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We propose a new driving scheme, when different parts of a system are driven with different,
generally incommensurate, frequencies. Such driving provides a flexible handle to control various
properties of the system and to obtain new types of effective (static) Hamiltonians with arbitrary
static on-site potential, be it deterministic or random. This allows us to obtain reconfigurable
changes in transport, from ballistic to localized (including sub- and super-diffusion), depending
on the driving protocol. The versatile reconfigurability extends also to scattering from (locally)
driven extended targets. We demonstrate our scheme using, an analytically solvable example, of an
one-dimensional tight-binding chain with appropriately driven couplings between nearby sites.

PACS numbers:

I. INTRODUCTION

Subjecting a quantum particle to a time dependent
potential, i.e. “driving it in time”, can have a profound
effect on the particle’s dynamics. For instance, free prop-
agation of a particle (by tunnelling from one site to the
next) in a periodic tight binding lattice, can be inhib-
ited by applying an ac electric field uniform in space
[1] (see [2, 3] for recent reviews). The effect of the ac
field is to replace the “bare” inter-site coupling constant
v, before driving, by a new, effective coupling constant
veff . The latter is smaller than v and, for the appro-
priate values of the parameters can become zero, thus,
completely suppressing tunneling between the nearest
neighbor sites. Ref. [1] provides an early example of
an effective Hamiltonian, due to driving, with properties
different from those of the original, non-driven Hamilto-
nian. Recently, the same idea of driving-induced renor-
malized coupling has been utilized in the frame of non-
Hermitian systems in order to manage the spontaneous
PT -symmetry breaking for parity-time symmetric sys-
tems (see [4] and references therein).

Effective Hamiltonians that control the long time dy-
namics of a driven system, while themselves being time
independent, are of great interest in diverse fields such as
condensed matter [5–7], optics [2, 8–14], acoustics [15, 16]
and cold atomsphysics [3]. For periodic in time driving
the corresponding effective Hamiltonian is the Floquet
Hamiltonian which defines the system evolution during
one driving cycle. The art of obtaining new and in-
teresting Hamiltonians with intriguing properties (elec-
tronic [5–7] or photonic [8–11] topological insulators, ar-
tificial gauge fields [12–14], time crystals [17]) is some-
times called “Floquet engineering”. In addition to the
cited examples, let us mention the effect of Floquet driv-
ing on transport in disordered one-dimensional chains
[18–20]. In particular, in Ref. [19, 20] it was demon-
strated that engineering the driving spatially can largely
enhance transport but it can also lead to a “generalized

dynamic localization”, when certain parts of the chain
get decoupled from the rest of it.

In this Letter, we consider a few examples of driven
systems that can be analytically solved. We show that
by appropriately driving in time the couplings between
the sites of a tight- binding chain, one can create an arbi-
trary effective static potential, e.g., a disordered poten-
tial which will localize an excitation (particle or wave)
on the chain. Or, on the contrary, one can “undo” any
static disordered potential and, thus, let the previously
localized excitation freely propagate along the chain. In
fact, we shall show that our scheme allows us to design
other, more exotic type of evolution, resulting in super-
diffusion, diffusion or sub-diffusion, by an appropriate
tailoring of the driving frequencies of the coupling con-
stants. The new element of our driving scheme is that
we allow for different (arbitrary) driving frequencies in
different parts of the system so that, in general, we are
not dealing here with a Floquet problem. Furthermore,
we also extend our treatment to scattering problems and
show that by driving the system (locally) in time, one can
control scattering of the waves incident on the system.

II. MODEL AND DRIVING SCHEMES

In our approach, we take inspiration from the exactly
soluble Rabi problem which, in convenient for our pur-
pose notations, amounts to

ı
d

dt

(
ψ1

ψ2

)
= H̃ (t)

(
ψ1

ψ2

)
; H̃ (t) ≡

(
ω1 −veıωt

−ve−ıωt ω2

)
(1)

In the original Rabi problem, the eıωt factor comes from
the circularly polarized magnetic field while in our setup
it corresponds to driving of the coupling between two
sites. In the context of optics or microwave physics the
two sites can represent two coupled waveguides [21] or
two optical resonators (CROW), with eigenfrequencies
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FIG. 1: (a) A tight-binding chain with arbitrary site energies
and couplings. (b) Scattering on a time-dependent region,
i.e. on the driven coupling between sites 0 and 1, with site
energies ε0, ε1

ω1 and ω2, evanescently coupled with a coupling constant
modulated in time [34]. In acoustics one can consider
the scenario of two coupled Helmholtz resonators (or two
cantilevers or forks) which are coupled via air domains
which experience time-dependent pressure variations.

