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We obtain photon statistics by using a quantum jump approach tailored to a system in which one or two
qubits are coupled to a one-dimensional waveguide. Photons confined in the waveguide have strong interference
effects, which are shown to play a vital role in quantum jumps and photon statistics. For a single qubit, for
instance, bunching of transmitted photons is heralded by a jump that increases the qubit population. We show
that the distribution and correlations of waiting times offer a clearer and more precise characterization of photon
bunching and antibunching. Further, the waiting times can be used to characterize complex correlations of
photons which are hidden in g(2)(τ), such as a mixture of bunching and antibunching.

I. INTRODUCTION

Photon statistics is one of the key ways to characterize
non-classical light [1–5]. One intuitively appealing aspect is
whether the photons are bunched (tending to arrive in bun-
dles) or antibunched (tending to arrive one-by-one). In the de-
velopment of quantum optics, photon antibunching, which is
forbidden for classical light, was used as a proof of the quan-
tum nature of photons [2]. Now with the rapid development
of quantum technologies, photon bunching/antibunching finds
diverse applications such as the creation of strongly correlated
photons [6–8], design of new light sources [9–11], and study
of quantum many-body physics [12–17]. To provide the req-
uisite control, many of these applications involve photons in
one-dimensional (1d) waveguides.

Photon bunching/antibunching is customarily defined in
terms of the second-order correlation function g(2)(τ) (the
intensity-intensity correlation function normalized to the
mean intensity). The simplest definition is that bunching (an-
tibunching) occurs when g(2)(0) is larger (smaller) than 1.
That this definition is not sufficiently precise [4, 18] motivated
other definitions, such as that bunching (antibunching) occurs
when g(2)(τ) is larger (smaller) than g(2)(0) [3]. However,
this improved definition is ambiguous if g(2)(τ) is structured
or oscillating, as is very often the case in waveguide quantum
electrodynamics (QED) [7, 8, 19–21] because of the strong
interference effects in one dimension. To characterize bunch-
ing/antibunching, then, more sophisticated photon statistics
such as higher-order correlation functions are clearly needed
[10, 22, 23]. Since quantum jumps can describe the detec-
tion of single photons emitted from a quantum system under
continuous monitoring [5, 23–25], they offer a natural way to
study the arrival times of photons and make the full photon
statistics available.

Confinement to 1d has a profound effect on the quantum
optical properties of a system because interference effects are
much stronger and photonic fields do not decay with dis-
tance. Previous studies of waveguide systems [7, 8] have
shown nonclassical photon statistics both theoretically and ex-
perimentally. A variety of techniques were used theoretically
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FIG. 1. Schematic of qubit(s) coupled to a 1d waveguide. A right-
going photonic state is input from the left end. After its interaction
with the qubit(s), right-going and left-going output states are detected
at the right and left ends, respectively.

(not including quantum jumps) to find the correlation function
g(2)(τ) and the distribution of photon number within a pulse
(Poisson distribution for a coherent state) (see for example
Refs. [21, 26? –33]), and the full counting statistics of photons
was found in the case of a single qubit [33] though the connec-
tion to bunching/antibunching was not emphasized. Experi-
mentally, non-classical deviations in the correlation function
have been seen [34–36]. With regard to quantum jumps, jump
operators that include photon interference have been used to
describe the superposition of an output field and a coherent
field in several situations [5, 16, 23–25, 37–39], including
very recently photon detection at the output ends of a waveg-
uide system [16, 39]. Quantum jumps have not been used
previously, however, to study photon statistics in waveguides.
Experimentally, study of quantum jumps of a single quantum
dot spin has been accomplished with a superconducting sin-
gle photon detector and photon waiting times were measured
[40]. Recent progress in circuit QED experiments [41–43],
including observation of quantum trajectories [44] and sin-
gle microwave photon detection [45–47], also render the ex-
perimental observation of microwave photon arrivals possible
in the near future. While many issues have clearly been in-
vestigated in waveguide QED, the role of strong interference
in photon statistics and the existence and characterization of
more complex photon statistics remain unclear.

