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We investigate the ground-state properties of a dual-species spin-1/2 Bose-Einstein condensate.
One of the species is subjected to a pair of Raman laser beams that induces spin-orbit (SO) coupling,
whereas the other species is not coupled to the Raman laser. In certain limits, analytical results
can be obtained. It is clearly shown that, through the inter-species spin-exchange interaction, the
second species also exhibits SO coupling. This mixture system displays a very rich phase diagram,
with many of the phases not present in an SO coupled single-species condensate. Our work provides
a new way of creating SO coupling in atomic quantum gases, and opens up a new avenue of research
in SO coupled superfluid mixtures. From a practical point of view, the spin exchange-induced SO
coupling may overcome the heating issue for certain atomic species when subjected to the Raman
beams.
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Introduction — Since the first experimental realization
of the synthetic spin-orbit (SO) coupling induced by a
pair of Raman beams in a Rb Bose-Einstein condensate
(BEC) [1], SO coupled quantum gases has emerged as
one of the most active frontiers in cold atom research.
SO coupling has been realized in both bosonic [1] and
fermionic [2, 3] atoms. Various theoretical models based
on the Raman process have been proposed [4] and are
predicted to give rise to a variety of rich many-body
quantum phases [5–7]. One big challenge in practice is
to overcome the heating problem induced by the Raman
laser beams [7, 8]. For certain atomic species, this heat-
ing can be very severe such that prevents the realization
of many interesting quantum phases.

Another research frontier in cold atoms is superfluid
mixtures, a topic that has been studied in the context of
superfluid 3He-4He mixtures in condensed matter physics
for many decades [9, 10]. Dual-species atomic BECs have
been realized quite a few years ago [11, 12]. More re-
cently, several groups have successfully realized super-
fluid mixtures consisting of one bosonic and one fermionic
species [13–15]. The main motivation for such studies is
to investigate the new phases induced by inter-species in-
teraction that are not present in single-species systems.

In this work, we consider a two-species spinor BEC
[16–20] and investigate the effects of SO coupling in such
a system. More specifically, each species in our study
represents a spin-1/2 condensate, as produced in a re-
cent experiment [21]. One of the species is subjected
to a Raman-induced SO coupling [1, 22–24], whereas
the other species is not directly coupled to the Raman
beams. We show that the latter species acquires an ef-
fective SO coupling due to the spin-exchange interaction
between the two. From a practical point of view, such
spin exchange-induced SO coupling may overcome the
heating problem suffered by certain atomic species when
subjected to Raman beams. From a more fundamental

point of view, SO coupling in spinor superfluid mixtures
represents a new area of research in this field.
Model — We consider a dual-species condensate mix-

ture, labeled as A and B, with each species representing
a spin-1/2 system with two internal states labeled as ↑
and ↓. Species A is subjected to a pair of laser beams
which induces a Raman transition between its two spin
states and imposes a momentum recoil ±~kL along the x-
axis, as schematically shown in Fig. 1(a). For simplicity,
we assume the condensates to be tightly confined along
the other two directions, and can be considered as quasi-
one dimensional. In the mean-field framework, the total
energy functional of the system reads (we set ~ = 1):

E (ΨA,ΨB) =
∑

i=A,B

∫

dxΨ†
ihiΨi+

∑

i=A,B

Gi+GAB, (1)

where Ψi = (ψi,↑, ψi,↓)
T
represents the spinor wave func-

tion satisfying
∫

dx |Ψi|2 = Ni with Ni being the total
particle number of species i (i = A or B), and

hi =
k2i
2mi

+
δi
2
σi
z +

Ωi

2

(

0 e−2ikLx

e2ikLx 0

)

+ V i
ext (x) (2)

is the single-particle Hamiltonian where δi denotes the
two-photon detuning, V i

ext (x) is the external potential,
and Ωi characterizes the two-photon Raman coupling
strength. In this work, we will take ΩB = 0, i.e.,
the Raman beams do not interact directly with species
B [25]. Furthermore, we will focus on the case with
δA = δB = 0, which corresponds to a situation where the
bare atomic energy difference between the two spin states
are the same for both species, and the Raman transition
in species A is on resonance [26].
The last two terms in Eq. (1) characterize two different

types of two-body interactions. The intra-species inter-
action is given by

Gi =
1

2

∫

dx
[

gi
(

ρ2i,↑ + ρ2i,↓
)

+ 2gi↑↓ρi,↑ρi,↓
]

, (3)
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FIG. 1: (a) Schematic representation of the dual-species BEC
system subjected to a pair of Raman beams. (b) Atomic level
structure for either species. We assume in this work that the
Raman coupling strength ΩB for species B is negligible [25].

where ρi,σ = |ψi,σ|2 is the density of spin-σ for species i,
and we have assumed that the interaction between like
spins has strength gi independent of the spin for both
species. The inter-species interaction takes the form

GAB =

∫

dx
[

γρAρB + β
(

ψ∗
A,↑ψ

∗
B,↓ψB,↑ψA,↓ + c.c.