The time-dependent gauge transformation ψ1 (t) =
χ1 (t) eıωt/2 and ψ2 (t) = χ2 (t) e−ıωt/2 transforms

the time-dependent Hamiltonian H̃ (t) into a time-
independent one:

ı
d

dt

(
χ1

χ2

)
= H

(
χ1

χ2

)
;H ≡

(
ω1 + ω

2 −v
−v ω2 − ω

2

)
(2)

Thus, driving of the type indicated in Eq. (1) (the “Rabi
driving”) can be eliminated by a gauge transformation,
resulting in a time-independent Hamiltonian H with
renormalized site energies.

This observation enables us to propose a driving proto-
col which creates an arbitrary effective (static) potential.
To this end, we consider a tight binding chain with arbi-
trary site energies and couplings, see Fig. 1a. The sites
are labeled by an integer l and the site energies are εl
(l = 1, · · · , N). The coupling constant between site l
and l + 1 is vl,l+1.

Now let us introduce driving in the couplings, in
such a way that vl,l+1 acquires a time-dependent phase
exp (−ıΩl,l+1t) where Ωl,l+1 is arbitrary. It is convenient
to write Ωl,l+1 as a difference between two frequencies
i.e., Ωl,l+1 = ωl+1 − ωl (one of the frequencies, say, ω1

can be chosen arbitrarily but the rest of the sequence
ω2, ω3, etc, is prescribed by the values of Ωl,l+1). The
dynamics of the driven chain is governed by the coupled
equations

ıψ̇l =εlψl − vl−1, leı(ωl−ωl−1)tψl−1 − vl, l+1e
−ı(ωl+1−ωl)tψl+1,

(3)

where the dot indicates derivative with respect to time.
l runs from 1 to N , and, e.g., the Dirichlet boundary
conditions, ψ0 = ψN+1 = 0 are imposed.

The time-dependent gauge transformation

ψl (t) =χl (t) e
ıωlt (4)

reduces Eq. (3) to

ıχ̇l = (εl + ωl)χl − vl−1,lχl−1 − vl,l+1χl+1, (5)

i.e., with the help of driving, the initial Hamiltonian, de-
fined by the sequence of site energies {εl} and couplings
{vl,l+1}, is transformed to an effective static Hamilto-
nian, defined in Eq. (5). This final Hamiltonian has the
same couplings as the original one but the site energies
are changed from {εl} to {εl + ωl}. Since the driving
frequencies are at our disposal, it follows that by an ap-
propriate choice of these frequencies it is possible to cre-
ate any on-site potential in the equivalent static Hamil-
tonian. For instance, by choosing ωl = −εl, one can
“undo” the potential {εl} that existed prior to driving.
Or, if initially there was no potential (all εl = 0), one
can create by driving an arbitrary sequence of site ener-
gies, e.g., a disordered sequence which will localize the
previously free excitation. Let us stress that our driv-
ing scheme is, in general, not of a Floquet type because
the driving frequencies Ωl, l+1 are arbitrary and can be
incommensurate with one another.

III. DYNAMICS

The metamorphosis of the wavepacket spreading in the
driven tight-binding lattice can be best quantified by the
variance of the evolving wavepacket

m2(t) ≡
∑
l

|l − l0|2|ψl(t)|2 (6)

which at time t = 0 is localized at site l0 = 0, i.e.
ψl(t = 0) = δl,0. The results for a lattice with (i) random
ωl uniformly distributed in the interval [0,W ] and with
εl = 0 (black line); and (ii) ωl ∈ [0,W ] and εl = −ωl
(red line) are shown in Fig. 2a. In the former case we
have induced Anderson localization via an incommensu-
rate driving of the coupling constants. In the latter case
we have annihilated the Anderson localization associated
with a static disordered lattice by appropriate choice of
the driving frequencies ωl. The different nature of the
evolution for each of these two cases can be further ap-
preciated by calculating the whole evolving wavefunction
intensity, see Fig. 2b. Again, in the former case (black
line) we observe the familiar exponential localization of
the evolving wavefunction, while in the latter (red dots),
we find that the evolving wavefunction resembles the typ-
ical Bessel form associated with one-dimensional transla-
tional invariant lattices (although the static potential εl
was chosen to be random).

