|0〉k. The corresponding ground-state
energy is given by EGS = − 1

2

∑
k εk, which in the ther-

modynamic limit (L→∞) becomes

EGS = − L

2π

∫ π

0

dkεk = − L

2π
2(1+h)E

[
4h

(1 + h)2

]
, (39)

where E [m] ≡
∫ π/2

0
dx
√

1−m sin2 x is the complete el-
liptic integral. The energy of a single excitation, i.e., a
state of the form |Ψq〉 = γ̂†q |ΨGS〉, is Eq = εq +EGS, and
therefore the gap reads ∆ = Ek0

− EGS = εk0
, where k0

is the minimal momentum, defined by the minimum of
the excitation energy ∂qεq = 0. In the thermodynamic
limit we have, ∆ = |h− 1|, and thus the gap vanishes at
hc = 1, which marks the quantum critical point, where
the system undergoes a quantum phase transition from
a paramagnetic phase (h > 1) to a ferromagnetic phase
(h < 1).

We will use the schedule, h(t) = hi + (hf − hi)t/tf ,
with t ∈ [0, tf ], and the system initially prepared in the
ground-state, |Ψ(t = 0)〉 = |ΨGS(hi)〉. The starting value
hi, is chosen to be in the ferromagnetic phase, i.e., hi < 1,
and the final value, hf > 1, in the paramagnetic phase,
such that the quantum critical point is crossed at h =
hc = 1.

In Fig. 6 we show the impulse interval ∆τ1(tf ), ob-
tained by the Kibble-Zurek argument 1/∆ = h/∂th.
Solving this equation yields

τ̃1,± = −hi − 1

δh
tf ±

1√
2
√
δh

√
tf (40)
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with δh ≡ hf − hi, and the resulting impulse interval
reads

∆τ1,± =

{
tf , 0 < tf <

1
2

δh
(hf−1)2√

2√
δh

√
tf ,

1
2

δh
(hf−1)2 < tf <∞

. (41)

Further, we also plotted the impulse interval ∆τ2(tt) in
Fig. 6, which is obtained by the modified Kibble-Zurek
condition

1

∆
=
‖ĤTFI‖∞
‖∂tĤTFI‖∞

. (42)

Explicitly, we find

1

|h(τ)− 1|
=

[h(τ) + 1] E
(

4h(τ)
[h(τ)+1]2

)
π ∂th(t)|t=τ

, (43)

which we solved numerically to get ∆τ2(tt) (green dashed
line in Fig. 6). Finally, we also plotted the impulse in-
terval ∆τopt(tt), found by minimizing the distance be-
tween the fully evolved state and the AIA with respect
to ∆τ , where we set the impulse instants to τopt,± =
tf/2 ±∆τ/2. The result is depicted in Fig. 6 by a solid
purple. Similar to the Landau-Zener model, we find that
in the limit of large tf , the optimal impulse interval can
become negative (Fig. 6 inset). Showing that for certain
final times tf , one can get a better approximation to the
fully evolved state by adiabatically crossing the quantum
criticality and evolve up to τ+, then make the “impulse
jump” back to τ−, to finally go again through the quan-
tum phase transition.
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Figure 6. (Color online) A plot of the impulse interval
∆τ1(tf ) found by the Kibble-Zurek argument 1/∆ = h/∂th,
the impulse interval ∆τ2(tt) given by the Kibble-Zurek ar-
gument using the inverse rate of change of the Hamiltonian
1
∆

=
‖ĤTFI‖∞
‖∂tĤTFI‖∞

, and the optimal impulse interval ∆τopt(tt)

found by minimizing daia with respect to ∆τ . The initial field
was hi = 0.5, the final hf = 1.5 and the minimization was
performed for a chain of L = 150.

The corresponding distances dadi, daia−1, daia−2 and
daia−opt are plotted as a function of tf in Fig. 7, for

the initial and final values hi = 0.5, hf = 1.5 and a
chain with L = 150. We observe the following large tf
behavior, dadi(tf ) = 6.8 t−1.07

f , daia−1(tf ) = 20.3 t−0.46
f ,

daia−2(tf ) = 86.6 t−1.00
f and daia−opt(tf ) = 6.8 t−1.07

f (see

gray lines in Fig. 7). The Kibble-Zurek argument gives an
impulse interval that grows with

√
tf , and thus the corre-

sponding distance, daia−1, is always much larger than the
adiabatic one. From this we conclude that 1/∆ = h

∂th
,

clearly overestimates the impulse interval. However, we
see daia−2 < dadi, up to tf = 103, showing that the mod-
ified Kibble-Zurek argument yields a better estimate for
the impulse interval. Although, for tf ≥ 103 we observe
dadi � daia−2, which implies that the impulse interval
is still overestimated by the modified Kibble-Zurek ar-
gument. Obviously, the distance daia−opt, where the im-
pulse interval was found by minimizing the distance be-
tween the AIA and the full evolution, gives the smallest
distance. Nevertheless, for our example of the transverse
field Ising model the improvement compared to the sim-
ple adiabatic approximation is insignificant.

dadi

daia -1

daia -2

daia -opt

1.0 1.5 2.0 2.5 3.0 3.5 4.0
-4
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0

log10(tf )
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g
10
(d
)

6.8 tf
-1.07

86.6 tf
-1.00

20.3 tf
-0.46

Figure 7. (Color online) The distance between the numer-
ically evolved ground-state and the different approximation
schemes, i.e., adiabatic, adiabatic-impulse with the Kibble-
Zurek argument, with the modified Kibble-Zurek argument,
and the adiabatic-impulse approximation where the impulse
instants are found by minimization of daia, is shown for
hi = 0.5, hf = 1.5 and L = 150.

