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Floquet systems provide a platform with significant potential for generating and controlling topo-
logical phases of matter. By introducing an external driving field, a topologically trivial system can
be driven to topological phases possessing non-zero bulk invariants and associated gapless surface
modes. One rich feature of Floquet systems is that, as one moves away from the weak field regime
by increasing the amplitude of the driving field, one can encounter a series of topological transitions
which place the system in distinct topological phases. Here we experimentally demonstrate this
phenomenon in a photonic system consisting of an array of evanescently-coupled helical waveguides.
We show that by moving between the weakly and strongly driven regimes, we can induce a transi-
tion in which the bulk topological invariant changes sign and the associated topological edge mode
reverses its propagation direction. These two topological phases are part of a larger phase diagram
and serve to demonstrate both the rich topological physics present in Floquet systems as well as
the accessibility of the strongly driven regime—a regime typically associated with the difficulties
of large radiative losses for photonic systems and significant heating for their condensed matter
counterparts.

In recent years, the field of condensed matter physics
has been profoundly impacted by the discovery of topo-
logical insulators, a state of matter in which the global,
topological structure of the system’s eigenstates results
in surprisingly robust properties. Though originally dis-
covered in the condensed matter context, many of the
underlying topological ideas have since been realized in a
variety of other settings including photonic [1–6], ultra-
cold atomic [7–9], and mechanical systems [10–14]. In
addition to potentially enabling unique device functional-
ities within these fields, the advent of topological physics
in these settings provides a platform for the experimental
realization of topological phenomena in a context where
it is possible to directly engineer the microscopic details
of the system, including the underlying lattice, the inter-
actions, and the structure of any applied gauge fields.

A particularly interesting example in photonics is
provided by paraxial waveguide arrays [15], where the
physics of paraxial light diffracting through a collection
of evanescently-coupled waveguides is identical to the
physics of a non-interacting electron confined to two di-
mensions evolving according to the Schrödinger equation.
While for electrons the Hamiltonian generates evolution
in time, for photons it generates evolution along the
paraxial spatial direction (i.e., the propagation axis of
the waveguides). This map from temporal to spatial de-
grees of freedom can be exploited to explore Floquet phe-
nomena associated with intricate time-dependent Hamil-
tonians. This provides a particularly fruitful avenue for
obtaining topological systems in photonics, since it is
known that Floquet systems can exhibit topologically
non-trivial phases [16–19]. Furthermore, this gives rise
to novel effects that can be explored in the context of
Floquet topological physics related to the fact that pho-
tons are bosons, and that photonic systems are by nature
strongly out of equilibrium.

A photonic realization of such a Floquet topological

insulator was given in [3] where a honeycomb array of
helical waveguides was fabricated such that the waveg-
uide helicity generates an effective gauge field that drives
the system to a topologically non-trivial phase. In that
experiment, the observed topological phase resides in the
weak field regime where the gauge field amplitude is small
and the chirality of the helices determines the chirality of
the topological edge mode. Moving beyond this regime
by ramping up the amplitude of the gauge field can lead
to an intricate series of topological phase transitions.
More generally, the combination of the amplitude and
frequency degrees of freedom provides a two-dimensional
parameter space that has been shown, in the condensed
matter context, to result in a surprisingly rich phase di-
agram [20].

In this paper, we move into the strongly driven regime
of that phase diagram, where we observe a phase in which
the Floquet topological winding number [21] changes sign
relative to the weakly driven phase and the associated
topological edge mode reverses its propagation direction
so that its chirality is opposite to the chirality of the
helices (we use the winding number here instead of the
Chern number since it is the appropriate bulk invariant
for Floquet systems [21]). Our observation provides an
experimental demonstration of the potential for using the
degrees of freedom associated with the Floquet drive am-
plitude to tune a system’s topological phase.

A complication encountered in the strongly driven
regime is the problem of waveguide bending loss (equiva-
lent to the problem of overheating in condensed matter),
an effect that inhibited observation of a phase transition
in prior experimental studies [3]. We find that this prob-
lem can be circumvented by working in the highly irreg-
ular parameter regime in which the helix diameter is on
the same scale as the size of the entire waveguide array.
While a photonic topological transition has been demon-
strated previously [22, 23] (from topological to trivial),
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FIG. 1. (a) Illustration of our honeycomb array of helical
waveguides. Light is injected at the front of the structure and
evolves in the transverse plane as it propagates into the page
along the z-direction. (b) Isolated waveguides highlighting
the parameters (R,Z), which respectively specify the helix
radius and helix period. By varying these parameters, we can
place the system in a variety of topological phases. The upper
and lower panels respectively illustrate the waveguides used
in realizing the weakly and strongly driven topological phases
discussed in the text.