More exotic type of evolutions, like super-diffusion
[23], diffusion or sub-diffusion, can be also engineered
with the appropriate choice of the driving frequencies of



3

FIG. 2: (color online)(a) The temporal evolution of the second
moment m2(t) of a wavepacket initially localized at site l0 =
0. The time is measured in units of coupling constant. (b)
The corresponding wavefunction profiles at the end of the
simulation (t = 1000 in units of the magnitude of the coupling
constant). In all cases, an averaging over 100 realizations
of the on-site potential and driving frequencies is performed.
The black lines (lower curve in (a)) correspond to the case
of a static on-site potential with εn = 0 (for all sites) and
a sequence of driving frequencies ωl taken from a uniform
distribution in the interval ωl ∈ [0,W ] with W = 3. The red
line (upper curve) in (a) correspond to the case of εl ∈ [0,W ]
and ωl = −εl. The wavefunction profile for the same set of
parameters is indicated in (b) with red dots.

the coupling constants vl,l+1. For example, in Fig. 3a
we show three representative cases of driving frequen-
cies ωl taken from a Fibonacci sequence with poten-
tial strengths V = 0.5 (corresponding to super-diffusion
m2(t) ∼ t1.56), V = 1 (corresponding, approximately,
to diffusion m2(t) ∼ t1.2) and V = 3 (corresponding to
sub-diffusion m2(t) ∼ t0.6) [24, 25]. In Fig. 3b we show
the representative wavefunction profiles at the end of the
simulations (t = 1000 in units of the magnitude of the
coupling constant).

IV. SCATTERING SET-UP

We now turn to the scattering problem and start with
the simple setup depicted in Fig. 1b (leaving the gen-
eralization to a scattering region of arbitrary length for
later). Sites with l 6 −1 and l > 2 represent perfect
semi-infinite leads. These sites are assigned energies (fre-
quencies) εl = 0 and the nearest neighbor sites are cou-
pled by a hopping amplitude −v (we set v = 1 to fix
the energy unit). The sites n = 0, 1 are special. To
those sites we assign energies ε0, ε1 and couple them by
the time-dependent Rabi-like coupling −eıωt. This pair
of sites constitute a scattering region from which waves,

FIG. 3: (color online)(a) The temporal evolution of the second
moment m2(t) of a wavepacket initially localized at site l0 =
0. Lines with different color correspond to a set of driving
frequencies ωl taken from a Fibonacci sequence with different
magnitudes V (V = 0.5 upper (green) curve, V = 1 middle
(blue) curve and V = 3 lower (orange) curve). The static
on-site potential is εl = 0 (for all sites) in all cases. (b)
The representative wavefunction profiles at the end of the
simulation (t = 1000 in units of the magnitude of the coupling
constant).V = 0.5 is indicated by the outer (green) curve,
V = 1 by the middle (blue) curve and V = 3 by the inner
(orange) curve.

freely propagating in the leads, get scattered. Below we
show that this problem of scattering on a time-dependent
scatterer has an exact solution which provides a simple
example of an asymmetric frequency converter. The field
ψl (t) satisfies the following set of equations:

ıψ̇l =− ψl−1 − ψl+1, (l 6 −1, l > 2) (7a)

ıψ̇0 =− ψ−1 − eıωtψ1 + ε0ψ0 (7b)

ıψ̇1 =− e−ıωtψ0 − ψ2 + ε1ψ1 (7c)

Assume that a wave ψinc = e−ıEt+ıkl (0 < k < π) is
incident on the scattering region from the left. E and
k are related by the dispersion relation E = −2 cos k.
When the wave scatters off a periodically driven scat-
tering region, it can absorb or emit integer number of
quanta (”photons”) so that the scattered wave can have
frequency En = E + nω (n = 0, ±1, · · · ). The solution
of the scattering problem posed above is of the form:

ψl =e−ıEt+ıkl +
∑
n

rne
−ıEnt−ıknl, l 6 0 (8)

ψl =
∑
n

tne
−ıEnt+ıknl, l > 1,

where the dispersion relation En = −2 cos kn must hold
for each n. If En is within the band (−2, 2), the wave
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is propagating, otherwise it is evanescent. Furthermore,
E0 = E and k0 = k.