III. ADIABATIC-IMPULSE APPROXIMATION
IN OPEN SYSTEMS

In the following section we apply the AIA to the time
evolution of open quantum systems. More specifically, we
focus on dissipative systems characterized by a linear,
time-local master equation in the Lindblad form. In a
first step, we extend the AIA to the formalism used to
describe open quantum system. To evaluate the accuracy
of the AIA we will use the trace-norm distance between
the fully evolved density matrix and the approximated
one. We use the adiabatic approximation as a reference
to asses the performance of the AIA. As an example,
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we study the time evolution of a single qubit coupled to
a thermal bath, where the Liouvillian is in the Davies
form [41]. The Davies generators arise in the limit of
weak system-bath coupling.

A. General setting

We consider an open quantum system of finite di-
mension, described by the density matrix ρ̂(t), whose
evolution is governed by a linear and time-local master

equation ∂tρ̂ = L̂(t)ρ̂. The Liouvillian L̂(t) is in the

Lindblad form L̂(t)ρ̂ = −i [Ĥ(t), ρ̂] +
∑
l[L̂l(t)ρ̂L̂†l (t) −

1
2 {L̂

†
l (t)L̂l(t), ρ̂}], where Ĥ(t) is the system Hamiltonian

and {L̂l(t)} are the Lindblad operators. Further, we as-
sume that the time dependence enters through the pa-
rameter λ(t). The instantaneous steady states are de-

fined by L̂ρ̂1 = 0, and belong to the kernel of the Liou-
villian. We note that the Liouvillian operates on the
space of linear operators acting on the Hilbert space,
which is denoted by L (H). This space can be turned
into a Hilbert space, when endowed with the Hilbert-
Schmidt inner product 〈〈A|B〉〉 = Tr(Â†B̂), for Â, B̂ ∈
L (H). We notice, that for a properly normalized basis

of hermitian matrices {Γ̂j}dimH2

j=1 , such that 〈〈Γi |Γj〉〉 =

Tr(Γ̂iΓ̂j) = δij , we can write the density matrix ρ̂ as

|ρ〉〉 =
∑dimH2

k=1 ck|Γk〉〉, where ck = 〈〈Γk |ρ〉〉 = Tr(Γ̂kρ̂).
The Liouvillian can therefore be interpreted as a matrix,

L̂ =
∑dimH2

j,k=1 Ljk|Γj〉〉〈〈Γk|, with the coefficients given by

Ljk = 〈〈Γj |L̂|Γk〉〉 = Tr[Γ̂jL̂(Γ̂k)]. In contrast to the
Hamiltonian (closed systems) case, the eigenvalues of the
Liouvillian can be complex numbers. We assume that the
Liouvillian has only semisimple eigenvalues, i.e., has no
Jordan blocks, or in terms of the corresponding projec-

tors L̂(t)P̂n(t) = ln(t)P̂n(t). This is guaranteed for the
Davies generators, which we will consider in the exam-

ple below, since then L̂ is normal. The right and left
eigenvectors of the Liouvillian are obtained by

L̂|R(α)
n 〉〉 = ln|R(α)

n 〉〉, 〈〈L(α)
m |L̂ = lm〈〈L(α)

m |, (44)

where n,m = 1, . . . ,dimH2 and α enumerates possible
degeneracies. The right eigenvector |Rα1 〉〉 of the eigen-
value l1 = 0 are the instantaneous steady states in vector
notation.

We will consider the protocol, where the system at
t = 0 is initialized in the instantaneous steady state ρ̂1(0),
and then we tune the parameter λ(t), from λi to λ(tf ) =
λf , such that the gap of the Liouvillian becomes minimal
at a single instant in time. The gap of the Liouvillian
is defined as the minimum over all nonzero Lindbladian
eigenvalues in absolute value.

Let us first recall the adiabatic approximation:

ρ̂adi(tf ) = Û(tf , 0)ρ̂1(0), (45)

where Û(tf , 0) is the open system version of the full adi-
abatic intertwiner, i.e., the operator that adiabatically

evolves all the levels, see Appendix B. Note that since

ρ̂1(0) ∈ ker L̂, we have Û(tf , 0)ρ̂1(0) = Ŵ1(tf , 0)ρ̂1(0),

where Ŵ1(tf , 0) evolves adiabatically only vectors in the
zero subspace (see Appendix A and [34] for more details).

Let us now consider the AIA. As in the closed case the
evolution is assumed to be adiabatic from 0 to τ−, then
it suddenly jumps from τ− to τ+ (in the region where
the Liouvillian/Hamiltonian gap is minimal), and finally
becomes again adiabatic from τ+ to tf . Consequently,
the AIA can be written as

ρ̂aia(tf ) = Û(tf , τ+) 1̂ Û(τ−, 0)ρ̂1(0). (46)

At this point it is important to verify, whether the AIA

map Û(tf , τ+) 1̂ Û(τ−, 0) is a bona fide completely posi-
tive trace preserving (CPTP) map. In the Appendix B

we show that indeed the full intertwiner Û(t′, t) is CPTP
for t′ ≥ t, which in turn implies that the AIA map is
CPTP. In doing so we actually prove an adiabatic the-

orem for the full intertwiner Û . The whole complexity
of the AIA lies in the determination of the adiabatic-
impulse switching times τ±. For the Liouvillian in the
Davies form we will simply use the Hamiltonian gap as
the relevant energy scale.

