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The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated
explicitly for one and three dimensional systems through semiclassical propagation of the Maxwell-
Liouville equations. We consider three flavors of mixed quantum-classical dynamics: () the classical
path approximation (CPA), (i4) Ehrenfest dynamics, and (7i7) symmetrical quantum-classical (SQC)
dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of
spontaneous emission; (#¢) A consistent “spontaneous” emission can be obtained from Ehrenfest
dynamics—provided that one starts in an electronic superposition state; (iii) Spontaneous emission
is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further
calculate the dynamics following an incoming pulse, but here we find very different responses: SQC
and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient
excited state. Nevertheless, our work confirms the earlier observations by W. Miller [J. Chem. Phys.
69, 2188-2195, 1978] that Ehrenfest dynamics can effectively describe some aspects of spontaneous
emission and highlights new possibilities for studying light-matter interactions with semiclassical

mechanics.

I. INTRODUCTION

Understanding the dynamics of light-matter interac-
tions is essential for just about any flavor of physi-
cal chemistry; after all, with a few exceptions, photons
are the most common means nowadays to interrogate
molecules and materials in the laboratory. Today, it
is standard to study molecules and materials with light
scattering experiments, absorption spectroscopy, pump-
probe spectroscopy, etc. For a chemist, the focus is
usually on the matter side, rather than the electromag-
netic (EM) field side: one usually pictures an incoming
EM field as a time-dependent perturbation acting on a
molecule. Thereafter, one calculates how the molecule
responds to the perturbation and, using physical argu-
ments and/or semiclassical insight, one extrapolates how
the molecular process will affect the EM field. For in-
stance, in an absorption experiment, we usually assume
linear response theory[1l] when calculating how much en-
ergy the molecule absorbs. More precisely, one calcu-
lates a dipole-dipole correlation function and then, after
a Fourier transform, one can make an excellent predic-
tion for the absorption pattern. For weak electric fields,
this approach often results in reliable data.

However, in many situations involving strong
light /matter interactions (e.g. laser physics), the states
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of the radiation field and the material sub-systems have
to be considered on equal footing. An example of strong
recent interest is the host of observed phenomena that
manifest strong exciton-photon coupling.[2-4] Closely
related, and also in recent focus, are observations
and models pertaining to strong interactions between
molecules and electromagnetic modes trapped inside
of optical cavities.[5-7] As another example, recent
studies by Mukamel[8], Bucksbaum[9] and coworkers
who have explored the proper interpretation of x-ray
pump-probe scattering experiments and, in particular,
the entanglement between electrons, nuclei and photons.
For these and similar problems, one cannot ignore the
dynamics of the EM field.

In order to study these and similar systems, and to
go beyond model problems, one must necessarily solve
some variants of the coupled Maxwell and Schrodinger
(or, when needed, quantum-Liouville) equations, where
the radiation field is described by classical Maxwell equa-
tions while the molecular system is modeled with a hand-
ful of states and described quantum mechanically.[3, 10—
17]. A classical description of the radiation field is obvi-
ously an important simplification of quantum electrody-
namics, which makes it possible to simulate the optical
response of realistic model systems. However, open ques-
tions remain in this area, in particular:

e How does spontaneous emission emerge, if at all, in
semiclassical calculations?

e How do we best describe computationally the pos-
sibly simultaneous occurrence of absorption, scat-
tering, fluorescence and non-linear optical response
following a pulse or CW excitation of a given molec-
ular system that may interact with its environ-
ment?

e How do we treat both quantum-mechanical



electron-electron interactions (e.g. spin-orbit cou-
pling) and classical electronic processes (e.g. elec-
tronic energy transfer) in a consistent fashion?

In the future, our intention is to address each and ev-
ery one of these questions. For the present article, how-
ever, our goal is to address the first question: how does
spontaneous emission emerge (if at all) in semiclassical
electrodynamics? We note that spontaneous emission
rates can be evaluated from the rate of energy emission
by a classical dipolar antenna[18]. Moreover, Miller[19]
has argued that, apart from a few corrections, sponta-
neous decay rates can sometimes be ascertained from
classical dynamics. Indeed, for a dipolar harmonic os-
cillator, Miller has shown that a semiclassical decay rate
can be obtained from classical dynamics exactly. His
treatment[19], however, raises several questions. First, in
Ref. 19, the molecular system is represented by a classi-
cal harmonic oscillator rather than a 2-level system. How
will the observations made by Miller be affected with a
proper quantum-mechanical treatment? What will be
the performance of mixed semiclassical treatments for
spontaneous emission, and which semiclassical treatment
will perform best? Second, in Ref. 19, no explicit light
pulses are applied to the electronic system, but one can
ask: If a pulse of light is applied to the system, and
we use mixed quantum-classical dynamics, is the propa-
gated photon field consistent with the ensuing molecular
dynamics? With an external temperature, do we recover
detailed balance? In this article, we will address most
of these questions, paying special attention to the recent
symmetrical quantum-classical (SQC) dynamics protocol
of Cotton and Miller[20, 21].

This article is arranged as follows. In Sec. II, we briefly
review the theory of spontaneous decay. In Sec. III,
we introduce the semiclassical Hamiltonian that we will
study. In Sec. IV, we implement Ehrenfest dynamics,
CPA and SQC. In Sec. V, simulation details are given.
In Sec. VI, we compare results for spontaneous decay.
In Sec. VII, we simulate and analyze two cases: (i) the
arrival of an incoming pulse and (i7) dephasing effects.
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Here, yi12 = |(e|qrlg)| is the three-dimensional transition
dipole moment of the molecule, E'E, At the a unit vector in
direction of the electric field indexed by the wave vector
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We conclude in Sec. VIII.

For notation, we use the following conventions: fuwq
is used to represent the energy difference between the
excited state |e) and the ground state |g); hwy (or hck’)
is used to represent the energy of the photon with wave
vector k’; p12 is the electric transition dipole moment of

the molecule; \/g represents the molecular size so that

the transition dipole moment with a characteristic charge

q is approximately pio ~ \/gq; ¢ is used to represent a

dephasing rate; Uy denotes the total energy of an incident
pulse; ko denotes the peak position of an incident pulse
in Fourier space; b is a parameter fixing the width of an
incident pulse in space; and c is the speed of light. We
work below in SI units.

II. THEORY OF SPONTANEOUS EMISSION

For completeness, and because we will work in both
one and three dimensions, it will be convenient to briefly
review the theory of spontaneous emission and dipole ra-
diation. Consider a molecular species in an excited state
le) which can decay to the ground state |g) by emitting
a photon spontaneously.

A. The Fermi’s Golden Rule (FGR) Rate

Let the vacuum state for the radiation field be |0).
Suppose that initially the system is in state |e) ® |0). At
long times, we expect to observe spontaneous emission,
so that the final state will be |g) @ af ,[0). Here, af
creates a photon with wave vector ¢ and polarization s.

We now apply Fermi’s Golden Rule (FGR) for the
emission rate. We further make the dipole approxima-
tion, so that the interaction Hamiltonian for a molecule

sitting at the origin is Hyne = —qr - E(O), where ¢ is the
electronic charge, 7 is the position operator for the quan-

tum system, and E(0) is the electric field at the origin.
In such a case, the decay rate k in 3D can be calculated
as follows|[22]:

4 X hw—’;//|u12|20082 06(wo — ck’)

(

K and the polarization vector §, and hwq is the energy
difference between |e) and |g). Eqn. (la) is the usual
FGR expression. In Eqn. (1b), if we replace the discrete



> with the continuous [ dpdfdk’ sin 0k"2n(K'), where

n(K') = V/(27)3 is the three-dimensional density of states
(DOS) for the photons, we recover Eqn. (1c).

In what follows below, it is useful to study EM radia-
tion in 1D as well as in 3D. To that end, we will imagine
charge distributions that are function of x only, i.e. they
are uniform in y and z directions. In 1D, the density
of states (DOS) for the photon field is n(k’) = L, /2.
Therefore, the decay rate in 1D is:

huwp,
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Using V = L,L,L, and deﬁning the one-dimensional

dipole moment |n PP = |3 1?/L, L., we can rewrite
the final 1D rate as
“o | 1D2
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Below, we will use p12 to represent either pui2 or u$?
dependlng on context.