The reflection and transmission amplitudes (rn, tn)
in Eq. (8) are determined from the requirement that
Eqs. (7b) and (7c) are satisfied. Using Eq. (8) and collect-
ing terms with the same time-dependent factors e−ınωt,
we obtain the following set of equations:

−ε0 − eık − r0
(
e−ık + ε0

)
+ t1e

ık1 =0 (9)

1 + r0 − t1(1 + ε1e
ık1) =0

and (
ε0 + e−ıkn

)
rn − tn+1e

ıkn+1 =0 (10)

rn − tn+1

(
1 + ε1e

ıkn+1
)

=0

Eqs. (9) yield

r0 =−
1−

(
ε0 + eık

) (
ε1 + e−ık1

)
1− (ε0 + e−ık) (ε1 + e−ık1)

, (11)

t1 =
eık − e−ık

eık1 [1− (ε0 + e−ık) (ε1 + e−ık1)]

and from Eqs. (10) it follows that

rn = 0, tn+1 = 0, (n 6= 0) . (12)

Thus there is only one possibility for the incident wave
e−ıEt+ıkl to get scattered into the right lead: the wave in-
creases its frequency from E to E+ω by absorbing a pho-
ton. This process requires the condition E+ω = E1 < 2,
i.e., the enhanced frequency corresponds to the propa-
gating wave. For E1 > 2, k1 is imaginary (evanescent
wave), so that the incident wave undergoes total reflec-
tion. Indeed, for this case, as easily verified from Eq. (11),
|r0| = 1. Since the incident frequency E must itself be in
the band (−2, 2), it follows that for any E the wave will
be totally reflected if the driving frequency ω is larger
than 4.

Similarly, one can consider a wave e−ıEt−ıkl impinging
on the scattering region from the right. Such a wave
can be transmitted to the left with emission of a photon,
so that the emerging frequency is E − ω (provided that
E − ω > −2). Thus, our scattering setup corresponds to
an asymmetric frequency converter.

It is instructive to solve the above scattering problem
in a different way, by making the transformation

ψl (t) =eıωt/2χl (t) (l 6 0) ; ψl (t) = e−ıωt/2χl (t) (l > 1) .
(13)

In the new variables, Eq. (7) become

ıχ̇l =
(ω

2
+ ε0δl,0

)
χl − χl−1 − χl+1 (l 6 0) (14a)

ıχ̇l =
(
−ω

2
+ ε1δl,1

)
χl − χl−1 − χl+1 (l > 1) (14b)

FIG. 4: (a) Scaling of the logarithm of average transmittance
〈ln(T )〉 versus the number of lattice sites N for a system with
random driving frequencies ωn ∈ [0,W ]. In our case W = 3.
An averaging over more than 400 realizations of ωn has been
performed. (b) The transmission spectrum (single realization)
versus energy E (in coupling units) of a lattice of N = 377
sites with driving coupling frequencies ωn taken from a Fi-
bonacci sequence. The strength of the Fibonacci potential is
V = 1. The appearance of mini-bands is evident.

i.e., the time-dependent driving is eliminated but the en-
ergy of the left (right) lead is raised (lowered) by ω/2.
The problem is reduced to elastic scattering on a step
potential (in addition to the two potential barriers at
l = 0, 1), and it has an elementary standard solution. In
this formulation it is immediately clear that for an im-

pinging wave exp
(
−ıẼt+ ıkl

)
only one wave, with the

same energy parameter Ẽ, can be transmitted (reflected)
to the right (left). When comparing the two formula-

tions, one should keep in mind that Ẽ = E + ω
2 , so that

when going back from χl to ψl (see Eq. (13)), one obtains
ψl ∼ e−ıEt on the left but ψl ∼ e−ı(E+ω)t on the right,
as should be.

The advantage of the second method, based on the
transformation Eq. (13), is that it is easily generalized
to an arbitrary scattering sequence subjected to “Rabi
driving”. Let us return to the sequence depicted in Fig.
1a, driven as explained above. This time, however, we
attach perfect semi-infinite leads on both ends of the
scattering sequence. Thus the equations of motion are
given in Eq. (3), where now l runs from −∞ to +∞ and
ωl = ω1 for l < 1 and ωl = ωN for l > N (there is no
driving in the leads). It is easy to verify that the gauge
transformation

ψl (t) =χl (t) e
ıωlt, 1 6 l 6 N (15)

ψl (t) = χl (t) e
ıω1t (l < 1) ; ψl (t) = χl (t) e

ıωN t (l > N)

yields the following set of equations for χl:
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ıχ̇l = (εl + ωl)χl − vl−1,lχl−1 − vl,l+1χl+1, 1 6 l 6 N

(16)

ıχ̇l =ω1(N)χl − χl−1 − χl+1, l < 1 (l > N)

i.e., the scattering becomes elastic but there is an energy
shift (ω1 − ωN ) between the two leads.