)]

,

(4)
where the density-density interaction term, characterized
by strength γ, is assumed to be spin-independent, with
ρi = ρi,↑ + ρi,↓ the total density for species i. The term
characterized by β is the spin-exchange term which, as
we will show, plays a crucial role in our study.
To make the system stable, we assume that all density-

density interactions are repulsive with positive interac-
tion strengths (i.e., gi, gi↑↓, γ > 0). Furthermore, we
want all the components to be miscible, hence take
gi↑↓ < gi and γ <

√

gAgB [27]. The spin-exchange in-
teraction strength β can, in principle, be complex. How-
ever, its phase angle can be taken to be zero by a simple
redefinition of the atomic wave functions. As a result, we
will assume β > 0 without loss of generality.
Following a standard procedure, we take the gauge

transformation for the wave function as Ψi −→ UiΨi

with Ui = eikLxσi
z . Under this transformation, the inter-

action terms are invariant, and the single-particle Hamil-
tonians take the new form as (with ΩB = 0 and δi = 0):

hA =

(

kA − kLσ
A
z

)2

2mA
+

ΩA

2
σA
x + V A

ext (x) , (5)

hB =

(

kB − kLσ
B
z

)2

2mB
+ V B

ext (x) . (6)

With a finite ΩA, hA contains an effective non-Abelian
gauge field leading to the SO coupling. Whereas, no SO
coupling is present in hB due to the lack of the Raman
coupling. However, as we will show below, the spin-
exchange term included in GAB will provide an effective
Raman coupling, and hence induce an effective SO cou-
pling, for species B.
Case of NA ≫ NB — To clearly demonstrate how the

spin-exchange interaction induces SO coupling in species
B, let us first consider a situation with NA ≫ NB such

that the effect of B on A can be neglected to a good
approximation. As a result, the properties of A are the
same as in a single-species SO coupled condensate, which
has been extensively studied in previous works. Further-
more, we will first assume that V A,B

ext = 0 which allows
us to find analytical solutions. For such a homogeneous
quasi-one dimensional system, A possesses three mean-
field phases [23] separated by two critical values of Raman
coupling strength ΩS−P

A and ΩP−Z
A that are give by

ΩS−P
A = 2

[

(

k2L +GA
+

) (

k2L − 2GA
−

) 2GA
−

GA
+ + 2GA

−

]1/2

,(7)

ΩP−Z
A = 2

(

k2L − 2GA
−

)

, (8)

where GA
± ≡ ρ0

(

gA ± gA↑↓

)

/4, with ρ0 being the average

total density.
For small coupling strength ΩA < ΩS−P

A , A is in the
stripe phase (ST) whose wave function can be approxi-
mately depicted by a superposition of two plane waves
with all higher-order harmonic terms neglected [28, 29]

Ψ
ST
A =

√

ρ0
2

[(

cos θA
− sin θA

)

eiκAx +

(

sin θA
− cos θA

)

e−iκAx

]

,

(9)
where κA is finite and 2θA = cos−1 (κA/kL), and the
corresponding density profiles oscillate in space and are
given by

ρA,↑(x) = ρA,↓(x) =
ρA(x)

2
=
ρ0
2
[1 + sin 2θA cos(2κAx)] .

(10)
For intermediate coupling strength ΩS−P

A < ΩA < ΩP−Z
A ,

A is in the plane-wave phase (PW) whose ground state
is doubly degenerate with

Ψ
PW
A =

√
ρ0

(

cos θA
− sin θA

)

eiκAx , or
√
ρ0

(

sin θA
− cos θA

)

e−iκAx.

(11)
Finally, for large coupling strength ΩA > ΩP−Z

A , A is in

the zero-mode phase (ZM) with Ψ
ZM
A =

√

ρ0/2 (1,−1)T ,
which has the same form as the wave function in PW
phase with κA = 0 and θA = π/4. In both the PW and
the ZM phases, species A possesses homogeneous density
profiles.
Now let us turn our focus onto species B, which is in-

fluenced by A through the inter-species interaction term
GAB in Eq. (4). First, consider A to be in one of the ho-
mogeneous phases (PW or ZM), in which its total density
is constant ρA = ρ0. Inserting ΨA into (4), we arrive at
an effective single-particle Hamiltonian for species B as:

hB,eff =

(

kB − kLσ
B
z

)2

2mB
+

ΩB

2
σB
x , (12)

where

ΩB = −βρ0 sin 2θA. (13)
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FIG. 2: (a), (b) Ground-state phase diagram obtained analyt-
ically and numerically, respectively, in the case of NA ≫ NB .
(c) Typical density profiles for various phases. ΩA is in units
of the photon recoil energy EL = k2