To measure the closeness of the AIA and the adiabatic
approximation to the time evolved state ρ̂(tf ), we use the
trace-norm distance, which is defined by

d(ρ̂, σ̂) ≡ 1

2
‖ρ̂− σ̂‖1 =

1

2

∑
i

si(ρ̂− σ̂), (47)

where si(X̂) are the singular values of X̂. We note that
for pure states the trace-norm distance reduces to the
distance (9).

B. Single qubit coupled to a thermal bath

We will study a single qubit coupled to a thermal bath
at inverse temperature β = 1/T . More specifically, the
system Hamiltonian is assumed to be the Landau-Zener
model, ĤLZ(t) = xσ̂x + z(t)σ̂z, whose gap is given by

∆(t) = 2
√
x2 + z(t)2. The system-bath interaction is

characterized by Ĥint = g σ̂y ⊗ B̂, where g is the system-
bath coupling constant, and B̂ some bath operator. Ĥb

describes the Hamiltonian of the bath. Consequently, the
total Hamiltonian reads Ĥtot(t) = ĤLZ(t)+Ĥint+Ĥb. We
use a weak system-bath coupling and a slowly varying
system Hamiltonian [42], therefore the time-dependent
Lindblad master-equation approximation describing the
dynamics of the density matrix ρ̂(t), is assumed to be in
the Davies form [41],

L̂(t)ρ̂ = −i [ĤLZ(t), ρ̂] +∑
ω={0,±∆}

γ(ω)[L̂ω(t) ρ̂ L̂†ω(t)− 1

2
{L̂†ω(t) L̂ω(t), ρ̂}], (48)
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where the spectral function of the bath γ(ω) is positive
and satisfies the Kubo-Martin-Schwinger (KMS) condi-
tion γ(−ω) = e−βωγ(ω), see Ref. [43]. Let us choose γ(ω)
to be in the Ohmic form

γ(ω) = 2πg2 ω

1− e−βω
. (49)

We note that the Davis form guarantees the steady

states to be of the Gibbs form, ρ̂1 = e−βĤLZ/Z, with

Z = TrS(e−βĤLZ), see [44] for more details. The choice

of Ĥint = g σ̂y⊗ B̂, ensure the minimum Lindbladian gap
to be nonzero for all z, thus we have as in the Landau-
Zener case an avoided level crossing. Further, we note
that the Lamb shift Hamiltonian was neglected for sim-
plicity. Finally, the Lindblad operators are given by

L̂ω(t) =
∑

i,j: Ei−Ej=ω
|ψi〉〈ψi|σ̂y|ψj〉〈ψj |, (50)

where ω ∈ {0,±∆}, i, j ∈ {1, 2}, E1,2 = ±
√
x2 + z2 are

the eigenenergies of the Landau-Zener model and |ψi〉
denote the corresponding eigenstates given in Eq. (11),
and we obtain

L̂0 = 0, L̂+∆ =
i z

2 b
σ̂x +

1

2
σ̂y − i x

2 b
σ̂z = (L̂−∆)†. (51)

The eigenvalues of the resulting Liouvillian L̂(t) are
given by

l1 = 0, (52)

l2 = − [γ(−∆) + γ(∆)] = −2πg2∆ coth(
β∆

2
), (53)

l3 =
λ2

2
− i∆ = −πg2∆ coth(

β∆

2
)− i∆, (54)

l4 =
λ2

2
+ i∆ = −πg2∆ coth(

β∆

2
) + i∆, (55)

which are derived in Appendix C. The corresponding left
and right eigenvectors, denoted by 〈〈Li| and |Ri〉〉, respec-
tively, with i = 1, 2, 3, 4, are also given in Appendix C.

As for the closed case, we assume the protocol, where
x is constant in time, z(t) = zi + (zf − zi) t/tf , with
t ∈ [0, tf ], and the system prepared in the state ρ̂(0) =
ρ̂1(0). For the initial point, zi, we choose a negative
value, and for the final point, zf , the same but pos-
itive value, such that the protocol passes the avoided
level crossing (minimal gap) at z = 0. The time evo-
lution is described by a linear, time-local master equa-

tion of the form ∂tρ̂ = L̂(t)ρ̂, which we express in the

basis 1√
2
{1̂, σ̂x, σ̂y, σ̂z} and solve numerically (see Ap-

pendix D).
First, we study the adiabatic approximation of the

time evolved state, ρ̂(tf ), given by

ρ̂adi(tf ) = Û(tf , 0)ρ̂1(0). (56)

Note that since ρ̂1(0) ∈ ker L̂ and the latter is one di-
mensional, we have

|ρadi(tf )〉〉 = |R1(tf )〉〉. (57)

The dynamical phase is zero, since l1 = 0, and the Berry
phase is also zero, due to the fact that 〈〈Lj |∂z|Rj〉〉 = 0,
for j = 1, 2, 3, 4.