Note that, in 1D, the spontaneous decay rate kip de-
pends linearly on the frequency wg and quadratically
on the transition dipole moment p12. In 3D, however,
ksp depends cubically on wy instead of linearly, but still
quadratically on p12. Note that, for Eqns. (1c) and (3)
to apply, two conditions are required: (i) The dipole ap-
proximation must be valid, i.e. the wavelength of the
spontaneous light must be much larger than the width
of the molecule. (ii) The coupling between the molecule
and the radiation field must be weak so that we may ig-
nore any feedback on the EM field, i.e. wy must be much
larger than the inverse lifetime (k).

B. The Abraham-Lorentz Rate

While FGR is the standard protocol for modeling spon-
taneous emission with quantum mechanics, we can also
recover a similar decay rate with classical mechanics by
using the Abraham-Lorentz equation[23] . For a classi-
cal charged harmonic oscillator moving in the x direction
with mass m, the Abraham-Lorentz equation reads

mE(t) = —mwlZ(t) + mr L (t) (4)

where 7 = ¢2/6megc®m has the dimensions of time. The
last term in Eqn. (4) represents the recoil force on a
particle as it feels its own self-emitted EM field. If we
assume 7 < 1/wp, i.e., we assume the damping effect is
small, we may replace m7Z (t) by —mw2rZ(t) to obtain

mE(t) = —mw3Z(t) — mwiTE(t) (5)

Eqn. (5) represents a damped harmonic oscillator, which
has a well-know solution
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since woT < 1. In Eqn. (6), the amplitude xo and the
phase ¢ will depend on the initial conditions, and the
decay rate kay, is
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At this point, we can write down the total energy of the
harmonic oscillator:

E(t) = ;mwSIQ( t) + ;mx2(t)

= mwiale Fart (1 +

2
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To relate the Abraham-Lorentz rate kay, to the FGR rate
in 3D, we require a means to connect a classical system
with mass m to a pair of quantum mechanical states. To
do so, we imagine the oscillator is quantized and that the
motion is occurring in the ground state, where /23 =

/h/2mwq. This is equivalent to asserting that the initial
energy of the dipole is 271w0, which we set equal to the
total dipole energy, mwixz3. If we further assert that
the dipole operator is off-diagonal (as in Eqn. (16)), we
may substitute grg ~ p12, which leads to the following

Abraham-Lorentz rate (kar,)
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With this ansatz, the Abraham-Lorentz decay rate kat,
is equal to the FGR rate in 3D. Note that several ad hoc
semiclassical assignments must be made for this compar-
ison, and it is not clear how to generalize the Abraham-
Lorentz approach to treat more than two electronic states
in a consistent fashion.

C. The Asymptotic Electromagnetic Field

Below, we will analyze different schemes for solving
Maxwell’s equations coupled together with the Liouville
equation, and it will be helpful to compare our results
with the standard theory of dipole radiation. According
to classical electrodynamics, if a dipole is located at the
origin and is driven by an oscillating field, the electro-
magnetic (EM) field is generated with the energy density
(at time ¢ and position 7) given in the far-field by[24]
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Here, without loss of generality, we assume that the
dipole is pointing in the z—direction, so that 6 is the
polar angle from the z-axis. r is the distance from the
observer to the dipole (which sits at the origin). Eqn.
(10) predicts that, for the energy density, there is a sin? 6
dependence on the polar angle § and a 1/r? dependence
on the distance r. Note that Eqn. (10) is valid in the
far-field when r > A > d, where X is the wavelength of
EM field and d is the size of the dipole.

This concludes our review of spontaneous emission and
classical electrodynamics.

III. THE SEMI-CLASSICAL HAMILTONIAN

We now return to semiclassical electrodynamics and
consider the problem of a two-level system coupled
to a radiation field. After a Power-Zienau-Woolley
transformation[25, 26] is applied, the Hamiltonian reads
as follows:

Er—ﬁ#é/d{ D)% + B()}
/d*DL’j) PLF) + /dmﬂ

Here, B =V x /1, Dt = ¢ FE JrA?EJ- A is the vector
potential for the EM field and P+ is the polarization
operator for the matter. For the EM field, the relevant
commutators are: [DL(7), A(")] = ihé+ (7 — '), where
5+ is the transverse delta function. H, is the Hamiltonian
of the electronic system, which will be defined below. We
ignore all magnetic moments in Eqn. (11).

Eqn. (11) is a large Hamiltonian, written in the con-
text of a quantum field. For semiclassical dynamics, it is
convenient to extract the so-called “electronic Hamilto-
nian” that depends only parametrically on the EM field.
Following Mukamel[25], one route to achieve such a semi-
classical Hamiltonian is to consider the equation of mo-
tion for an observable of the matter @:

(11)
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If we approximate that the E-field is classical, so that
we may commute £+ with all matter operators, we find
the following semiclassical electronic Hamiltonian:

AU(B) = H, - / a7 BH@) - PR (13)

Because in this article we will analyze the case of only one
charge center, from now on we will not need to distinguish
between longitudinal and perpendicular components, and
so we will drop the * notation below.

We will define H, to be a two-level system Hamiltonian
with ground state |g) and electronic excited state |e):

i, = (8 hg) (14)

Furthermore, we assume that (a) the |e) and |g) states
carry no permanent dipoles and (b) the transition be-
tween them is characterized by two single electron or-
bitals 1), and 1. and an effective charge ¢ such that the
transition dipole density is given by

E(7) = qF - 2 (P (F) (15)

with a corresponding polarization operator:
01
P = (1 o) €0 (16)

For example, in 3D, in the common case that ¢, (7) is
a p. orbital (21;236}2/4 ze“"2/2) and ©4(r) is an s orbital

((£)%/4emar"/2), () would be
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E0(7) = g7y 2e ™" (17)

If we consider a charge distribution that is effectively 1D,
changing along in the x direction but polarized in the z
direction, the reduced form of £(7) would be

F1D R L —ax?

The magnitude of £(7) is related to the magnitude of
the total transition dipole moment, ji1s:

u1z—\u12|—|<6|qf19\—\/ e (19)

Eqn. (19) guarantees that, when the width of P(7)
approaches 0, Eqn. (13) becomes the standard dipole

Hamiltonian, H¢ = H, — [i1o - E(0). This definition al-
lows us to rewrite Eqns. (17-18) above, as follows:

2a5/2 2
&P () = Y —575 Marze” (20a)
a 5 ,—azT
&P (z) = v/ —h12éze ’ (20b)

Note that éBD and le have different units.

In Appendix A we will show that under the point
dipole limit — where the width of £(7) is much smaller
than the wavelength of EM field, so that £(7) can be
treated as a delta function — some analytic results can be
derived for the coupled electronic-photons dynamics.



IVv. METHODS

Many mixed quantum-classical semiclassical dynam-
ics tools have been proposed over the years to ad-
dress coupled nuclear-electronic dynamics, including
wave packet dynamics[27, 28], Ehrenfest dynamics[29],
surface-hopping dynamics[30, 31], multiple spawning
dynamics[32], and partially linearized density matrix dy-
namics (PLDM)[33]. Except for the Ehrenfest (mean-
field) dynamics, other methods are usually based on the
Born-Oppenheimer approximation, which relies on the
timescale separation between (slow) classical and (fast)
quantum motions. Such methods cannot be applied in
the present context because the molecular timescales
and the relevant photon periods are comparable.[34] The
Ehrenfest approximation relies on the absence of strong
correlations between interacting subsystems, and may be
valid under more lenient conditions. We therefore limit
the following discussion to the application of the Ehren-
fest approximation and its variants[35].

A. Ehrenfest Dynamics

According to Ehrenfest dynamics for a classical radia-
tion field and a quantum molecule, the molecular density
operator p(t) is propagated according to

Loy = L, - / a7 B(7, 1) - (), pH)]  (21)

while the time evolution of the radiation field is given by
the Maxwell’s equations

8gif):ﬁxﬁ(f) o)
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Here, the current density operator, J = dp/dt, is re-
placed by its expectation value:

J7) = ST(pP(E) (23)

If we substitute Equs. (16) and (21) into Eqn. (23), the

—

current density J(7) can be simplified to

- —

J(7) = —2wolm(p12)&(7) (24)

where p1o is the coherence of the density matrix p.