In this work, we study photon statistics in a waveguide in-
teracting with one or two qubits (see Fig. 1). We show explic-
itly that the strong interference between photons confined in a
waveguide plays a vital role in quantum jumps and so in the
photon statistics. We find that the statistics of the time inter-
val between two adjacent photons, known as the waiting time,
yields a picture that is much clearer than that from the inten-
sity correlation function, providing new insights. In the two
qubit case, for instance, a mixture of bunching and antibunch-
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ing exists.
The article is organized as follows. First, it is worth not-

ing that jump operators must be chosen carefully in order to
faithfully describe photon detections at the outputs instead of
simply qubit emission events. Thus we show how to derive
jump operators from input-output relations in section II. Then
in section III A, we offer a new view and explanation of the
well-known perfect reflection of a single photon off a qubit in
waveguide QED in terms of quantum interference and quan-
tum jumps. In section III B, an explanation of photon bunch-
ing is given in terms of interference and a resultant photon
absorption process. Then from the statistics of photon ar-
rival times, quantified by the probability distribution of wait-
ing times and joint probability of adjacent waiting times, we
show that photon bunching and antibunching can be clearly
and precisely defined, in the case of both a single qubit (sec-
tion IV) and two qubits (V). A stochastic understanding of
g(2)(τ) through quantum jumps and its relation to the waiting
time distribution are given in section IV. Moreover, in section
V, we observe more complex correlations among the photons,
such as the coexistence of bunching and antibunching. This
may be useful for the engineering of quantum states of light
and the design of photonic quantum gates.

II. JUMP OPERATORS FROM INPUT-OUTPUT
RELATIONS

The system we study consists of qubit(s) coupled to a 1d
waveguide under continuous monitoring at the left and right
end as shown in Fig. 1. After applying the rotating wave ap-
proximation, the system is described by the Hamiltonian [48]

H =
1

2

∑
j

ω(j)
eg σ

z
j +

∫
dω ω

(
r†ωrω − l†ωlω

)
+

∫
dω

∑
j

gj
[
eiωtjσ+

j (rω + lω) + h.c.
]
,

(1)

where ω(j)
eg and tj are the frequency and position of the j-th

qubit, σ+
j is its raising operator, rω(lω) are the annihilation

operator for right(left)-going modes with frequency ω, and gj
is the coupling strength between the j-th qubit and the waveg-
uide. The decay rate Γj of the j-th qubit is then given by
Γj = 4πg2

j . We start with the single qubit case and then turn
to two qubits.

The input-output relations between the output operators,
rout and lout, and the corresponding input operators rin and lin
follow from input-output theory [24, 48, 49]:

rout(t) = rin(t)− i
√

2πgσ−(t),

lout(t) = lin(t)− i
√

2πgσ−(t).
(2)

For the input state, we use a right-going monochromatic co-
herent state |αk〉 with frequency k,

|αk〉 = e−
1
2 |αk|2

∞∑
n=0

αnk√
n!
|n〉 . (3)

It then follows that rin(t) |αk〉 = (αk/
√

2π)e−ikt |αk〉 and
lin(t) |αk〉 = 0. The input photon flux n̄ is given by n̄ =
|αk|2/2π.

In order for our jump operators to correspond to individ-
ual outgoing photons, we define them according to Eq. (2) as
J−R (t) = i rout(t) and J−L (t) = i lout(t), where we have cho-
sen the overall phase factor to be i. More explicitly (in the
Schrödinger picture),

J−R =
√

Γ/2 σ− + i
αk√
2π

and J−L =
√

Γ/2 σ−, (4)

where Γ/2 is the qubit decay rate to the left or right and
αk/
√

2π is the amplitude of the input coherent state. Note
that input operators become complex numbers since our input
state is a coherent state.