In Fig. 4 we show some numerical simulations for two
cases of driven lattices. In order to simplify our calcula-
tions we have assumed that ω1 = ωN = 0. In this way,
both leads have the same impedance (and group veloc-
ity) and thus the transmittance is simply the square of
the ratio of the transmitted to incident wave amplitude.
First, we have considered a lattice with random driving
frequencies ωl ∈ [0,W ] and εl = 0. Our scaling analysis
of the logarithm of the transmittance 〈ln(T (E))〉 versus
the size of the system N indicated an exponential decay
– a clear signature of Anderson localization. In Fig. 4b
we also report the transmission spectrum for the case of
a lattice with driving frequencies ωl’s taken from a Fi-
bonacci sequence with strength V = 1. The formation
of mini-bands, associated with the fractal nature of the
spectrum of such systems [26, 27] is evident.

V. EXPERIMENTAL IMPLEMENTATION

One might envision a number of possible experimen-
tal realizations of the time-modulated coupling scheme
proposed above. One promising realization appears in
the framework of coupled resonators which are indirectly
coupled via a set of ”auxiliary” resonators. The auxil-
iary resonators are designed to be anti-resonant to the
main resonators, i.e. their diameter is chosen such that
the electromagnetic field is destructively interferes inside
these resonators while it demonstrates constructive in-
terferences at the main resonators and thus it is confined
there. It turns out that in the case that the phase differ-
ence between the accumulated phases due to field prop-
agation in the upper and lower sections of the auxiliary
rings are not equal, the effective coupling acquires an
additional phase term. This effect has been used orig-
inally in Ref. [28, 29] for the realization of synthetic
gauge fields for photons. The same set-up can be used
in our case as well, with the addition of a phase mod-
ulator which will control these phase terms. A detail
analysis of this set-up is discussed in section A of Ap-
pendix. An alternative realization could invoke an ar-
ray of resonators with a dynamically modulated nearest
neighbor coupling vl,l±1 cos(ΩDt + φl,l±1) where ΩD is
the frequency detuning between the two resonators and
φn,n±1(t) is a time-dependent phase of the coupling con-
stant modulation. It turns out that in the limiting case
of v � ΩD (and under subsequent rotating wave ap-
proximations) [30], the system is described by Eq. (3),
provided that φn,n±1 = Ωn,n±1t.

VI. CONCLUSIONS

In conclusion, we have proposed a new driving scheme,
when different parts of a system are driven with different
frequencies. We showed that, using a particular driving
protocol of this type, one can create arbitrary effective
static potentials. For instance, with appropriate driving
one can create a disordered static potential and, thus,
obtain localization. The opposite is also true: a suitable
driving can make any static potential (either determinis-
tic or disordered) “invisible”, thus, insuring free propaga-
tion of excitations. The Hamiltonian engineering scheme
presented here can be also extended to higher dimensions
(see section B of Appendix)– thus providing alternative
pathways to realize topologically protected states or to
induce a phase transition (like Anderson metal-insulator
transition).
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Appendix

A. Photonic structures with Rabi-like couplings

We present a design of rabi-like effective coupling be-
tween two high-Q ring resonators using an auxiliary
ring [31–33]. On the one hand, waves in the high-Q
ring resonators need to satisfy the resonance condition.
On the other hand, for our purpose the auxiliary ring
is driven. And, at the same time as an indirect cou-
pler, it should satisfy the anti-resonance condition. Thus
the field will be confined mainly in the high-Q ring res-
onators instead of the auxiliary ring. Below we provide a
detailed analysis which serves to demonstrate this subtle
anti-resonate issue for the auxiliary ring in the case of
driving. Essentially we can generalize the derivation in
Ref. [33] to the case of time-dependent couplings.