Within the AIA the time evolved state of our system
is approximated by

ρ̂aia(tf ) = Û(tf , τ+) 1̂ Û(τ−, 0)ρ̂1(0). (58)

In vector notation we find

|ρaia(tf )〉〉 =

4∑
j=1

e`j(τ+,tf )〈〈Lj(τ+)|R1(τ−)〉〉|Rj(tf )〉〉,

(59)

where the dynamical phase reads, `j(τ+, tf ) =
∫ tf
τ+
dt lj ,

and the Berry phases vanish as mentioned above. To es-
timate the adiabatic-impulse switching times, τ±, we will
use the gap ∆ of the system Hamiltonian, and therefore
refer to the Sec. II B for the estimation of τ±.

The trace-norm distance between the exact evolution
and the adiabatic approximation/AIA are shown in Fig. 8
for different temperatures T , and for x = 0.1, zi = −1,
zf = 1 and g = 0.01. In Fig. 8 (a) we plot dadi(tf ) and
in Fig. 8 (b) daia−1(tf ), where the impulse interval was
estimated by the Kibble-Zurek argument using the gap
∆ of ĤLZ, i.e., 1/∆ = z/∂tz. As in the closed case, we
find that the AIA performs only better than the adia-
batic approximation for short times tf < 102. However,
for intermediate times, 102 < tf < 104, the AIA is con-
siderably worse than the adiabatic approximation. In
contrast to the closed case, we observe that the trace-
norm distance dadi(tf ) and daia−1(tf ) become the same
for large tf . We believe an important ingredient to un-

derstand this phenomena is the fact that the ker(L̂) is
one-dimensional.

In Fig. 9 (a) we plot the impulse interval ∆τ1 ob-
tained by the Kibble-Zurek argument 1/∆ = z/∂tz, ∆τ2
given by the modified Kibble-Zurek argument 1/∆ =

‖ĤLZ‖ / ‖∂tĤLZ‖, and ∆τopt found by minimizing the
trace-norm distance daia with respect to ∆τ . The re-
sulting trace-norm distances are compared in Fig. 9 (b).
It is interesting to see that for large tf all the approxi-
mation schemes give the same trace norm distance as the
adiabatic approximation. We observe although, that the
first order adiabatic correction still provides a smaller
distance. Even the trace norm distance found by the
minimization process becomes the same as the simple
adiabatic approximation. We note that the first order
correction to the adiabatic approximation can be found
in Ref. [35] (Theorem 6). However, there is a regime for
which dopt can reach the same distance as the first order
adiabatic approximation, if the counter intuitive scheme
of crossing the minimal gap region twice is applied.



11

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●

●
●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■
■
■
■
■
■
■

■
■

■■■■■■■■■■■■■■■■■
■
■
■
■
■
■
■■■■■■■■■■■■■■■■■■■■■■■■■■■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆
◆
◆
◆
◆
◆
◆
◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆
◆
◆
◆
◆
◆

◆

◆

◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲
▲
▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

● T=0.01

■ T=0.05

◆ T=0.1

▲ T=0.2

▼ T=0.5

0 1 2 3 4 5 6

-7

-6

-5

-4

-3

-2

-1

0

log10(tf )

lo
g 1
0
(d
a
d
i)

●●●●
●●●●

●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●

■■■■
■■■■

■■■■
■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■
■
■
■
■
■
■
■

■

■

■■
■
■■■■■■■■■■■■■■■■■■■■■

◆◆◆◆
◆◆◆◆

◆◆◆◆
◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆
◆
◆
◆
◆
◆
◆
◆

◆

◆

◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲▲▲▲
▲▲▲▲

▲▲▲▲▲
▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▼▼▼▼
▼▼▼

▼▼▼▼
▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

● T=0.01

■ T=0.05

◆ T=0.1

▲ T=0.2

▼ T=0.5

0 1 2 3 4 5 6

-7

-6

-5

-4

-3

-2

-1

0

log10(tf )

lo
g 1
0
(d
a
ia
-
1
)

(a)

(b)

Figure 8. (Color online) The trace-norm distance between the
fully evolved state and the adiabatic/adiabatic-impulse ap-
proximation is shown. The impulse interval for the adiabatic-
impulse approximation was obtained by the Kibble-Zurek ar-
gument 1/∆ = z/∂tz. The panel (a) shows dadi(tf ) and the
panel (b) depicts daia−1(tf ) on a logarithmic scale. We plot-
ted the trace-norm distance for different temperatures and for
x = 0.1, zi = −1, zf = 1, and g = 0.01.
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Figure 9. (Color online) (a) We plot the impulse interval
∆τ1 obtained by the Kibble-Zurek argument 1/∆ = z/∂tz,
∆τ2 determined by the Kibble-Zurek argument using the rate
of change of the Hamiltonian 1/∆ = ‖ĤLZ‖ / ‖∂tĤLZ‖, and
the optimal impulse interval ∆τopt found by minimizing the
trace-norm distance daia with respect to ∆τ . (b) We compare
the trace-norm distance found by the different scenarios men-
tioned in (a). The following values were used in both panels
T = 0.05, x = 0.1, zi = −1, zf = 1, and g = 0.01.
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IV. CONCLUSIONS

We studied the accuracy of the AIA for closed and
open quantum systems, by evaluating how well this ap-
proximation reproduces the exactly evolved state of the
system. We used the trace-norm distance to characterize
the closeness of the approximated state to the exactly
evolved one. The adiabatic approximation served as a
reference for the evaluation of the AIA. As might be ex-
pected, the AIA performs better than the adiabatic ap-
proximation for small total evolution times tf . For large
total evolution times, we observed that the Kibble-Zurek
argument overestimates the impulse interval and thus the
AIA provided a poor approximation to the time evolved
state.