The transmitted light described by J−R is clearly a coher-
ent superposition of photons emitted by the qubit and photons
from the input state. As mentioned in the introduction, jump
operators that include photon interference have been used to
describe the superposition of an output field and a coherent
field in homodyne detection [5, 25], the superposition of fields
in cascaded systems [23, 24, 37, 38], quantum trajectories of
propagating Fock states [39], and, recently, photon detection
at the output ends of a waveguide system [16]. Generally, we
thus conclude that input-output relations can be used as a sys-
tematic way to find the correct jump operators to describe in-
terference between quantum objects of complex systems such
as in circuit QED [50] or quantum networks [51, 52].

III. QUANTUM JUMPS AND QUANTUM INTERFERENCE
FOR ONE QUBIT

With the jump operators J−R and J−L defined above, we
write a master equation of Lindblad form. The Lindblad su-
peroperator that describes the detection of right-going photons
is

LRρs = J−R ρsJ
+
R −

1

2
{J+

R J
−
R , ρs}, (5)

and an analogous expression holds for left-going jumps. The
master equation in a rotating frame is (for details see Ap-
pendix A):

∂

∂t
ρs = −i

[∆

2
σz +

g

2
(αkσ

+ + α?kσ
−), ρs

]
+ LRρs + LLρs,

(6)
where ∆ ≡ ωeg − k is the detuning. The simulation then
follows the standard quantum jump technique [5, 23, 25] with
two channels described by the jump operators J−R and J−L ; see
Appendix B for details.

A single trajectory given by the quantum jumps simula-
tion is shown in Fig. 2. Fig. 2(a) shows the time evolution
of the excited-state population: there are jumps correspond-
ing to abrupt changes. At each jump one photon is detected
at either the right or the left end. Note the interesting feature
that there are not only jumps down as expected from usual
quantum jump simulations but also jumps up—a sudden in-
crease of excited-state population [37]. A zoomed-in view of
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�/2
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FIG. 2. (a) One trajectory given by the quantum jump simulation for
one qubit. Blue dots at the top mark detections of right-going (trans-
mitted) photons; green dots at the bottom mark those for left-going
(reflected) photon. The red line is the excited-state population of the
qubit. (b) A zoomed-in view of a cluster of photons and successive
jumps. Note in particular the jump up. (c) A schematic of the up
jump process. For a weak coherent state, which is dominated by one
and two-photon components, a jump up happens when one photon
is transmitted (detected) and the qubit wavefunction collapses to the
excited state, which implies that a photon has been absorbed. Sub-
sequently, the spontaneous decay of the qubit to the right makes it
possible to detect two photons at the same time, which is the photon
bunching phenomenon. (Parameters: α = 1, ∆ = 0.)

a cluster of photons is shown in Fig. 2(b): clearly, there can
be multiple successive jumps down following directly after a
jump up. The up jumps are a signature of the back-action of
monitoring at the right end. In this back-action, the interfer-
ence between the photons emitted from the qubit and those
from the input is encoded, as can be seen from the expression
for J−R in Eq. (4).

A. Quantum Interference Revealed by Quantum Jumps

These unusual features of the quantum jump trajectories
can be understood by considering the wavefunction of the
qubit before and after a jump. The continuous part of a tra-
jectory is governed by a non-Hermitian effective Hamiltonian

Heff =
1

2
∆σz + gαkσ

+ − i1
2

Γσ+σ− − i1
2
n̄, (7)

where there are two imaginary contributions describing the
detection of, first, photons emitted by the qubit with rate Γ

and, second, photons from the input coherent state with rate
n̄. ∆ = 0 under resonant driving. In the absence of jumps
in the interval (t0, t), the time evolution of the unnormalized
wavefunction |ψ̃(t)〉 is given by |ψ̃(t)〉 = exp[−iHeff(t −
t0)] |ψ̃(t0)〉. The normalized wavefunction is then |ψ(t)〉 =
ce(t) |e〉+ cg(t) |g〉 with

ce(t)

cg(t)
=
ce(t0)

cg(t0)
e−

Γ
2 (t−t0)−i

√
2

Γ

αk√
2π

(
1−e−Γ

2 (t−t0)
)
. (8)

The corresponding probability density of a right jump is given
by pR = 〈ψ|J+

R J
−
R |ψ〉 and can be shown to be

pR = n̄+
Γ

2
|ce|2 +

(
i
αk√
2π

√
Γ

2
c∗ecg + c.c.