L/2mA. In each sub-
plot in (c), we plot only the left (right) half of the den-
sity profiles for species A (B), as the full profile is mirror
symmetric about x = 0. In this calculation, we take mA

and mB to be the mass of 23Na and 87Rb, respectively; and
NA = 2.5 × 104 = 25NB . The box potential has a length
of LA = 100k−1

L ≈ 27µm for species A. To minimize the
edge effects, we choose the box length for B to be slightly
smaller with LB = 0.9LA. The interaction strengths are:
gA = 6.48×10−3EL/kL, g

B = 3.44×10−3EL/kL, g
i
↑↓ = 0.8gi,

γ = 2.87 × 10−3EL/kL. The densities in (c) are in units of
kL, and are renormalized such that

∫
dxρi(x) = 1.

It is clear from Eq. (12) that the spin-exchange interac-
tion provides an effective Raman coupling with strength
ΩB, and as a consequence, species B also experiences SO
coupling as the form of hB,eff is identical to that of hA.
We expect that B too possesses the three phases ST ,
PW and ZM, depending on the magnitude of β which
determines ΩB. In analogy to Eqs. (7) and (8), we can
find the two critical values of β that separates the three

phases for Species B as

βS−P
B =

2

ρ0 sin 2θA

[

2GB
−

(

k2L +GB
+

) (

k2L − 2GB
−

)

(

GB
+ + 2GB

−

)

]1/2

,(14)

βP−Z
B =

2
(

k2L − 2GB
−

)

ρ0 sin 2θA
, (15)

where GB
± = ρ1

(

gB ± gB↑↓

)

/4, with ρ1 being the average

total density of species B. In each of these phases, the
wave function ΨB should have a similar form to ΨA in
the corresponding phase.
When species A is in the ST phase, following a similar

procedure as above, we can obtain the effective Hamilto-
nian for B as

h′B,eff =

(

kB − kLσ
B
z

)2

2mB
+ ρA(x)

(

γ −βeiφ(x)

2

−βe−iφ(x)

2
γ

)

,

where ρA(x) is the density profile of A given in Eq. (10),
and

φ(x) = tan−1

(

cos 2θA sin 2κAx

sin 2θA + cos 2κAx

)

. (16)

In general, the sinusoidal oscillation in ρA also leads to
a sinusoidal oscillation in B and drives the latter to a
stripe phase. Whether the density stripes in A and in B
are in phase or not can be roughly determined as follows.
Diagonalizing the matrix in the second term of h′B,eff , we
readily find its lower eigenvalue as γ−β/2. Hence we can
regard (γ−β/2)ρA(x) as an effective potential for atoms
in species B. As a result, the density stripes in the two
species will be in phase if γ − β/2 < 0, and out of phase
otherwise.
Through these considerations, we obtain analytically

the ground state phase diagram in the ΩA − β param-
eter space as shown in Fig. 2(a). Furthermore, to con-
firm the analytical results, we directly solve the coupled
Gross-Pitaevskii equation derived from the energy func-
tional in Eq. (1). In the numerical calculation, we include
a box potential with hard walls for both species [30].
We present the numerically obtained phase diagram in
Fig. 2(b), with typical density profiles for different phases
plotted in Fig. 2(c). In the phase diagram, each phase
of the mixture system, bounded by solid black lines, is
labeled by the corresponding phase of individual species.
For example, ZM/ST is the phase where species A is in
the ZM phase and B in the ST phase (except for the two
phases labeled PS1 and PS2 in Fig. 2(b), see below). At
large ΩA, species A is in the ZM phase, as β increases,
the effective Raman coupling strength |ΩB| [see Eq. (13)]
increases, and species B goes through ST , PW and ZM
phases (see the right part of the phase diagram), the
corresponding density profiles are plotted in the middle
row of Fig. 2(c). At intermediate ΩA, species A is in
the PW phase, and as β increases, species B again goes
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through ST , PW and ZM phases (see the middle part
of the phase diagram), the corresponding density profiles
are plotted in the upper row of Fig. 2(c). For small ΩA,
species A is in the ST phase, and species B also exhibits
density stripe regardless of the value of β. For small β,
the stripes of the two species are out of phase, and we
label the phase of the combined system as ST/ST 1. For
large β, the stripes of the two species are in phase, and
we label the phase of the combined system as ST/ST 2.
The boundary between ST/ST 1 and ST/ST 2 is given
by β/γ = 2 in the analytical calculation. The numerical
calculation shows that this boundary has a weak depen-
dence on ΩA.