the effect we study here is clearly distinct both in that our
transition occurs between non-trivial phases with oppo-
site edge mode chirality and in the sense that our result
demonstrates the possibility of experimentally accessing
the topological features of photonic Floquet systems be-
yond the regime associated with a weak gauge field. Ad-
ditionally, the phases studied here can be mapped in an
appropriate limit to the Haldane model (i.e., the quan-
tum anomalous Hall effect [24, 25]), highlighting its simi-
larities to the Haldane model while showing that the Flo-
quet system is in fact much richer. Finally, we mention
that our system has a close relation to the mathemati-
cally equivalent condensed matter system of graphene ir-
radiated by strong, circularly polarized light [16, 19]. We
thus show—by analogy with photonics—that the inten-
sity of the irradiating light can be used to tune between
topological phases. Like the electronic system, the pho-
tonic system is also constrained by ‘heating’ (i.e., bend-
ing loss), and we provide a prescription for overcoming
its limitations.

RESULTS

Fig. 1 illustrates our photonic structure, which consists
of a honeycomb array of helical waveguides aligned along
the z-direction. The helices are characterized by their ra-
dius R and their spatial period Z. We also define the he-
lix frequency Ω = 2π/Z. In the paraxial approximation,

the electric field E(x, y, z) = ψ(x, y, z) exp(ik0z− iωt)Ê0

is governed by an equation resembling the Schrödinger
equation, in which the paraxial direction, z, takes the
place of time and the variation, δn, of the refractive in-
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FIG. 2. Floquet topological phase diagram showing the wind-
ing number associated with the β = 0 gap as a function of
the dimensionless parameters Ω/c and A. Each region has
been colored according to the value of the winding number
and corresponding numerical labels have been added to the
key regions. Inset shows a theoretical estimate of the bending
loss plotted on axes identical to those of the phase diagram.
The regions of the phase diagram probed in our experiment
are labeled ‘Sample I’ and ‘Sample II’ residing, respectively, in
the weakly driven and strongly driven regimes. Shown along-
side the labels is an arrow that indicates the path taken by a
wavelength sweep from 1480 nm to 1600 nm. The three points
highlighted along the path correspond to the wavelengths of
Fig. 4.

dex n = n0 + δn plays the role of a potential. Here
ω = 2πc/λ is the operating frequency, λ is the wave-
length, and k0 = 2πn0/λ is the background wavenum-
ber. The waveguides used in our experiment have been
engineered to exhibit a single bound mode each for wave-
lengths in the vicinity of 1550 nm. We choose our lattice
constant so that the resulting paraxial Schrödinger equa-
tion can be modeled using tight-binding theory where
light hops between the bound modes of adjacent waveg-
uides via evanescent coupling. The effect of the helices is
to introduce a z-dependent gauge field [3]

A(z) = k0RΩ [sin(Ωz),− cos(Ωz), 0] (1)

that modifies the hopping amplitudes with a Peierls
phase yielding a tight-binding Schrödinger equation

i∂zψn(z) =
∑
〈m〉

c eiA(z)·rmnψm(z) (2)

where ψn is the amplitude of the electric field in the nth

waveguide, rmn is the displacement between sites m,n,
c is the hopping constant, and the sum over m is taken
over nearest neighbors. We will denote the eigenvalues
of the Hamiltonian associated with Eq. 2 by β.

In the absence of the gauge field, the tight bind-
ing band structure for this system reduces to that of
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graphene and possesses two distinct Dirac cones at the
corners of the Brillouin zone. The introduction of A(z)
breaks z-reversal symmetry and is thus capable of driving
the system to topologically non-trivial phases. Since this
is a Floquet system, the appropriate topological invari-
ant is the winding number introduced in [21], which we
compute for the gap centered on β = 0. Here the wind-
ing number is fully determined by the two dimensionless
parameters Ω/c and A = ak0RΩ, which correspond to
the frequency and amplitude of the gauge field. The re-
sulting phase diagram is shown in Fig. 2, which was
computed using the truncated Floquet scheme given in
[21] combined with the algorithm of [26]. Note that due
to the close relation between our photonic system and the
Schrödinger equation, this is the same Floquet topolog-
ical phase diagram that has been studied in the context
of graphene irradiated by circularly-polarized light [20].

For this system, the driving amplitude is a function of
both the helix radius and helix frequency: A = ak0RΩ.
Thus, for a fixed helix frequency, an increase in the am-
plitude A will result in a decrease in the curvature radius
Rc = 1/(RΩ2) of the waveguides (note the distinction
between the curvature radius Rc and the helix radius
R). In general, waveguide bending loss increases as Rc

is decreased [27] and it was precisely these losses that
prohibited the observation of a phase transition in [3].
A key result of this current work is that, by increasing
the gauge field amplitude while simultaneously reducing
its frequency, the losses can be reduced to a degree that
allows us to observe a topological phase residing in the
strongly driven regime.