Two points are noteworthy: First, because Eqn. (21)
does not include any dephasing or decoherence, there is
also an equivalent equation of motion for the electronic
wavefunction (with amplitudes Cy, C5):

i Cl :_E Hfi Hleé Ol (25)
dt \C> h\HS Hg) \Co

5

Here Hf]l is a matrix element of the operator He = H, —
[ dFE(F) - P(7).

Second, under the dynamics governed by Eqns. (21)
and (22), the total energy of the system Uy, is conserved,
where

s = [ a7 (lE@? + -1 BOR ) +70 (o)
(26)
Altogether, Eqns. (21), (22), and (23) capture the cor-
rect physics such that, when an electron decays from the
excited state |e) to the ground state |g), an EM field is
generated to ensure conservation of energy.

1. Advantages and disadvantages of Ehrenfest dynamics

The main advantage for Ehrenfest dynamics is a con-
sistent, simple approach for simulating electronic and EM
dynamics concurrently.

Several drawbacks, however, are also apparent for
Ehrenfest dynamics. First, consider Eqn. (24). Cer-
tainly, if the initial electronic state is an eigenstate of
HS, i.e. (01702) = (0,1), then plg(t = 0) = 0105‘ =0
and there will be no current density J(7) (assuming there
is no EM field initially in space). Thus, in disagreement
with the exact quantum result, there is no spontaneous
emission: the initial state (0, 1) will never decay. Accord-
ing to Ehrenfest dynamics, spontaneous emission can be
observed only if C7 # 0 and Cy # 0, i.e., if the initial
state is a linear combination of the ground and excited
states.

Second, it is well known that, for finite temperature,
Ehrenfest dynamics predicts incorrect electronic popula-
tions at long time: the electronic populations will not sat-
isfy detailed balance[36]. Here, finite temperature would
correspond to a thermal distribution of photon modes at
time ¢ = 0, representing the black-body radiation. How-
ever, for the purposes of fast absorption and/or scattering
experiments, where there is no equilibration, this failure
may not be fatal.

B. The Classical Path Approximation (CPA)

If Ehrenfest dynamics provides enough accuracy for a
given simulation, the relevant dynamics can actually be
further simplified and reduced to the standard “classical
path approximation (CPA)”[37]. To make this reduction,
note that the EM field can be considered the sum of 2
parts: (i) the external EM field Eox(7) that represents a
pulse of light approaching the electronic system and (i7)
the scattered EM field Escatt () generated from sponta-
neous or stimulated emission from the molecule itself.
Thus, at any time, F(7) = Eext(7) + Fscatt (7), where we
impose free pfopagation for the external EM field, i.e.,

Eext(F, t) = Eext (7 — Ctfext,0). Here 7oy represents the



unit vector in the propagation direction of the external
EM field.

According to the CPA, we ignore any feedback from
electronic evolution upon the EM field, i.e., we neglect
the [ d7 Eseat(7) - P(F) term of Eqn. (21). Thus, the
electronic dynamics now obey

;%m@:—%uif/dfimw>amm»ﬁwmﬁ@]@n

while the photon dynamics still obey Eqn. (22). This so
called classical path approximation underlines all usual
descriptions of linear spectroscopy, and should be valid
when |Escatt| < |Eext\. In such a case, the coherence p1o

and current density J are almost unchanged if we neglect
the [ dr Escats(7) - P(F) term.

1. Advantages and disadvantages of the CPA

Obviously, the advantage of Eqn. (27) over Eqn. (21)
is that we can write down an analytical form for the light-
matter coupling ([ dFE(F) - P(F)), since Eey propagates
freely.

That being said, the disadvantage of the CPA is that
one cannot obtain anything close to a consistent descrip-
tion of spontaneous emission for the electronic degrees of
freedom, because the total energy is not conserved; see
Eqns. (22) and (27). As such, the classical path approx-
imation would appear reasonably only for studying the
electronic dynamics; EM dynamics are reliable only for
short times.

C. Symmetrical Quasi-classical (SQC) Windowing
Method

As discussed above, the Ehrenfest approach cannot
predict exponential decay (i.e. spontaneous emission)
when the initial electronic state is (0,1). Now, if we
want to model spontaneous emission, the usual approach
would be to include the vacuum fluctuations of the elec-
tric field, in the spirit of stochastic electrodynamics[38].
That being said, however, there are other flavors of mean-
field dynamics which can improve upon Ehrenfest dy-
namics and fix up some failures.[33, 39] (i.e., the inabil-
ity to achieve branching, the inability to recover detailed
balance, etc.) Miller’s symmetrical quasi-classical (SQC)
windowing[21] is one such approach.

The basic idea of the SQC method is to propagate
Ehrenfest-like trajectories with quantum electrons and
classical photons (EM field), assuming two modifica-
tions: (a) one converts each electronic state to a har-
monic oscillator and includes the zero point energy (ZPE)
for each electronic degree of freedom (so that one sam-
ples many initial electronic configurations and achieves
branching); and (b) one bins the initial and final elec-
tronic states symmetrically (so as to achieve detailed bal-
ance). We note that SQC dynamics is based upon the

original Meyer-Miller transformation[40], which was for-
malized by Stock and Thoss[41], and that there are quite
a few similar algorithms that propagate Ehrenfest dy-
namics with zero-point electronic energy[39]. While Cot-
ton and Miller have usually propagated dynamics either
in action-angle variables or Cartesian variables, for our
purposes we will propagate the complex amplitude vari-
able C1,C5 so as to make easier contact with Ehrenfest
dynamics[42]. Formally, C; = (z; + ip;)/V/2, where x;
and p; are the dimensionless position and momentum of
the classical oscillator.

For completeness, we will now briefly review the nuts
and bolts of the SQC method for a two-level system cou-
pled to a bath of bosons.

1. Standard SQC procedure for a two-level system coupled
to a EM field

1. At time ¢t = 0, the initial complex amplitudes C;(0)
and C5(0) are generated by Eqn. (28),

Cj(0) = \/nj +~ RN - ¢

Here, RN is a random number distributed uniformly be-
tween [0,1] and n; = 0,1 is the action variable for elec-
tronic state j. n; = 0 implies that state j is unoccupied
while n; = 1 implies state j is occupied. 6; = 27RN
is the angle variable for electronic state j. Note that
|C1]? + |C2|* # 1, but rather, on average |C1]? + |Ca]? =
1427, such that ~ is a parameter that reflects the amount
of zero point energy (ZPE) included. Originally, v was
derived to be 1/2[40], but Stock et al. [43] and Cotton
and Miller[21] have found empirically that 0 < v < 1/2
often gives better results.

2. The amplitudes (C;,C3) and the field E, B are
propagated simultaneously by integrating Eqns. (25) and
(22).

3. For each trajectory, we transform the complex am-
plitudes to action-angle variables according to Eqn. (29)

j=1,2  (28)

ny = 1CyI2
ImC; (29)
— -1 7‘7 ) —
0; = tan <ReC’j) ji=12

4. At each time t, one may calculate raw populations
(before normalization) as follows:

N
Pi(t) =Y wam®, a1 = 0)wi(n®,q?,1)
= (30)

N
E@):E:W%ﬂ%qmizoﬂ%ON%¢W0
=1

Here, N is the number of trajectories and W is the
window function for the ground state |g), centered at
(n1,n2) = (1,0); Wy is the window function for the ex-
cited state |e), centered at (n1,ng2) = (0,1). See below



(Eqn. (32
tory.

5. The final density matrix at time ¢ is calculated by
normalizing Eqn. (30) in the following manner:

)). The superscript (1) denotes the Ith trajec-

EI0) N
PO= 50+ mo 1
D p—0 (31b)

Py (t) 4+ Py(t)

Miller and Cotton have also proposed a protocol to calcu-
late coherences and not just populations[44], but we have
so far been unable to extract meaningful values from this
approach. Future work exploring such coherences would
be very interesting.