Specifically, see Fig. S1, we consider the field ampli-
tudes a (t), a′ (t) and b (t), b′ (t) in the two high-Q ring
resonators A and B and denote the field amplitudes e (t),
f (t), g (t), l (t) in the middle auxiliary ring. The cou-
plings between the high-Q resonators and the auxiliary
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FIG. 5: (color online) The main ring resonators A and B are
indirected coupled via an auxiliary ring. The time-dependent
phase modulators (not shown) embedded in both upper and
lower branches of the auxiliary ring are introduced to realized
effective rabi-like coupling between the resonators A and B.

ring are given as [34](
a′

f

)
=

(
u ρ
−ρ∗ u∗

)(
a
e

)
,

(
b′

l

)
=

(
u ρ
−ρ∗ u∗

)(
b
g

)
where we assume the weak coupling limit |ρ| → 0 and
for simplicity u ∈ R. In addition, the current conserva-
tion requires |u|2 + |ρ|2 = 1 and thus u ≈ 1 in the weak
coupling limit. The ring resonators A and B are consid-
ered to be lossless and the resonance condition provides
us that

a (t+ τ) =a′ (t) , b (t+ τ) = b′ (t) ,

where τ is the traveling time when wave goes around the
ring A or B for one circle. More importantly, for the
middle lossless auxiliary ring, we have

g (t+ τ1) = f (t) exp [ıφ1 (t)] ,e (t+ τ1) = l (t) exp [ıφ2 (t)] ,

where the propagation time in the half auxiliary ring
is τ1 ∼ O (τ), the effective time-dependent phases are
assumed to be φ1 (t) = π

2 + ωt and φ2 (t) = π
2 − ωt,

with ω � 1/τ1, which are due to the phase modula-
tors in both upper and lower branches of the auxiliary
ring. Notice that the anti-resonance condition holds for
the auxiliary ring irrespective of the time instant, i.e.,
φ1 (t) + φ2 (t) = π.

Assuming small traveling time for one circle, i.e., τ →
0, we have

a (t+ τ) ≈a (t) + τ
da

dt
, b (t+ τ) ≈ b (t) + τ

db

dt
.

Using Eqs. (VI A) and (VI A), we get from Eq. (VI A)

τ
da

dt
≈ − (1− u) a+ ρe,τ

db

dt
≈ − (1− u) b+ ρg.

We proceed to eliminate field amplitudes e and g in
Eq. (VI A). To this end, combining Eqs. (VI A) and
(VI A), up to the leading order with respect to the small
quantities |ρ| and τ we get

g ≈ρ
∗

2
[ub− a exp (ıφ1)] , e ≈ ρ∗

2
[ua− b exp (ıφ2)] .

Resulting from the anti-resonance condition, indeed the
field amplitudes e and g in the auxiliary ring is small in
the weak coupling limit, see Eq. (VI A). Now substituting
Eq. (VI A) into Eq. (VI A), finally we get

ı
da

dt
=
κ

τ
exp (−ıωt) b, ıdb

dt
=
κ

τ
exp (ıωt) a,

where κ ≡ |ρ|2 /2. The rabi-like coupling arises in
Eq. (VI A).

B. Generalization of the driving protocol to
two-dimensions

FIG. 6: (color online) Schematic of a 2D square lattice. The
rabi-like effective coupling is shown explicitly for two nearest
site i and j.

Consider any site i on a two-dimensional (2D) lattice,
see Fig. S2. The set of four nearest neighbors is labeled
by j. The equation for ψi, before driving, is

ıψ̇i = εiψi − V
∑
j∈n.n.

ψj (16)

where the sum is over nearest neighbors. More generally
one could have Vi,j instead of V .

Now we introduce driving according to the following
rule: each site is assigned a frequency ωi and the bond
(i, j) is driven as −V eı(ωi−ωj)t. thus we have:

ıψ̇i = εiψi − V
∑
j∈n.n.

eı(ωi−ωj)tψj (16)

One can eliminate driving by the gauge transformation
Eq. (4) (see main text) and come up with the following
equation:

ıχ̇i = (εi + ωi)χi − V
∑
j∈n.n.

χj (16)
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which is a generalization of Eq. (5) (see main text) in 2D.
A further generalization to three-dimensions is obvious
and it is not discussed here. It is, nevertheless, important
to stress that the Rabi-type of driving that we discuss
here can only create an effective static scalar potential ωi

at site i and cannot “generate” any synthetic magnetic
field. Indeed by denoting the phase (ωi − ωj)t ≡ φi,j(t),
we can show that the sum of φi,j(t) on any close contour
of the lattice is zero, at all times.
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