To determine which regions of the phase diagram are
excluded from experimental observation due to bending
loss, we show in the inset of Fig. 2 the bending loss
computed over the same parameter space used in plotting
the phase diagram. We note that in mapping the loss over
this parameter space, we have assumed a lattice constant
of a = 22

√
3 µm. These losses represent a theoretical

estimate computed using the result of [27] for light of
wavelength 1550 nm by approximating our waveguides as
having a circular cross section with a diameter equal to
the average of the diameters along the x and y directions.
By working in the lower region of the phase diagram, we
can reduce the losses to a degree that enables observation
of additional topological phases.

To the best of our knowledge, the only region of this
phase diagram that has been realized experimentally in
a photonic system is the low amplitude W = +1 region
[3]. In this paper, we are concerned with whether we
can realize a topological phase, residing in the strongly
driven regime, for which the sign of the winding number
is opposite to that of the weakly driven phase. When
starting from the W = +1 regime and increasing the
driving amplitude, the first two phases encountered are
those in the W = −2 and W = −1 regions. In this
paper, we will restrict our attention to the observation
of the W = −1 phase and leave observation of higher
winding number phases to future experiments. We com-
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FIG. 3. Band structures for samples taken to be finite along
the y-direction and periodic along the x-direction. The W =
+1 phase is shown in (a) and the W = −1 phase in (b).
These band structures are evaluated at the points in the phase
diagram that correspond to the locations of the samples used
in the experiment when operating at a wavelength of 1550 nm.
Edge modes localized on the bottom (top) of the sample are
labeled B (T) and are highlighted in blue (orange).

ment that this W = −1 phase has been explored in cold
atom experiments in the context of a dynamical phase
transition following a quench between two Hamiltonians
[28].

The W = ±1 phases that we observe here have a close
relation to the two non-trivial phases of the Haldane
model [24]. In particular, they persist at arbitrarily high
frequencies where they can be understood by examining
the inverse frequency expansion of the effective Floquet
Hamiltonian [29], which reproduces the Hamiltonian of
the Haldane model with an inversion symmetry break-
ing mass M = 0 and a time-reversal symmetry breaking
parameter φ = sgn(f)π/2, with [20]

f(A) =
∑
m6=0

J2
m(A/

√
3) sin(2mπ/3)

m
(3)

where Jm(x) are the Bessel functions of the first kind. As
a result, the winding number evaluates to either ±1 and
is selected by the sign of f(A), which is in turn controlled
by the amplitude of A(z).

To probe these two phases, we study the surface states
associated with the bulk invariants [30]. Accordingly, a
finite sample with counterclockwise waveguide chirality
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taken from the W = +1 (W = −1) phase should possess
a single counterclockwise (clockwise) edge mode travers-
ing the gap centered on β = 0. Fig. 3 shows the tight
binding band structures computed for each of the two
phases using a strip geometry that is periodic in one di-
rection and finite in the other. We see that in both cases
the system is gapped with a single edge mode traversing
the gap. The edge mode group velocity is reversed be-
tween the two cases, in agreement with the opposite sign
of the associated bulk invariants.

To observe these edge modes experimentally, we fab-
ricate two honeycomb lattices that each form a triangle
with 17 waveguides on a side. Each side is terminated at
a zig-zag edge. The structures are written in borosilicate
glass with n0 = 1.473 and δn = 2.8×10−3 using the fem-
tosecond direct write technique [31]. We set the lattice

constant to a = 22
√

3 µm. The waveguides have diame-
ters of 7.0 µm and 10.7 µm along the x and y directions
and the sample length is 14 cm. The helix parameters for
the two samples—which we will refer to as samples I and
II—are respectively given by (R1, Z1) = (20 µm, 1.0 cm)
and (R2, Z2) = (106 µm, 2.4 cm). In both samples, the
helices are fabricated with counterclockwise helix chiral-
ity. For the purposes of comparing sample I with the
sample in reference [3], please note that reference [3] uses
clockwise helix chirality.

The locations of these samples on the phase diagram
are wavelength dependent and are shown in Fig. 2 for
wavelengths in the range 1480 nm to 1600 nm. Note that
we have chosen the system parameters so that, at a wave-
length of 1550 nm, the system is placed deep within the
labeled topological phases such that, within fabrication
tolerances, the system resides within the W = ±1 re-
gions. We also note that while a system placed in the
W = −2 phase would exhibit edge mode propagation
similar to what we observe in our experiment for the
W = −1 phase, the region of theW = −2 phase for which
the group velocity is large enough to exhibit substantial
propagation is narrow. Since our system has been placed
significantly away from this region of parameter space,
it is exceedingly unlikely that we have inadvertently ac-
cessed this region. In choosing the parameters for the
large-radius sample, note that we have compensated for
the additional loss that would be introduced upon in-
creasing the helix radius by also increasing the period.
As a result, the system lies well below the high-loss re-
gion, but as a by-product of attempting to satisfy the
conflicting goals of moving to a new topological phase
while minimizing losses, we have arrived in a counterin-
tuitive regime where the diameter of a single helix is on
the same scale as the size of the entire lattice.