)
, (9)

where the third term is a cross term due to photon interference.
In the limit of weak driving,

cg ≈ 1 and ce ≈ −i
√

2/Γ(αk/
√

2π)cg (10)

as the exponential factors vanish quickly. In that case, pR ≈ 0
since the cross term cancels the first two terms in (9) due to
the the −i factor between ce and cg . This destructive inter-
ference between emitted photons and input photons explains,
in the quantum trajectory description, the well-known low on-
resonance transmission rate under weak driving [19, 53–55].
When off-resonance, ∆ 6= 0, the phase difference is time de-
pendent and so the destructive interference relation is broken,
thus leading to increased transmission.

B. Up Jumps and Interference Induced Absorption

After a right jump, the wavefunction collapses to |ψ′〉 =
J−R |ψ〉 /

∥∥J−R |ψ〉∥∥ = c′e |e〉+ c′g |g〉. One finds that∣∣∣∣∣ c′ec′g
∣∣∣∣∣ =

∣∣∣∣∣ 1

cg/ce − i
√

Γπ
αk

∣∣∣∣∣, (11)

whose denominator vanishes in the weak driving limit based
on (10). That is, the qubit jumps up to the excited state.

Once it is in the excited state |e〉, it is very likely to have a
second jump, either to the left or right. If it is a right jump,
the wavefunction collapses to iαk/

√
2π |e〉+

√
Γ/2 |g〉—note

that the phase between the two terms has flipped from −i
to i and so the interference in pR in (9) becomes construc-
tive. Therefore, it is possible to have a third jump to the right.
This phenomenon of photon bundles heralded by an up jump,
caused by photon interference, is the mechanism for bunching
of the transmitted photons.

A schematic of the up jump process and the resultant pho-
ton bunching is shown in Fig. 2(c) for an input coherent state
(first panel). The continuous evolution generated by Heff in
the two photon sector produces a state that is a superposi-
tion of the ground and excited states, though predominantly
ground state for a weak coherent input (second panel). The
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FIG. 3. Comparison between the second order correlation function
g
(2)
R (τ) for one qubit calculated from input-output theory and the

exponential relation g(2)R (τ) = g
(2)
R (0) exp[−τ(Γ/2 + n̄)]. They

agree with each other when τ is not very large, which verifies that
the second photon of a bunched photon pair comes from the sponta-
neous decay of the excited state and direct transmission of the input
coherent state. (Parameters: α = 1, ∆ = 0.)

jump operator J−R corresponds to the presence of a trans-
mitted photon in the waveguide at the location of the qubit;
furthermore, J−R collapses the wavefunction onto the excited-
state portion of the wavefunction, thus producing the sudden
increase of excited-state population that accompanies photon
detection (third panel). This is reasonable since transmission
can only occur when the qubit is in its excited state (a sin-
gle on-resonant photon is perfectly reflected from the ground
state). Finally, the qubit decays to the right at the rate Γ/2
(fourth panel). As discussed in the last paragraph, this latter
process is again heavily influenced by interference effects.

Given the detection of the transmitted photon at time t,
the probability density of detecting another photon at time
t + τ is given by P (jump at t + τ | jump at t) = (Γ/2 +
n̄) exp[−τ(Γ/2 + n̄)], where Γ/2 corresponds to the spon-
taneous decay of an exited state and n̄ corresponds to the di-
rect transmission of the input coherent state as the qubit is
excited. Since the second-order correlation function g(2)(τ)
equals this conditional probability normalized by the very
small photon detection probability of transmitted light, as dis-
cussed further in the next section, g(2)(0) will be very large
and g(2)(τ) then decays exponentially under weak driving i.e.
g(2)(τ) = g(2)(0) exp[−τ(Γ/2 + n̄)]. A comparison between
this exponential relation and g(2)(τ) calculated from input-
output theory is shown in Fig. 3 and they agree with each other
when τ is not very large. Thus, in this context of photon de-
tection at precise times, it is simply the spontaneous decay of
the excited qubit and the direct transmission of input state that
give the probability to detect two photons together.