Modifying the Kibble-Zurek argument allowed us to
improve the AIA, such that at least the adiabatic ap-
proximation can be recovered. However, the AIA can
outperform the adiabatic one for large tf , if a counter in-
tuitive procedure is applied. Namely, driving the system
adiabatically through the region where the gap is mini-
mal, then jumping back, to cross the minimal gap region
once again adiabatically. We illustrated by several exam-
ples, that it is highly non trivial to estimate the optimal
impulse regime and even harder to guess, when to cross
the minimal gap twice, using this counter intuitive recipe.

We conclude, that the adiabatic-impulse approxima-
tion is a good method to estimate the scaling behavior of
certain non-equilibrium properties, see, e.g., [14–16] for
closed quantum systems or for dissipative quantum sys-
tems [45–48]. Nevertheless, to use it as a rigorous approx-
imation for the time evolution of quantum systems that
are driven across a minimal gap region, one still needs to
get nontrivial knowledge about the system’s properties.
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Appendix A: Adiabatic intertwiner for a single level

In this appendix we express the adiabatic intertwiner

Ŵ1(t2, t1), which evolves adiabatically a single instanta-
neous steady state of the Liouvillian from t1 to t2, in vec-
tor notation. In case the evolution is a long a closed loop
the adiabatic intertwiner becomes the so called Wilczek-
Zee operator [49, 50]. The instantaneous steady states,

i.e., the states from the kernel of the Liouvillian L̂(t), are

defined by L̂(t)ρ̂
(α)
1 (t) = 0, where α enumerates possible

degeneracy. In vector notation the instantaneous steady

states ρ̂
(α)
1 (t) are the right eigenvectors of the Liouvil-

lian given by L̂(t)|R(α)
1 〉〉 = 0. Further, the instantaneous

spectral projection of L̂(t) with zero eigenvalue is de-

noted by P̂1(t). We note that for a Liouvillian in the
Lindblad form, the zero eigenvalue (possibly degenerate)
is semisimple, i.e., there are no Jordan blocks associated
to the zero eigenvalue and thus there are no nilpotent

terms in the zero sector, L̂P̂1 = P̂1L̂ = 0, see [34] for a
detailed proof.

The ideal adiabatic evolution is described by an

operator V̂1(t, 0), satisfying the intertwining property

V̂1(t, 0)P̂1(0) = P̂1(t)V̂1(t, 0) and is given by the solution
of

∂tV̂1(t, 0) = [∂tP̂1(t), P̂1(t)] V̂1(t, 0) (A1)

V̂1(0, 0) = 1̂, (A2)

where 1̂ is the identity operator. One can see that V̂1(t, 0)
is not, in general, a completely positive trace preserving

(CPTP) map [34], however Ŵ1(t, 0) ≡ V̂1(t, 0)P̂1(0) is a
CPTP map and thus the proper adiabatic intertwiner,

i.e., ρ̂
(α)
1 (t) = Ŵ1(t, 0)ρ̂

(α)
1 (0). In addition, it was shown

in [34], that we can write

Ŵ1(t, 0) = lim
N→∞

P̂1(Nε) · · · P̂1(2ε)P̂1(ε)P̂1(0). (A3)

where (t = Nε). So we write

P̂1(t) =
∑
α

|R(α)
1 (t)〉〉〈〈L(α)

1 (t)|, (A4)

and note that

〈〈L(αj+1)
1 (tj+1)|R(αj)

1 (tj)〉〉

= δαj+1,αj + ε 〈〈L(αj+1)
1 (t)|

←−
∂ t|t=tj |R

(αj)
1 (tj)〉〉+O

(
ε2
)

= δαj+1,αj − ε 〈〈L
(αj+1)
1 (tj)|∂t|R

(αj)
1 (t)〉〉|t=tj +O

(
ε2
)

= [1I− εA(tj)]αj+1,αj
+O

(
ε2
)
, (A5)

where tj = ε j, with j = 0, 1, . . . , N and tN = t. The

second line follows by differentiating 〈〈L(α)
1 |R

(β)
1 〉〉 = δα,β

and we defined [A1(t)]α,β ≡ 〈〈L(α)
1 (t)|∂t|R(β)

1 (t)〉〉. Plug-
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ging Eq. (A5) into Eq. (A3) yields

Ŵ1(t, 0) =
∑
αN ,α0

|R(αN )
1 (t)〉〉〈〈L(α0)

1 (0)|

[
←−
Texp

[
−
∫ t

0

A1(σ)dσ

]]
αN ,α0

, (A6)

where
←−
T is the so called time-ordering operator, ordering

the operators in a chronological order with time increas-
ing from right to left. Now we note further that,{
←−
Texp

[
−
∫ t

0

A1(σ)dσ

]}T
=
−→
Texp

[
−
∫ t

0

AT1 (σ)dσ

]
,

(A7)

where T indicates transpose and
−→
T arranges operators

in a chronological order, with time increasing from left
to right. Finally, we can write

Ŵ1(t, 0) =
∑
αN ,α0

|R(αN )
1 (t)〉〉〈〈L(α0)

1 (0)|·

·
[
−→
Texp

[
−
∫ t

0

AT (σ)dσ

]]
α0,αN

, (A8)

which is the formula usually found in the literature [49,
50].