2. Choice of window function and initial distribution

Below, we will study a two-level system weakly cou-
pled to the EM field, i.e. the polarization energy will be
several orders less than Awg. For such a case, one must
be very careful about binning. Cotton and Miller [45]
have suggested that triangular window functions with
v = 1/3 perform better than square window functions
in this regime. Therefore, we have invoked the following
triangular window functions with v = 1/3:

Wi(ny,ng) =2-h(ng +v—1) - h(ng +7)
h(2 —2v — —
x h( Y —n1—n2) (32)
Wa(ni,ng) =2 - h(m +7) - h(nz +v-1)
h(2 —2v —n; —ny)

Here, h(x) is Heaviside function. Fig. 1 gives a visual
representation of the triangular window functions in Eqn.
(32). The bottom and upper pink triangles represent
areas where Wi # 0 and W5 # 0 respectively.

To be consistent with this choice of triangular window
functions, one must modify the standard protocol in Eqn.
(28). Instead of the standard square protocol, assuming
we start in excited state |e), one generates a distribu-
tion of initial action variables (n1(0),n2(0)) within the
area where Wy # 0 (see Eqn. 32) uniformly. Visually,
this initialization implies a distribution of (n1(0),n2(0))
inside a triangle centered at (0,1) in the (n1,n2) config-
uration space, as demonstrated in Fig. 1. The protocol
for initializing angle variables is not altered: one sets
0; =27RN, j=1,2.

3. Advantages and disadvantages of SQC dynamics

Compared with Ehrenfest dynamics, one obvious ad-
vantage of SQC dynamics is that the latter can model
spontaneous emission when the initial electronic state is
(0,1). Moreover, the SQC approach must recover de-
tailed balance in the presence of a photonic bath at a

2.0
154 T
.'.o..‘

1.0‘ 0*00...::...
o N
< o W 3 =

0.5 1

0.0

_0.5 T T T T

-0.5 0.0 0.5 1.0 1.5 2.0
n

FIG. 1. A plot of the initial (ni,n2) distribution as required
by the SQC algorithm. The upper and lower pink triangles
represent areas where the triangular window functions are
nonzero respectively (W2 # 0 and Wi # 0), respectively;
see Eqn. 32 . The initial values of (n1,n2) (blue dots) are
uniformly distributed within the upper triangular area (W #
0).

given temperature[46] — provided that the parameter v
is chosen to be small enough for the binning[42].

At the same time, the disadvantage of the SQC method
is that all results are sensitive to the binning width . v
should be big enough to give enough branching, but also
should be small enough to enforce detailed balance[42].
As a result, one must be careful when choosing . Al-
though not relevant here, it is also true that SQC can be
unstable for anharmonic potentials.[42] Lastly, as a prac-
tical matter, we have found SQC requires about 1000
times more trajectories than Ehrenfest dynamics.

D. Classical Dynamics with Abraham-Lorentz
Forces

Although (as shown above) classical electrodynamics
with Abraham-Lorentz forces can be useful to model self-
interaction, we will not analyze Abraham-Lorentz dy-
namics further in this paper. Because the correspondence
between Ehrenfest dynamics and Abraham-Lorentz dy-
namics is not unique or generalizable, we feel any fur-
ther explanation of Abraham-Lorentz equation would be
premature. While a Meyer-Miller transformation[40] can
reduce a quantum mechanical Hamiltonian into a classi-
cal Hamiltonian, the inverse is not possible. Thus, it is
not clear how to run classical dynamics with Abraham-
Lorentz forces starting from an arbitrary initial superpo-



TABLE I. Default Numerical Parameters. Ngrigs is the num-
ber of grid points in each dimension for the EM field. Xmax
and Xmin are the boundary points in each dimension. dt and
tmax are the time step and maximum time of simulation re-
spectively. ABC denotes “Absorbing Boundary Conditions”.

Quantity 1D no ABC 1D with ABC 3D with ABC
hwo® (eV) 16.46 16.46 16.46
p12° (Conm/mol)® 11282 11282 23917
a® (nm~?) 0.0556 0.0556 0.0556
Ngndb 40000 200 60
Xmax (nm) 2998 89.94 89.94
mm(nm) -2998 -89.94 -89.94
(fs) 2 x107* 2 x 107" 5x 1074
tmax (fs) 99 99 500
Ro® (nm) - 50 50
Ri' (nm) - 84 84
2 Eqn. (14)

b Eqns. (20a, 20b)

¢ As mentioned before, p12 has dimension of C/mol in 1D and
C:nm/mol in 3D

d Eqns. (20a, 20b)

¢ Eqns. (34-35)

f Eqns. (34-35)

sition state (C,C2) in the {|g),|e)} basis. For instance,
following the approach above in Section II B, we might
set mwd (x?) = |C2(0)|*hw /2. However, doing so leads
to a rate of decay equal to kpgr/|C2(0)|?. This result
goes to infinity in the limit Cs — 0; see Fig. 11. Future
work may succeed at finding the best correspondence be-
tween semiclassical dynamics and the Abraham-Lorentz
framework, but such questions will not be the focus of
the present paper.

V. SIMULATION DETAILS
A. Parameter Regimes

We focus below on Hamiltonians with electronic dipole
moment g1 in the range of 2000 ~ 50000 C-nm/mol
(1 ~ 25 in Debye) and electronic energy gaps fuvy in
the range of 3 ~ 25 eV. Other practical parameters are
chosen as in Table I. Two different sets of simulations
are run: (i) simulations to capture spontaneous emis-
sion (with zero EM field initially) and (¢¢) simulations to
capture stimulated emission (with a short incoming EM
pulse originally located far away at time zero).

B. Propagation procedure

Equations of motion (Eqns. (21), (22)) are propagated
with a Runge-Kutta 4th order solver, and all spatial gra-
dients are evaluated on a real space grid with a two-
stencil in 1D and a six-stencil in 3D. Thus, for example,
if we consider Eqn. (22) in 1D, in practice we approxi-

mate:
dBéz) B E§i+1) _ Egi—l)
dt 2Ar
. | a | (33)
dES) 2B:L(/1+1) o Bg(/l 1) - Jz(l)

dt 2Ar €

etc. Here (i) is a grid index. This numerical method to
propagate the EM field (Eqn. (22)) is effectively a naive
finite-difference time-domain (FDTD) method[47, 48].

C. Absorbing boundary condition (ABC)

To run calculations in 3D, absorbing boundary condi-
tion (ABC) are required to alleviate the large computa-
tional cost. For such a purpose, we invoke a standard,
one-dimensional smoothing function[49, 50] S(z):

1 2| < Ro,

—1
Ry < |z| < Ry,

Ro—R1

S(x) = 14+e (Ro FoTa + AR Rl)
0 |£U| > Ry
(34)

In 1D, by multiplying the E and B field with S(z) after
each time step, we force the E and B fields to vanish for
|$| > Rl-

In 3D, we choose the corresponding smoothing function
to be of the form of Eqn. (35),

5(r) = S(x)S(y)S(z) (35)
where S(z), S(y) and S(z) are exactly the same as Eqn.
(34). Note that this smoothing function has cubic (rather
than spherical) symmetry.

For the simulations reported below, applying ABC’s
allows us to keep only ~ 1% of the grid points in each
dimension, so that the computational time is reduced by
a factor of 102 in 1D and by a factor of 10° in 3D. Our
use of ABC’s is benchmarked in Figs. 2-3, and ABC’s
are used implicitly for SQC dynamics in Figs. 6, 10, 11
and 14. ABC’s are also used for the 3D dynamics in Fig.
7.

D. Extracting Rates

Our focus below will be on calculating rates of emis-
sion; these rates will be subsequently compared with
FGR rates. To extract a numerical rate (k) from Ehren-
fest or SQC dynamics, we simply calculate the proba-
bility to be on the excited state as a function of time
(P2(t)) and fit that probability to an exponential decay:
Py(t) = P»(0)e~*. For Ehrenfest dynamics, all results
are converged using the default parameters in Table I.
For SQC dynamics, longer simulation times are needed
(to ensure Py (tenq) < 0.02); in practice, we set tenqg = 150
fs. Note that, for SQC dynamics, P»(t) in SQC is calcu-
lated by Eqn. (31b) and we sample 2000 trajectories.