(a): transmitted

(b): reflected

FIG. 4. Waiting time distribution (WTD) and g(2)(τ) (insets) for (a)
transmitted (right-going) and (b) reflected (left-going) photons for
one qubit. Time is scaled by their respective average waiting time τ̄
(marked by red dashed line). The red solid line is the WTD for the
input coherent state, which is Possionian. The large peak near 0 for
transmission indicates strong bunching, while the dip for reflection
indicates anti-bunching. (Parameters: α = 1, ∆ = 0.)

IV. PHOTON STATISTICS AND PHOTON
CORRELATIONS

Since the full time series of photon detection events is avail-
able from our quantum jump simulation, any desired photon
counting statistic can be calculated. Here we focus on two:
first, the waiting time distribution (WTD)W(τ) [5, 23], which
is the probability distribution of the time interval between two
successive photon arrivals (i.e. jumps), and, second, the adja-
cent waiting time distribution (AWTD)A(τ1, τ2), which is the
joint probability density of the two adjacent waiting times τ1
and τ2.

The WTD for transmitted (right-going) and reflected (left-
going) photons are shown in Fig. 4. Time is normalized to the
mean waiting time τ̄ as the mean transmission or reflection
is not relevant for photon bunching or antibunching. Clearly,
the statistics of photons after their interaction with the qubit is
very different from the input coherent state. For transmitted
photons, there is a large peak at τ = 0, which means that
photons are more likely to arrive at the same time, i.e. they
are bunched. For reflected photons, the WTD peaks around a
value between 0 and τ̄ , implying that photons tend to arrive
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with some separation, i.e. they are anti-bunched. This latter
property is simply because, as is well known, every left jump
necessarily takes the wavefunction to the ground state from
which some time is required to again become excited.

The second-order correlation function g(2)(τ) calculated
from input-output theory is also shown in Fig. 4 (see insets).
The general conclusion from the WTD is born out by this
statistic as well: for transmitted light, g(2)(τ) decreases from
a value larger than 1 to 1 while for reflected light it increases
from 0 to 1. This agreement is not surprising if we look at
g(2)(τ) in terms of quantum jumps. From the input-output
relation and definition of jump operators, Eqs. (2) and (4),
g(2)(τ) can be written as

g
(2)
i (τ) =

〈J+
i (t)J+

i (t+ τ)J−i (t+ τ)J−i (t)〉
〈J+
i (t)J−i (t)〉 〈J+

i (t+ τ)J−i (t+ τ)〉
, (12)

where i = R,L for transmitted and reflected photons re-
spectively. After transforming from the Heisenberg to the
Schrödinger picture, J−i ρs(t)J

+
i /Tr{J−i ρs(t)J

+
i } is the nor-

malized density matrix after a jump at time t. Denoting
the time evolution given by the master equation (6) by Mτ ,
ρs(t+ τ) =Mτ [ρs(t)], we get

g
(2)
i (τ) =

Tr{J−i (Mτ [
J−
i ρs(t)J

+
i

Tr{J−
i ρs(t)J

+
i }

])J+
i }

Tr{J−i ρs(t+ τ)J+
i }

. (13)

The numerator describes the probability density of detecting
a photon at time t + τ conditioned on a detection at time t,
while the denominator describes the probability density of de-
tecting a photon at time t + τ without any prior condition.
When the photon flux is normalized to be 1, the denomina-
tor is 1, yielding in the language of probability g

(2)
i (τ) =

P (jump at t + τ | jump at t). g(2)(τ) can be computed in this
statistical sense and is shown in Appendix C.