To excite the edge modes, we shift the waveguides at
the corners of the triangle so that their nearest neigh-
bor spacing is a factor of 1.25 larger than the nearest
neighbor spacing defining the lattice. In the weak cou-
pling limit, these waveguides couple primarily to modes
centered around β = 0 and hence excite the edge modes
that cross the gap. We thus inject light at the corners,

allow it to propagate through the structure, and then im-
age it at the output facet using an InGaAs camera. The
raw camera data is then converted to intensity data us-
ing a map obtained by calibrating against a tunable laser
source of known intensity. The results are shown in Fig.
4, where we see a clear transition from counterclockwise
to clockwise propagation.

While the propagation distance of the light is fixed for
a given sample, we can effectively image the light at dif-
ferent stages of propagation by varying the group velocity
of the edge mode. To accomplish this, we note that the
tight-binding coupling constant is an increasing function
of wavelength and, as a result, variation of the group ve-
locity can be implemented via a wavelength sweep. Such
a wavelength sweep simultaneously changes the coupling
and shifts the system in the topological phase diagram
along the paths shown in Fig. 2. In our experiment,
we implement a sweep from 1480 nm to 1600 nm. Over
this range, the system remains in the same topological
phase while exhibiting an increased group velocity for
larger wavelengths. As a result, the transverse distance
traveled by the edge modes arriving at the output facet
is observed to increase with wavelength (see Fig. 4 and
Supplemental Material [32]).

DISCUSSION

We have considered a honeycomb array of helical
waveguides operating in the paraxial limit and experi-
mentally shown that we can access the strongly driven
region of the Floquet topological phase diagram to ob-
serve a topological phase in which the winding number
changes sign with respect to the weakly driven phase.
We observed both the weakly and strongly driven phases
by direct imaging of the associated chiral edge modes in
a system with finite geometry. This observation demon-
strates the accessibility of a large interval of the parame-
ter space associated with the amplitude degree of freedom
and shows the feasibility of future experimental realiza-
tion of additional topological physics associated with a
large drive amplitude, including higher winding number
topological phases.

We also point out that, as the gauge field amplitude
contains a wavelength dependence through the factor
of k0, the amplitude degree of freedom has the poten-
tial to enable wavelength sensitive selection of topolog-
ical phases. Prior studies of such wavelength depen-
dence have uncovered implications for three-dimensional
systems, where features of the phase diagram for a
two-dimensional system have been shown to underlie
the emergence of Weyl points in an associated three-
dimensional photonic band structure [23]. The acces-
sibility of the strongly driven Floquet regime in photon-
ics has the potential to enable explorations of a similar
nature with potentially richer three-dimensional physics.
The wavelength dependence of the gauge field amplitude
could also serve as a basis for a robust topological wave-
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FIG. 4. Light arriving at the output facet after 14 cm of propagation. Panels (a) and (b) correspond, respectively, to samples
that have been placed in the W = +1 (weakly driven, sample I) and W = −1 (strongly driven, sample II) regions of the
phase diagram. Light is injected at the corner indicated by the arrow: the first (second) row corresponds to injection at the
left (right) corner. Dashed white lines have been overlaid on the images to indicate the sample boundaries. By sweeping the
wavelength, we effectively observe the light at different propagation distances along the sample (see text). A clear transition
from counterclockwise to clockwise circulation is observed, consistent with the sign change of the bulk topological invariant.

length filter that utilizes the wavelength dependent chi-
rality of the topological edge modes to direct light in a
clockwise or counterclockwise fashion depending on its
wavelength.

In moving into the strongly driven regime, one en-
counters the problem of bending losses that can be
large enough to wash out the signatures of the topolog-
ical physics. To overcome this difficulty, we effectively
stretched the helices along the z-direction so as to lower
the helix frequency while drastically increasing the helix
radius in a way that simultaneously increases the waveg-
uide curvature radius while keeping the system in the
desired topological phase. This result goes beyond the
photonic context discussed here in the sense that it may
be applied to Floquet phases of two-dimensional solid-
state materials (e.g., graphene). In particular, these ideas

have direct application to the mitigation of heating and
the engineering of topological phases in the intermediate
and strongly driven regimes of Floquet systems.
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