Comparing Fig. 2(a) and (b), one can see that, the two
phase diagrams are in general in good qualitative agree-
ment. The main difference is that the analytical phase
diagram does not produce the two phases labeled as PS1
and PS2 in the middle of the numerical phase diagram.
These two phases correspond to phase separation. In
PS1, species B mainly occupy the middle of the box po-
tential and, together with species A, forms the ST/ST 1

phase. At the edges of the box, we have only species A
which is in the PW phase. Typical density profiles of PS1
are presented in the lower right sub-plot of Fig. 2(c). PS2
is similar to PS1, only that we have the ST/ST 2 phase
in the middle of the box. That these two phases are not
present in Fig. 2(a) can be attributed to the breakdown
of the assumption that species A is not affected by B,
which underlies the analytical calculation. This assump-
tion generally holds when species A is in either ST or ZM
modes. However, when species A is in the PW phase, it
can possess a large spin polarization. Hence even though
the total atom number NA is much larger than NB, the
number in the minority spin component of A may be
comparable to NB. As a result, species B may have a
significant influence on A.

Case of NA = NB — The situation discussed above
provides a clear picture how the spin-exchange interac-
tion can induce SO coupling in species B. Now let us
consider the situation where NA = NB. Now the mu-
tual influence between the two species is important, and
we have to resort to numerical calculations to investigate
this system. The phase diagram and several representa-
tive density profiles are presented in Fig. 3. In the calcu-
lation, all the parameters are kept the same as in Fig. 2,
only that NB is increased to be equal to NA. One strik-
ing feature one can immediately notice from the phase
diagram is that the stripe phase dominates the param-
eter space. The left region of the phase diagram (small
ΩA) is still occupied by ST/ST 1 and ST/ST 2 as in the
previous case, but the regions for both phases are much
enlarged. In a single species Raman-induced SO coupled
condensate, the ST phase occurs at small Raman cou-
pling strength. The enlarged stripe phase region in the
mixture may be attributed to the fact that the back ac-
tion from species B reduces the effective Raman coupling

FIG. 3: (a) Ground-state phase diagram, and (b) typical den-
sity profiles for various phases, in the case of NA = NB =
1 × 104. Both species are confined in a box potential with
length LA = LB = 100k−1

L . Other parameters used are the
same as in Fig. 2. Note that the PST/ST phase has two
degenerate ground states. The one not shown has the same
density profiles in species B, but reversed density distribu-
tions for ρA,↑ and ρA,↓ as plotted in the first panel of (b).

in species A.
The other three phases, PST/ST , ST/ST 3, and PS3,

in Fig. 3(a) do not exist in the previous case. In PST/ST ,
species B is a conventional stripe phase whose wave func-
tion is approximately given by Eq. (9), representing an
equal-weight superposition of two plane-wave states with
opposite momenta. By contrast, the state of species A
with two-fold degeneracy can be roughly regarded as an
unequal-weight superposition of two plane wave states as
given in Eq. (11). In other words, A is roughly a hybrid
of the ST and the PW state. The density profiles of A
exhibit stripes but one spin state has more population
than the other, as shown in the left subplot in Fig. 3(b).
In ST/ST 3 which occurs at large ΩA, species B is still

roughly a conventional stripe phase, but the wave func-
tion of species A takes the approximate form as follows:

ΨA ∝ C1

(

1
−1

)

+ C2

(

e2iκAx

−e−2iκAx

)

, (17)

which can be regarded as a hybrid of the ZM and the PW
phase. Finally, PS3 is a phase separated state, where
ST/ST 3 occupies the middle of the box potential, and
ST/ST 1 occupies the edges.
Conclusion and Outlook — To summarize, we have

presented a study of a mixture of two spin-1/2 conden-
sates, with only one of the species subjected to a pair of
Raman laser beams which induces SO coupling in that
species. Through the inter-species spin-exchange inter-
action, however, the other species also exhibits SO cou-
pling. With many control parameters, such as the rela-
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tive atomic numbers, interaction strengths, etc., the mix-
ture system displays a very rich phase diagram, and many
of the phases do not exist in a single-species system.

From a practical point of view, our method provides a
viable way of achieving SO coupling in species that suffer
from severe Raman-induced heating [7, 8]. From a funda-
mental point of view, our work opens up a new avenue of
research in the study of SO coupling in atomic quantum
gases. We have considered here, perhaps, the simplest
spinor mixtures. This can be naturally extended to mix-
tures of high spin systems [31–37], where both the inter-
and intra-species spin-exchange interactions exist, the in-
terplay between which may lead to even richer physics.
The system considered here is quasi-one dimensional. Ex-
tending our calculation to higher dimensions [38–42] may
lead to the realization of new types effective SO coupling.
Finally, similar study can also be extended to Bose-Fermi
mixtures [13–15], which will be extremely important as
the most commonly used fermionic species, such as 6Li
[3]and 40K [2], all suffer significant Raman-induced heat-
ing, and we are still waiting for the first experimental
achievement of SO coupled superfluid Fermi gas.
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