0.6
— Ehrenfest with ABC
= = Ehrenfest no ABC
0.5 - FGR -
Analytical
0.4 1
a' 0.3
0.2
0.1
0.0 T " y v
0 20 40 60 80 100

FIG. 2. Spontaneous decay rate according to Ehrenfest dy-
namics in 1D. Here, we plot the electronic population in the
excited state |e), P2, as a function of time ¢ using the de-
fault parameters in Table I. The initial electronic state is

(IC1],1C2]) = (\/1/2,4/1/2). The results do not depend on

the initial phases of Cy and C5. The analytical Ehrenfest re-
sult (dotted green line) is plotted according to Eqn. (52) in
Appendix A.

VI. RESULTS

We now present the results of our simulations and ana-
lyze how Ehrenfest and SQC dynamics treat spontaneous
emission. We begin in one-dimension.

A. Ehrenfest Dynamics: 1D

For Ehrenfest dynamics, The initial state is chosen to
be (C1,C2) = (1/1/2,4/1/2). In Fig. 2, we plot Py(t)
for the default parameters in Table I. Clearly, including
ABC’s has no effect on our results. For this set of pa-
rameters, Ehrenfest dynamics predicts a decay rate that
is ~ 1/3 slower than Fermi’s Golden Rule (FGR) in Eqn.

In Fig. 3, we now examine the behavior of Ehrenfest
dynamics across a broader parameter regime. In Figs.
3a and 3b, we plot the dependence of the decay rate
on the energy difference of electronic states, hwg, and
the dipole moment, p15. Ehrenfest dynamics correctly
predicts linear and quadratic dependence, respectively, in
agreement with FGR in 1D (see Eqn. (3)). Generally, the
fitted decay rate from Ehrenfest dynamics is ~ 1/3 slower
than FGR. As far as the size of the molecule is concerned,
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% 0.02 {g—e—e—8—8—888—+-8| MO.OZAE&&W_E_S_H_E_@,
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FIG. 3. Analyzing the dependence of Ehrenfest spontaneous
decay on the system variables in 1D. Here we plot the fitted
decay rate k versus (a) the energy difference between elec-
tronic states, fiwo; (b) the electronic transition dipole moment
ui2; (¢) the Gaussian width parameter a; (d) the density of
Ngrias. Three approaches are compared: Ehrenfest dynamics
with ABC (red o), Ehrenfest dynamics without ABC (blue [J)
and Fermi’s Golden Rule (black A). Extraneous parameters
are always set to their default values in Table I. The ini-
tial electronic state is (C1,C2) = (1/1/2,4/1/2). Note that

Ehrenfest dynamics captures most of the correct FGR physics.

in Fig. 3¢, we plot the decay rate k as a function of
the parameter a (in Eqn. 20b). Note that our results
are independent of molecular size when a > 0.05 nm™2.
This independence underlies the dipole approximation:
when the width of the molecule is much smaller than
wavelength of light, \/1/a < ¢/wp, the decay rate should
not be dependent on the width of molecule. Note that
hwy = 16.46 eV for these simulations, which dictates that
results will be dependent on a for @ < 0.05 nm~2. Finally,
Fig. 3d should convince the reader that our decay rates
are converged with the density of grid points.

1. Initial Conditions

The results above were gathered by setting C; =
\/1/2. Let us now address how the initial conditions af-
fect the Ehrenfest rate of spontaneous decay. In Fig. 4
we plot k vs. |C1(0)[%. Here, we differentiate how k
is extracted, either from (a) a fit of the long time decay
(tena = 99 fs) or () a fit of the short time decay (tena = 5
fs). Clearly, the decay rates in Figs. 4a and 4b are dif-
ferent, suggesting that the decay of P is not purely ex-
ponential (see detailed discussion in the Appendix); the
decay constant is itself a function of time. Moreover, ac-
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FIG. 4. The 1D Ehrenfest spontaneous decay rate (k) as a
function of the initial population on the ground state |C1(0)]?.
Note that the decay is not purely exponential and depends on
whether we invoke (a) a long time fit (tena = 99 fs) or (b) a
short time fit (tena = 5 fs). Other parameters are set to their
default values in Table I. Three approaches are compared:
FGR (dashed black), Ehrenfest (red o) and the analytical,
short time result k = krpgr|C1]® (dotted blue, see the Ap-
pendix). Note that the analytical result matches up well with
the extracted fit in (b).

cording to Fig. 4b, the short time decay rate appears to
be linearly dependent on |C;(0)|? and, in the limit that
|C1(0)]*> — 1, both fitted decay rates k approach the
FGR result. These results suggest that the fitted decay
rate k satisfies

k = krar|C1(0)]? (36)
where kpgr is the FGR decay rate. In fact, in the Ap-
pendix, we will show that Eqn. (36) can be derived for
early time scales (27/wy < t < 1/kpgr ) under certain
approximations. We also mention that the same failure
was observed previously by Tully when investigating the

erroneous long time populations predicted by Ehrenfest
dynamics.[46, 51, 52]

2.  Distribution of EM field

Beyond the electronic subsystem, Ehrenfest dynamics
allows us to follow the behavior of the EM field directly.
In Fig. 5, we plot the distribution of the EM field at
times 3.00 fs (a-b) , 30.00 fs (¢-d), and 99.00 fs (e-f) with
two methods: Ehrenfest (red lines) and the CPA (light
gray lines). On the left hand side, we plot the electric
field in real space (E,(x)); on the right hand side, we
plot the EM field in Fourier space (E.(k,)). Here, the
Fourier transform is performed over the region =z > 0,
which corresponds to light traveling exclusively to the
right. In the insets on the right, we zoom in on the
spectra in a small neighborhood of 7w (here, 16.46 eV).

From Fig. 5, we find that Ehrenfest dynamics and the
CPA agree for short times. However, for larger times,
only Ehrenfest dynamics predicts a decrease in the EM
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field (corresponding to the spontaneous decay of the sig-
nal). This decrease is guaranteed by Ehrenfest dynamics
because mean-field dynamics conserve energy. By con-
trast, because it ignores feedback and violates energy
conservation, the CPA does not predict a decrease in the
emitted EM field as a function of time (or any sponta-
neous decay). Thus, overall, as shown in Fig. 5f, the
long time EM signal will be a Lorentzian according to
Ehrenfest dynamics or a delta-function according to the
CPA. These conclusions are unchanged for all values of
the initial |Cy(0)]2.

B. SQC: 1D

The simulations above have been repeated with SQC
dynamics only now starting with (C1,C2) = (0,1). In
Fig. 6a, we plot Py(t) for a single trajectory for the
default parameters (see Table I). The remaining three
sub-figures in Fig. 6 demonstrate the dependence of the
fitted decay rate k on (b) the molecular width parameter
a, (¢) the electronic excited state energy fuwg and (d) the
electronic dipole moment p12. Generally, SQC depends
on a, wy and g2 as in a manner similar to Ehrenfest
dynamics. However, for the initial condition Co = 1,
the overall SQC decay rate k is almost the same as FGR
(less than 10 % difference), whereas Ehrenfest dynamics
completely fails and predicts k = 0. [53]

C. Ehrenfest Dynamics: 3D

Finally, all of the Ehrenfest simulations above have
been repeated in 3D. Overall, as shown in Fig. 7, the
results are qualitatively the same as in 1D. However, as
was emphasized in Sec. II, the decay rate now depends
cubically (and not linearly) on wy.