Appendix B: The full adiabatic intertwiner

In this appendix we want to show that the full adia-

batic intertwiner Û , i.e., the map that evolves adiabati-
cally all the levels and not only a single one, is a bona
fide completely positive trace preserving (CPTP) map.
In doing so we will also prove the adiabatic theorem for

Û . First, we note that it is convenient to rescale the time
by the total evolution time tf , s(t) = t/tf , such that
s ∈ [0, 1]. Second, we remark that the dot will stand for

differentiation with respect to s, Ẋ = ∂sX. Further, we
assume the following spectral resolution of the Liouvil-

lian L̂(s)P̂n(s) = ln(s)P̂n(s), in other words we assume
no Jordan blocks. We also assume that all the levels ln(s)

do not cross and P̂n(s) are twice differentiable.
We begin by defining Vn(s, s′) as the solution of the

following ODE

˙̂
V n =

(
tf L̂+ [

˙̂
Pn, P̂n]

)
V̂n, V̂n(0) = 1̂. (B1)

Differentiating ĥ(s, s′) ≡ V̂n(s, s′)P̂n(s′)V̂n(s′, 0) with re-

spect to s′, one sees that V̂n(s) has the intertwining prop-
erty:

P̂n(s)V̂n(s) = V̂n(s)P̂n(0). (B2)

Let us define also Ŵn(s) ≡ P̂n(s)V̂n(s). Using
˙̂
Pn =

P̂n
˙̂
Pn +

˙̂
PnP̂n, one realizes that

˙̂
Wn = (tf L̂+

˙̂
Pn)Ŵn

=
(
tf L̂+ [

˙̂
Pn, P̂n]

)
Ŵn. (B3)

Since Ŵn satisfies the same ODE as V̂n, but with a dif-

ferent initial condition, we see that Ŵn satisfies the in-
tertwining property.

Let us now further define

Û(s) ≡
∑
n

Ŵn(s). (B4)

We note that we assumed
∑
n P̂n = 1̂, i.e., that the eigen-

vectors span the full space. If this is not the case, i.e.,
there is also a continuous spectrum, one can use the trick

due to Kato, defining the “missing” P̂0(s), such that the

P̂n are then complete. The differential equation for Û is

˙̂
U =

∑
n

(tf L̂P̂n +
˙̂
PnP̂n)Ŵn

=
∑
n

(tf L̂P̂n +
˙̂
PnP̂n)

∑
l

Ŵl. (B5)

Now using
∑
n

˙̂
PnP̂n = −

∑
n P̂n

˙̂
Pn, which stems from

the completeness of the P̂n, one gets

˙̂
U =

(
tf L̂+

1

2

∑
n

[
˙̂
Pn, P̂n]

)
Û ,

Û(0) =
∑
n

P̂n(0) = 1̂. (B6)

Clearly, Û(s) behaves like Ŵn(s) in the range of P̂n(0) for

all n, so Û(s) might as well be called the full intertwiner.

Let us now show that each V̂n is close to Ê in the
range of P̂n, where the operator Ê(s, 0) is the evolution
operator, describing the full time evolution of the den-

sity matrix ρ̂(s) = Ê(s, 0)ρ̂(0), and satisfies ∂sÊ(s, 0) =

tf L̂(s)Ê(s, 0), with Ê(s, s) = 1̂. One has

Ê(0, s)Ŵn(s)− P̂n(0) =

∫ s

0

ds′
d

ds′

[
Ê(0, s′)Ŵn(s′)

]
=

∫ s

0

ds′Ê(0, s′)
˙̂
Pn(s′)Ŵn(s′)

=

∫ s

0

ds′Ê(0, s′)Q̂n(s′)
˙̂
Pn(s′)Ŵn(s′), (B7)

where Q̂n(s) = 1̂ − P̂n(s), and by using the identity

P̂n
˙̂
PnP̂n = 0. The reduced resolvent is defined by Ŝn =

lima→ln Q̂n(L̂−a1̂)−1Q̂n, which satisfies Q̂n = L̂Ŝn, and
together with

Ê(0, s′)L̂(s′) = −t−1
f ∂s′ Ê(0, s′), (B8)
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implies

Ê(0, s)Ŵn(s)− P̂n(0)

= − 1

tf

∫ s

0

ds′
[
∂s′ Ê(0, s′)

]
Ŝn(s′)

˙̂
Pn(s′)Ŵn(s′)

= − 1

tf
Ê(0, s′)Ŝn(s′)

˙̂
Pn(s′)Ŵn(s′)

∣∣∣s
0

+
1

tf

∫ s

0

ds′Ê(0, s′)∂s′
[
Ŝn(s′)

˙̂
Pn(s′)Ŵn(s′)

]
. (B9)

We now multiply the last equation by Ê(s, 0) from the
left and get

Ê(s, 0)P̂n(0)− V̂n(s)P̂n(0)

=
1

tf

[
Ŝn(s)

˙̂
Pn(s)Ŵn(s)− Ê(s, 0)Ŝn(0)