Concerning the radiation of EM field in 3D, in Fig. 8§,
we plot the energy density versus polar angle 6 at r = 294
nm when time ¢ = 1.00 fs. For such a short time, Ehren-
fest dynamics (red o) and CPA (blue +) agree exactly:
both results depend on the polar angle # through sin® 6.
These results are in very good agreement with theoretical
dipole radiation (black line, Eqn. 10). Lastly, in Fig. 9,
we plot the energy density as a function of the radial dis-
tance r from the molecule, while keeping the polar angle
fixed at § = /2 (a) and § = w/4 (b). Again, Ehren-
fest dynamics (red o) and the CPA (blue +) agree with
each other and give oscillating results that agree with
Eqn. (10) for dipole radiation at asymptotically large
distances (r > A > d). Given that the Ehrenfest decay
rate does not match spontaneous emission, one might be
surprised at the unexpected agreement between Ehren-
fest and the CPA dynamics with the classical dipole ra-
diation in Figs. 8-9. In fact, this agreement is some-
what coincidental (depending on initial conditions), as is
proven in the Appendix.
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FIG. 5. An analysis of the EM field produced by spontaneous emission in 1D. We plot (left) the electric field as a function of
position (E.(z)) at times (a) 3.00 fs, (¢) 30.00 fs, (e) 99.00 fs and (right) the Fourier transform of the electric field at the same
times, \/aﬁz(kz) On the right, we have converted all units into energy or energy density for both the ordinate and abscissa.
The inset figures on the right zoom in on the spectral peaks in the neighborhood of hwg (16.46 €V here). Two Methods are
compared: Ehrenfest dynamics (red lines) and the CPA (light gray lines). The default parameters in Table I have been used
here. Note that Ehrenfest dynamics and the CPA agree for short times but only Ehrenfest dynamics predicts a decrease in the
EM field for larger times, which is a requirement of energy conservation.

VII. DISCUSSION

The results above suggest that, for their respective
domains of applicability, both Ehrenfest dynamics and
SQC can recover spontaneous emission. We will now test
this assertion by investigating the response to (#) photo-
induced dynamics and (iz) dephasing.

A. An incoming pulse in one dimension

To address photo-induced dynamics, we imagine there
is an incident pulse at ¢ = 0 of the form:

_ B.(z)
Ve () = ~Jie (37
= A(b, ko, xo)e_b(”_““"))2 cos(kox)

Here, A(b, ko, xo) is an normalization coefficient with
value

20y

)= \/\/71’/2[)(1 + cos(2kozg)ek3/2b)

A(bv kOa Zo

The total energy of the incident pulse is Uy. The param-
eter b determines the width of the pulse in real space;
ko defines the peak of the pulse in reciprocal space; xg
represents the center of the pulse in real space at ¢ = 0.

At time zero, the Fourier transform of F,(z) is:

1 [ ,
E.(k,) = = / dx E.(z)e*="
€0 A(b, ko, 2o)
=2y 38
2v/2b (38)

_ 2 2
(e_wei(kz_ko)lo te (kz:t:o) ei(kz-i-ko)a?o)

E. (k) is the sum of two Gaussians centered at k, = +ko
with width o = v/2b. Qualitatively, if b < k2, E, (k)
shows two peaks at k, = +ko; if b > k3, Ez(km) resem-
bles a single large packet at k, = 0. For resonance with
the molecule, |E.,(ky)| should be large at fick, = hw
(16.46 eV by default). In what follows (Fig. 10), we
choose b = 0.0556 nm ™!, and we will consider both cases
(b < ko and b > ko)



1 1 1 0‘06 1 1
b
_ 0.04]
== =S )
*0.02 H
: , S 0.00 — :
0 25 50 75 100 0.05 0.10
Time (fs) a (nm~2)
-1 4
- 107 4
= = 1072
o o
R R
10-2 L 10-3
2 10 20 700 3000 13000
hwo (eV) H12 (C/mol)

FIG. 6. Analysis of SQC spontaneous emission rates in 1D.
In (a), we plot the electronic population of the excited state
Ps versus time t. For the remaining subfigures, we replot how
the fitted decay rate k depends on (b) the Gaussian width
parameter a, (c¢) the energy difference between the two elec-
tronic states hwo and (d) the electric transition dipole mo-
ment pi2. Two results are compared: SQC dynamics with
ABC (Green o) and Fermi’s Golden Rule (black A). All un-
reported parameters are set to their default values in Table I.
The initial electronic state is (C1,C2) = (0,1). Note that the
SQC decay rates are very close to the FGR rates (less than
10 % difference), whereas Ehrenfest dynamics completely fail
and predicts k = 0 for this case (when C> = 1 initially). For
these simulations, we apply ABC’s.

1. Electronic dynamics

In Fig. 10, we plot the electronic population of the
excited state as a function of time after exposure to in-
cident pulses of different intensity (Uy) and wavevector
(ko); see Equ. (37). We plot short and long times on the
left and right hand sides, respectively. For strong, res-
onant pulses, (Uy = 19.7 keV, kg = 0.013 nm~1!), there
is obviously a strong response (see a-b). For strong, off-
resonant pulses (Up = 19.7 keV, kg = 0.334 nm~1), ob-
viously the response is weaker. In both situations, SQC
(dashed green line) and Ehrenfest dynamics (red line)
agree almost exactly for short times. At longer times,
however, the SQC P(t) value decays ~ 2 times faster
than the Ehrenfest dynamics result.

Let us consider now weak pulses. In Fig. 10e-h, we
plot the excited state population when the incident pulse
is weak (Up = 3.29 keV), keeping all other parameters
unchanged. Now, there is much less agreement between
SQC and Ehrenfest dynamics, especially for long times.
Generally, SQC predicts a much faster decay rate for
P, (t) than Ehrenfest dynamics for small |E, (wo/c)|.

The statement above is quantified in Fig. 11. Here,
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FIG. 7. The fitted decay rate k (as predicted by Ehrenfest
dynamics in 3D) versus (a) the energy difference between elec-
tronic states fuwo; (b) the electronic transition dipole moment
p12; and (c¢) the Gaussian width parameter a; and (d) the
density of grid points Ngrias in each dimension. Two results
are compared: Ehrenfest dynamics with ABC (red o) and
Fermi’s Golden Rule (black A). All unreported parameters
are set to their default as in Table I. The initial electronic

state is (C1,C2) = (1/1/2,4/1/2). The Ehrenfest decay rates
in 3D depend correctly only a, wo and p12 and match FGR.
For these simulations, we apply ABC’s.

we vary Uy, which results in a change in the initial ab-
sorption (which is quantified by 1 — Py(¢t = 0.5 fs) on the
z-axis). This graph quantifies how the population de-
cay on the excited state depends on the initial condition.
For both Ehrenfest and SQC dynamics, the decay rate
(k) decreases when the initial excited state population
increases.

While this dependence on initial state was already
demonstrated for Ehrenfest dynamics in Fig. 4, the new
piece of data in Fig. 11 is the SQC data. For an initial
state near (1,0), the decay of P, becomes unphysically
large. At the same time, however, the decay of the state
(0,1) is very close to the FGR result (just as noted in
Sec. VI). Thus, Ehrenfest and SQC dynamics would ap-
pear to be appropriate in different regimes: by including
the zero point energy of the electronic state, SQC is able
to include some aspects of true spontaneous decay, but
the binning procedure introduces other unnatural conse-
quences. Future work on the proper binning procedure
for SQC (triangles, squares, etc. [45]) must address this
dilemma.
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FIG. 8. The energy density of the spontanecous EM field (as
predicted by Ehrenfest dynamics in 3D) versus polar angle
0 when t = 1.00 fs. Here, all data has been averaged over
a sphere with r = 294 nm. The simulation parameters are
Ngrids = 210, Xmax = 315 nm and Xmin = —315 nm for each
dimension. Unreported parameters are as in Table I. ABCs
are not applied here. The initial electronic state is (C1,C?)
= (\/1/2,4/1/2). Note the strong and perhaps surprising
agreement between Ehrenfest/CPA dynamics and the classi-
cal dipole radiation; this agreement depends on the choice of
initial electronic states, as is proven in the Appendix.

2. Distribution of the EM field

At this point, we should also comment on the EM field
that is produced following incident radiation for the two-
level system. Effectively, our results are consistent with
Fig. 5 above. In Fig. 12, on the left, we plot E,(x) at
times 14.00 fs (a), 55.99 fs (¢) and 149.00 fs (e). On the

right hand side, we plot the Fourier transform E, (k)
(rescaled in units of energy). As above, we find that, for
short times, Ehrenfest dynamics (red lines) and the CPA
(light gray lines) are in good agreement. Thereafter, how-
ever, the agreement ends because only Ehrenfest dynam-
ics obeys energy conservation. At long times, Ehrenfest
dynamics predicts an overall dip (narrow decrease) in the
electric field at the frequency of the two-level system (os-
cillator), while the CPA predicts an overall spike (narrow
increase). Thus, if we calculate the absorption spectrum
of the molecule by subtracting the total transmitted sig-
nal from the freely propagated signal, as in Fig. 13, only
the Ehrenfest absorption spectrum is strictly positive; the
CPA result makes no sense. This state of affairs reminds
us when and how we should use semiclassical theory for
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FIG. 9. The energy density of the spontaneous EM field (as
predicted by Ehrenfest dynamics in 3D) versus radius r when
t = 1.00 fs. The polar angle is (a) 8 = w/2; (b) 0§ = w/4. All
parameters are the same as in Fig. 8. The radial distribution
of EM energy density is the same for Ehrenfest and the CPA
at short times and, just as in Fig. 8, these radial distributions
agree with the classical dipole radiation result (provided the

initial electronic state is (C1,C2) = (1/1/2,+/1/2)).

understanding light-matter interactions.

Note that, for Fig. 13, we are operating in the linear re-
sponse regime: the incoming pulse energy Uy is relatively
weak. In Appendix C, we plot the absorption spectra for
a few different incoming fields and demonstrate that the
results are linear with Uy. We also show that standard
linear response theory yields a good estimate of the over-
all lineshape.

B. Dephasing effects

In the present article, we have now shown that semi-
classical theories — Ehrenfest and SQC — can both recover
some elements of spontaneous emission, which is mostly
thought to be a quantum effect[14, 19]. With this claim
in mind, however, there is now one final subject that
must be addressed, namely the role of dephasing. After
all, in a large simulation with an environment, dephasing
can and will occur; therefore one must wonder whether
or not such dephasing will affect the rate of spontaneous
emission.

To answer this question, we have run several simple
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FIG. 10. A plot of the excited state electronic population
P> as a function of time after exposure to an incident pulse
of light. Early time dynamics are plotted on the left, longer
time dynamics are on the right. Pulse parameters are listed in
the table below. Unreported parameters are set to their de-
fault values in Table I. The initial electronic state is (C1, C2)
= (1,0). Two methods are compared: Ehrenfest dynamics
(red line) and SQC (dashed green line). Note that SQC
and Ehrenfest dynamics disagree for long times, especially
for weak pulses. See Fig. 11. For these simulations, we apply
ABC’s. Numerical results for Ehrenfest dynamics show that
enforcing ABC’s does not make any difference at all.

No. U (keV) b( nm™ ') ko( nm ') xo (nm)
(a-b)  19.7 0.0556 0.013 -15.0
(e-d) 19.7 0.0556 0.334 -15.0
(e-f)  3.29 0.0556 0.013 -15.0
(g-h)  3.29 0.0556 0.334 -15.0
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FIG. 11. The fitted decay rate k versus 1 — P>(t = 0.5 fs) fol-
lowing an incident pulse. Ehrenfest rates are basically iden-
tical with the spontaneous emission rates in Fig. 4. SQC
yields the correct rate when the initial excited state popu-
lation is close to one ( P» &~ 1), but strongly overestimates
k in the weak resonance regime (P> < 1). The behavior of
SQC is roughly proportional to krgr/P2(t = 0.5 fs) (which
goes to infinity as P2(¢t = 0.5 fs) goes to zero). Parameters
for the incident pulse: ko = 0.334 nm~!, b = 0.0556 nm ™2,
To = —15.0 nm and Up varies from 3.29 keV to 658 keV.
All other parameters are the same as in Fig. 10. For these
simulations, we apply ABC’s. Numerical results for Ehren-
fest dynamics show that enforcing ABC’s does not make any
difference at all.

calculations that replace Eqn. (21) by Eqn. (39),

d
o0 =~ 111, ~ [ dr B, 41 (gg “32)
(39)
Thus, we have propagated electron-photon dynamics by
altering the electronic equation of motion but keeping
the classical EM equations the same. ¢ in Eqn. (39)
is an empirical dephasing rate: when ¢ = 0, there is
no dephasing and when ¢ > 0 there is a finite rate of
coherence loss between the two electronic states.
In Fig. 14a, we plot the rate of spontaneous emission
k as a function of the dephasing rate ¢. When dephasing
increases, the coherence between the electronic states is
expected to decrease, and so the current should decrease,
and thus the rate of spontaneous emission is expected to
decrease as well. However, perhaps surprisingly, the fit-
ted rate for establishing equilibrium actually increases,
which must be related to the data in Fig. 11. More im-
portantly, in Fig. 14, we plot the final population of the
excited state Ps(tenq). Unsurprisingly, the long time ex-
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FIG. 12. For an incident pulse in 1D, we plot (left) the spatial distribution of E.(x) at times (a) 14.00 fs, (¢) 55.99 fs, and
() 149.00 fs; (right) the Fourier transform E. (k.) at the same times (rescaled in units of energy or energy density). The inset
figures zoom in on (left) the “molecule” at the origin of the z-axis, and (right) the two-level energy gap hwo (here, 16.46 eV).
Two methods are compared: Ehrenfest dynamics (red lines) and the CPA (light gray lines). Parameters for the incident pulse

are Uy =

65.82eV, ko = 0.08338 nm ™', b = 5.56 x 107°nm™2 and zo = —2098.6 nm. All other parameters are the same as in

Fig. 10. Note that Ehrenfest and and CPA dynamics agree at short times but disagree at long times when energy conservation

becomes important.
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FIG. 13. 1D Ehrenfest (red) and CPA (light gray) absorption
spectra at times (a) 55.99 fs and (b) 149.00 fs. Spectra were
obtained by subtracting |E&®®(k,)|* — |thre“fe“/CPA(kx)|2.
Here, Ef°° denotes the freely propagated pulse (i.e. we set J
to zero in Eqn. 22). All simulation parameters are the same
as in Fig. 12.

cited state population increases (does not reduce to zero)
when dephasing increases with either SQC or Ehrenfest
dynamics. This graph highlights the limitations of semi-
classical methods: as currently implemented, one cannot

include both spontaneous emission and dephasing.

VIII. CONCLUSION

In this article, we have simulated the semiclassical dy-
namics of light coupled to a two-level electronic system
with three different methods: Ehrenfest, the CPA and
SQC. Most results have been reported in one dimen-
sional, but we have also considered Ehrenfest dynamics in
3D with absorbing boundary conditions. As far as spon-
taneous emission is concerned, we find the following: (7)
The CPA cannot consistently recover spontaneous emis-
sion and violates the energy conservation. That being
said, (i¢) Ehrenfest dynamics do predict spontaneous de-
cay consistently, but only provided that we start in a
non-trivial superposition state (with Cy,Cy # 0). (i)
Using electronic ZPE, SQC dynamics predicts sponta-
neous decay even with C; = 0. Both latter methods yield
results fairly close to the correct FGR rate. In all cases,
unfortunately, spontaneous emission is destroyed when
dephasing is introduced, which represents a fundamental
limitation of semiclassical dynamics.

Perhaps most interestingly, we have also studied photo-
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FIG. 14. An analysis of the effects of dephasing on spon-
taneous emission for Ehrenfest and SQC methods in 1D. A
plot of (a)the fitted decay rate k as a function of the dephas-
ing rate ¢; (b) the normalized long time population of P,
Ps(tenda)/P2(t = 0) as a function of ¢. All simulation param-
eters are set to their default values in Table I; tena = 400 fs.
The initial electric population for the excited state is set to
P>(0) = 1/2 for Ehrenfest dynamics and P»>(0) = 1 for SQC
dynamics. Note that both methods fail to recover sponta-
neous emission in the presence of strong dephasing. For these
simulations, we apply ABC’s. Numerical results for Ehren-
fest dynamics show that enforcing ABC’s does not make any
difference at all.

initiated excited dynamics and, in this case, we find very
different dynamics as predicted by the different semiclas-
sical methods. First, as far the EM field is concerned, we
have demonstrated that Ehrenfest dynamics can recover
the correct absorption spectra, at least qualitatively; at
the same time, however, CPA dynamics give qualitatively
incorrect spectra because the method ignores feedback
and does not conserve energy. Second, and equally inter-
esting, Ehrenfest dynamics predicts that the overall stim-
ulated decay rate will depend smoothly on initial state
(C1, C2) but will approach the FGR rate in the weak res-
onance regime. Third and vice versa, SQC recovers FGR
when (C1,Cs) = (0,1) but overestimates the stimulated
decay rate, sometimes by as much as a factor of 10 in the
weak coupling limit. These SQC anomalies should be
very important for designing improved binning protocols
in the future[45]. At present, because the cost of SQC
dynamics is roughly 1000 times greater than Ehrenfest
dynamics and because the method appears to fail for low
intensity applied fields, further modification will likely
be required before the method can be practical for large-
scale simulations.