˙̂
Pn(0)Ŵn(0)

]
− 1

tf

∫ s

0

ds′Ê(s, s′)∂s′
[
Ŝn(s′)

˙̂
Pn(s′)Ŵn(s′)

]
. (B10)

We note that Ŝn is the reduced resolvent of L̂ and does
not contain tf , so neither Ŝn nor P̂n depend on tf . How-

ever, in our formulation Ŵn does depend on tf . In [51]

Salem simply claims that Ŵn is bounded. This seems to
overlook the fact that the constant for the bound could
still depend on tf . In any case, the required bound can

be obtained by writing a Trotter expansion for Ŵn:

Ŵn(s) = lim
N→∞

←−
T

N∏
i=1

(
eεtf L̂(si)eε

˙̂
Pn(si)

)
(B11)

with ε = s/N , si = εi. This shows that ‖Ŵn‖ can be

bounded by a constant independent of tf , since each L̂

is a generator of a contraction semigroup. In fact one
obtains∥∥∥Ŵn(s)

∥∥∥ ≤ exp

(∫ s

0

ds′
∥∥∥ ˙̂
Pn(s′)

∥∥∥) , (B12)

which shows finally that∥∥∥(Ê(s)− Ŵn(s)
)
P̂n(0)

∥∥∥ ≤ Cn
tf
, (B13)

where Cn are finite constants independent of tf . Coming

back to Û , we can write

Ê(s)− Û(s) =
∑
n

[
Ê(s)− Û(s)

]
P̂n(0)

=
∑
n

[
Ê(s)− Ŵn(s)

]
P̂n(0), (B14)

and taking the norm one obtains∥∥∥Ê(s)− Û(s)
∥∥∥ ≤ 1

tf

∑
n

Cn. (B15)

In finite dimension the latter sum
∑
n Cn does not pose

a problem, since it is still finite. Nevertheless, for infinite
dimensional systems one should show that the sum is

bounded. In summary, this implies that Û is arbitrarily
close to a CPTP map, and therefore is itself a CPTP
map.

Appendix C: Derivation of the eigenvalues and
eigenvectors of the Liouvillian

Let us now write the Liouvillian operator L̂ in the basis

{Γ̂i}4i=1 = 1√
2
{1̂, σ̂x, σ̂y, σ̂z}, i.e., Lij = Tr(Γ̂i L̂ Γ̂j), we

find

(Lij) =



0 0 0 0
2x

∆
[γ(−∆)− γ(∆)] −

2(x2 + 1
4∆2) [γ(−∆) + γ(∆)]

∆2
−2z −2xz [γ(−∆) + γ(∆)]

∆2

0 2z −1

2
[γ(−∆)− γ(∆)] −2x

2z [γ(−∆)− γ(∆)]

∆
−2xz [γ(−∆) + γ(∆)]

∆2
2x −

2( 1
4∆2 + z2) [γ(−∆) + γ(∆)]

∆2

 ,

(C1)

and the vector representation of the density matrix ρ̂
reads

|ρ〉〉 =

4∑
i=1

ci|Γi〉〉 =

c1c2c3
c4

 , (C2)

where ci = Tr(Γ̂iρ̂). The eigenvalues of the Liouvillian L
can be calculated and are given by

l1 = 0, (C3)

l2 = − [γ(−∆) + γ(∆)] = −2πg2∆ coth(
∆

2
β), (C4)

l3 = −1

2
[γ(−∆) + γ(∆)]− i∆ = −πg2∆ coth(

∆

2
β)− i∆,

(C5)

l4 = −1

2
[γ(−∆) + γ(∆)] + i∆ = −πg2∆ coth(

∆

2
β) + i∆,

(C6)
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and the corresponding eigenvectors read

|r1〉〉 =


∆√
2 z

γ(−∆)+γ(∆)
γ(−∆)−γ(∆)

x
z
0
1

 =


− ∆√

2 z
coth(β∆

2 )
x
z
0
1

 ,

|r2〉〉 =

0
x
z
0
1

 , |r3〉〉 =


0
− z
x

−i ∆
2 x

1

 , |r4〉〉 =


0
− z
x

i ∆
2 x
1

 .

(C7)

We note that they have to be normalized such that the
corresponding density matrices have trace one. Since ρ̂ =∑
i ciΓ̂i = c1

1√
2
1̂ + c2

1√
2
σ̂x + c3

1√
2
σ̂y + c4

1√
2
σ̂z, only the

first component needs to be 1√
2

in order to have Tr(ρ̂) =

1, because Tr(1̂) = 2 and Tr(σ̂α) = 0 for α = x, y, z. As
we see this is only possible for the right eigenvector |r1〉〉
with l1 = 0, and therefore we find

|ρ1〉〉 =


1√
2

−
√

2x
∆ tanh(β∆

2 )
0

−
√

2z
∆ tanh(β∆

2 )

 , |ρ2〉〉 =

0
x
z
0
1

 ,

|ρ3〉〉 =


0
− z
x

−i ∆
2 x

1

 , |ρ4〉〉 =


0
− z
x

i ∆
2 x
1

 . (C8)

In matrix notation they read

ρ̂1 =

(
1
2 −

z tanh( β∆
2 )

∆ −x tanh( β∆
2 )

∆

−x tanh( β∆
2 )

∆
1
2 +

z tanh( β∆
2 )