Looking forward, many questions remain. (i) There
are many other semiclassical methods for studying cou-
pled nuclear electronic dynamics[21, 54-57]; will these
methods give us new insight into electrodynamics? (%)
Might we learn more about spontaneous emission by con-
sidering ZPE effects through RPMD-like algorithms[58]?
(7i7) Will different semiclassical methods behave simi-
larly or differently with more than two electronic states?
(iv) Can we converge multiple-spawning[59-63] and/or
MC-TDH[64-66] calculations and generate exact quan-
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tum electrodynamical trajectories so that, in the future,
we may benchmark other, less exact, semi-classical ap-
proximations? And lastly, (iv), are there other, new and
non-intuitive features that will emerge when we study
multiple pulses incoming upon a molecule? These ques-
tions will be answered in the future.
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APPENDIX

A. Connecting Ehrenfest Dynamics with Fermi’s
Golden Rule in 1D

We now prove analytically that the spontaneous decay
rate of Ehrenfest dynamics in 1D is exactly the FGR
result in the limit that the initial excited state population
is small (P, — 0).

For Eqn. (22), we can directly write down an analytic
solution for E(z) in one dimension using the well known
solution for a wave equation with a source:

x+ct .
dx'&(z")

—

E(x,1) :%{Implz(o) /

T—ct

t z+c(t—t") .
—|—/ dt’Impu(t’)/ dx'é(z")}
0 x

—c(t—t')

Here, p12 is the time derivative of p12. If we average over
many different initial electronic populations with differ-
ent phases, such that Impi2(0) = 0, we need consider
only one term in Eqn. (40). Then, if we consider the
coupling, we find:

Y = — / drE(x) - €(z)

+o00 x+c(t—t/)

t
dxf(:c)/ dt/Imﬁu(t/)/
0 z—c(t—t’)

—

Here, we have denoted &(x) = |£(x)|. Now, for simplicity,
suppose that the width of the molecule is infinitely small

wo

Ceo J_o

dx'¢

(

(41)

z')



(i.e., a point-dipole approximation), &(z) & u12d(x). In
such a case, Eqn. (41) can be simplified as:

W
Hih = — 2o *Tmpra (1), (42)
CeQ

and therefore, from Eqn. (21),

dPy dP; 2
7T ﬁHfélmmz(t)
& (43)

At this point, we make the weak coupling approxima-
tion, and assume that the off-diagonal terms in H¢ are
infinitely small, so that p12(t) ~ /P, Pae~ ™0t is a mean-
ingful first order approximation. Eqn. (43) then reads:

% = *% = —2kpar PP sin®(wot), (44)
s | p12]? is the FGR spontaneous decay
rate in 1D (see Eqn. 3). From Eqn. (44), we can derive
the instantaneous transfer rate plus an analytical solution
for all times as follows.

To make progress, we consider the behavior of Ehren-
fest dynamics for P, over a window of time [¢,¢ + 7] and
integrate Eqn. (44):

where kFGR =

Pg(t—l-T)

In X0

t+7
= _QkFGR / dt/Pl (t/) SiIl2 (th/)7(45)
t

Here, we choose T to satisfy 2m/wy < 7 < 1/kpgr.-
Thus, one the one hand, the time scale 7 is chosen to
be much smaller than the time scale of spontaneous de-
cay (7 < 1/kpgr) so that Pi(t') does not change much
and Py(t') = Pi(t). On the other hand, 7 is much larger
than the phase oscillating period (27/wy < 7), so that
sin?(wpt’) can be viewed as a rapid oscillation and we can
approximate the integral by

t+T1 / : Nt
i t' sin(2wpt’)
dt' sin®(wot') = | = — ——~2 ~ — (46
/t sin®(wot") {2 4o L (46)

[V

Therefore we find

Pg(t + T)
Py(1)

In ~ *kFGRpl (t)T (47)

As a result, for Ehrenfest dynamics, we can express P
in the form of an exponential decay

Py(t) = Py(0)e """, (48)
where the instantaneous decay rate is time-dependent
k(t) = krarP1(2) (49)

Thus, for short times, the decay rate is proportional to
the initial population kpgrP1(0) as shown in Fig. 4b,
and we conclude that Ehrenfest dynamics recovers the
FGR rate only when P;(0) — 1.
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At this point, let us also recast Eqn. (44) in terms of
the population difference, AP = P, — Py,

dAP
= —kpar(1 — AP?)sinwot (50)
As above, the behavior within the time window [t,t + 7]
can be integrated over, yielding

t+7

T
~ _kFGRf (51)

1 1

t

Hence, we find an analytical form for P, according to
Ehrenfest dynamics:

e~ krart

P1(0)
P>(0)

Py(t) = (52)

+ e—krert

For the initial population P;(0) = P2(0) = 1/2, as was
considered in Fig. 2, the analytical solution becomes
Py(t) = e~krort /(1 4 e~Frert) This analytical formula
agrees with the numerical result in Fig. 2.

B. Connecting Ehrenfest Dynamics with classical
dipole radiation in 3D

Here, we show that Ehrenfest dynamics agrees with
classical dipole radiation at short times assuming that
the initial conditions satisfy (|C1],|C2|) = (v/1/2,+/1/2).
See Sec. VIC. First, consider classical dipole radia-
tion, and let the oscillating dipole (in the z-direction)
be situated at the origin. The current takes the form
I = —qusin(wt + ¢)é. and if the dipole width d is small
enough, the current density is

J(F) = lim {d f} §(7F) = —powsin(wt + ¢)5(F)é. (53)

This is the source that acts as input for Maxwell’s equa-
tions and yield classical dipole radiation.

Second, consider Ehrenfest dynamics, so that J(7)
takes the form of Eqn. (24). If we further make the
weak coupling approximation, i.e. we assume that po ~
/P Pye™0tei®  as well as the point dipole approximation,
&(7) = p120(7), then Eqn. (24) becomes

-

J(f') = —2+/ P Pawopi12 SiD(WQt + (b)d(fjéz (54)

Lastly, if the initial electronic state satisfies (|C1],|C2])
= (4/1/2,4/1/2), then PiP, = 1/4. Thus, this initial
electronic state guarantees that Eqns. (53) and (54) will
be identical at short times: the EM field from Ehren-
fest dynamics will agree with classical dipole radiation
exactly. This exact agreement will fail for other initial
states or at long times. Even though both methods have
the same geometric form, in general, Ehrenfest dynam-
ics would need to be rescaled to match classical dipole
radiation in absolute value.
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FIG. 15. 1D simulated Ehrenfest (red) absorption spectra for different incoming fields at time 149.00 fs. Spectra were obtained
in the same manner as in Fig. 13 while varying the incoming energy (Up) of the incident pulse. The value of Uy is chosen to
be: (a) 16.45 eV, (b) 32.91 eV and (c) 65.82 eV. Note that the overall signal is linearly proportional to Uy and the lineshape
width is nearly a Lorentzian centered at wo with width equal to the Fermi golden rule rate (black). This figure proves that the
data in Fig. 13 were obtained in the weak field regime where linear response holds.

C. Absorption spectra with different incoming field
intensities

In this subsection, we plot the absorption lineshape for
a variety of different incoming fields and prove that the
data in Fig. 13 is indeed occurring in the linear regime.
Note that, according to Fig. 15, the overall absorption

signal is linearly proportional to the incoming energy Uy.
The absorption lineshape can be recovered approximately
by simply assuming a Lorentzian signal with width kpgr
and a uniform fitting for the total norm. Note also that
there is a small shift in the maximal signal location:
according to Ehrenfest dynamics, the peak is centered
at \/h2ws + A? (rather than hwy) where A is the time-

averaged off-diagonal coupling in the Hamiltonian H¢.
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