∆

)
=

e−βĤLZ

Tr(e−βĤLZ)
,

(C9)

ρ̂2 =
1√
2

(
1 x

z
x
z −1

)
, (C10)

ρ̂3 =
1√
2

(
1 − z

x −
1
2

∆
x

− z
x + 1

2
∆
x −1

)
, (C11)

ρ̂4 =
1√
2

(
1 − z

x + 1
2

∆
x

− z
x −

1
2

∆
x −1

)
. (C12)

It can be seen that Tr(ρ̂2,3,4) 6= 1, and hence ρ̂2,3,4 can
not be interpreted as states. The Liouvillian gap is given
by

∆L = min{|l2| , |l3|}, (C13)

where

|l2| =
√
λ2λ

∗
2 =

√
[γ(−∆) + γ(∆)]

2
= 2πg2∆ coth(

β∆

2
)

= 4πg2T +
1

3
πg2 1

T
∆2 +O(∆4), (C14)

|l3| =
√
λ3λ

∗
3 =

√
1

4
[γ(−∆) + γ(∆)]

2
+ ∆2

= 2πg2T +
3 + 2π2g4

12πg2

1

T
∆2 +O(∆3). (C15)

The left eigenvectors of the Liouvillian are defined by

〈〈lm|L = λm〈〈lm| ⇐⇒ L†|lm〉〉 = l∗m|lm〉〉, (C16)

and therefore we find for the left eigenvectors

〈〈l1| =
(
1, 0, 0, 0

)
, (C17)

〈〈l2| =
(
− ∆

2 z
γ(−∆)−γ(∆)
γ(−∆)+γ(∆) ,

x
z , 0, 1

)
=
(

∆
2 z tanh(β∆

2 ), x
z , 0, 1

)
, (C18)

〈〈l3| =
(
0, − z

x , i
∆
2 x , 1

)
, (C19)

〈〈l4| =
(
0, − z

x , −i
∆
2 x , 1

)
. (C20)

We can normalize the first left eigenvector such that in
matrix notation we have 〈〈$1 |ρ〉〉 = Tr(1̂ρ̂) = Tr(ρ̂) = 1,
i.e., 〈〈$1| =

(√
2, 0, 0, 0

)
, and thus we get

$̂1 =

(
1 0
0 1

)
(C21)

$̂2 =
1√
2

(
1 + ∆

2 z tanh(β∆
2 ) x

z
x
z −1 + ∆

2 z tanh(β∆
2 )

)
,

(C22)

$̂3 =
1√
2

(
1 − z

x + 1
2

∆
x

−xz −
1
2

∆
x −1

)
, (C23)

$̂4 =
1√
2

(
1 − z

x −
1
2

∆
x

− z
x + 1

2
∆
x −1

)
. (C24)

Further, we may normalize the left and right eigenvectors
such that they form a complete and orthonormal basis,

〈〈Ln |Rm〉〉 = δnm,
∑
n

|Rn〉〉〈〈Ln| = 1̂, (C25)

and thus we have

|R1〉〉 =


1√
2

−
√

2 x∆ tanh(β∆
2 )

0

−
√

2 z
∆ tanh(β∆

2 )

 , |R2〉〉 =
2z

∆

0
x
z
0
1

 ,

|R3〉〉 =
√

2
x

∆


0
− z
x

−i 1
2

∆
x

1

 , |R4〉〉 =
√

2
x

∆


0
− z
x

i 1
2

∆
x

1


〈〈L1| =

(√
2, 0, 0, 0

)
,

〈〈L2| =
2z

∆

(
1
2∆ 1

z tanh(∆
2 β), x

z , 0, 1
)
,

〈〈L3| =
√

2
x

∆

(
0, − z

x , i
1
2∆ 1

x , 1
)
,

〈〈L4| =
√

2
x

∆

(
0, − z

x , −i
1
2

∆
x , 1

)
. (C26)

Appendix D: Lindbladian master equation

The equation describing the time evolution of the re-
duced density matrix ρ̂, is a linear and time-local master
equation, given by

∂tρ̂ = L̂(t)ρ̂, (D1)
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where L̂(t) is the Liouvillian written in Lindblad form

(see main text). In the basis {Γ̂i}4i=1 = 1√
2
{1̂, σ̂x, σ̂y, σ̂z},

where the vector representation of ρ̂(t) reads |ρ(t)〉〉 =

∑4
i=1 ci(t)|Γi〉〉, Eq. (D1) takes the form

∂tc1(t) = 0, (D2)

∂tc2(t) = −4πg2xc1(t)− 2πg2 coth[βb(t)]
x2 + b2(t)

b(t)
c2(t)

− 2z(t)c3(t)− 2πg2 coth[βb(t)]
x z(t)

b(t)
c4(t),

(D3)

∂tc3(t) = 2z(t)c2(t)− 2πg2 coth[βb(t)]b(t)c3(t)− 2xc4(t),
(D4)

∂tc4(t) = −4πg2z(t)c1(t)− 2πg2 coth[βb(t)]
x z(t)

b(t)
c2(t)

+ 2x c3(t)− 2πg2 coth[βb(t)]
b2(t) + z2(t)

b(t)
c4(t),

(D5)

with b(t) ≡
√
x2 + z2(t). We numerically solved the

above equations to find |ρ(t)〉〉.
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