For the WTD W(τ), however, there is an additional “next
photon” requirement that there be no photon detected be-
tween t and t + τ [4, 56]. Because of this extra condition,
W(τ) ≤ g(2)(τ). In fact, the bound is reached as τ → 0,
g(2)(0) = W(0), as there can be no intervening photon [57].
With regard to bunching and anti-bunching, since g(2)(0) > 1
(< 1) tells us that it is more (less) likely to detect another
photon immediately after a detection, in some events pho-
tons are bunched (antibunched). However, in g(2)(τ) the de-
tailed information about the distribution of bunching and anti-
bunching contained in the WTD is missing. Indeed, in order
to determine the WTD, all orders of correlation functions are
needed [22]. When photon statistics is simple, as in the case of
a single qubit, the qualitative pictures fromW(τ) and g(2)(τ)
agree. But, as we now show, for complex photon statistics
there will be differences.

V. COEXISTENCE OF BUNCHING AND ANTIBUNCHING
FOR TWO QUBITS

In order to study more complex photon statistics, we carry
out quantum jump simulations for two identical qubits with

(a)

(b)

FIG. 5. Photon statistics for two qubits with separation 1/4 wave-
length for reflected (left-going) photons. (a) Waiting time distri-
bution (WTD) and g(2)(τ) (inset); (b) adjacent waiting time distri-
bution (AWTD). Note the clear coexistence of bunching and anti-
bunching. (Parameters: α = 1, ∆ = 0, k∆t = π/2.)

a small separation ∆t. The cooperative effect of two qubits
in a 1d waveguide has been studied previously in, e.g., [7, 8,
28, 32, 49] but not from the quantum jump viewpoint. From
the input-output relation for two qubits (see Appendix A), we
define the jump operators as

J−R =

√
Γ

2
σ−1 e

iωeg∆t +

√
Γ

2
σ−2 + i

αk√
2π
eik∆t,

J−L =

√
Γ

2
σ−1 +

√
Γ

2
σ−2 e

iωeg∆t.

(14)

The phases ωeg∆t and k∆t are due to the time delay of pho-
tons traveling from one qubit to another. The Markovian ap-
proximation [49] has been applied to deal with this time delay
in that only the constant frequency ωeg appears in the qubit
phase factors. In these jump operators, in addition to interfer-
ence between input photons and photons emitted from qubits,
there is clearly also interference between photons emitted
from the two qubits.

We study the statistics of reflected photons for two qubits
with separation 1/4 wavelength under resonant driving, that
is, k = ωeg and k∆t = π/2. The WTDW(τ) from quantum
jump simulations and g(2)(τ) calculated by input-output the-
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ory are shown in Fig. 5(a). The WTD has two peaks, one at
0 and the other at a value between 0 and 1. It is thus a com-
bination of the bunching and antibunching statistics shown in
Fig. 4 and cannot be simply categorized as either bunching
or antibunching alone. However, g(2)(τ) is larger than 1 at
τ = 0 and then decreases, which means that the photon statis-
tics is bunching according to some definitions [4]. This is a
physical example showing that the categorization of photon
statistics into bunching or antibunching according to g(2)(τ)
is inaccurate.

To investigate further these complex photon statistics,
we present the adjacent waiting time distribution (AWTD)
A(τ1, τ2)—the joint probability density of two adjacent wait-
ing times τ1 and τ2—in Fig. 5. Note that A(0, 0) = 0 since
two qubits can reflect at most two photons at the same time.
A(τ1, τ2) has three islands of significant weight: one at the
center and two along the axes. Therefore for three photons
it is more likely to have two of them anti-bunched while the
third can be either bunched or anti-bunched to them. Clearly,
the photon statistics is a mixture of bunching and antibunch-
ing characteristics.

Quantum jump processes yield insight into the origin of
these statistics. For k∆t = π/2, J−L ∼ (σ−1 + iσ−2 )
leads to jumps |ee〉 → |+i〉 and |+i〉 → |gg〉, where
|±i〉 = (|ge〉 ± i |eg〉)/

√
2. In a left jump, the wave-

function c1 |ee〉 + c2 |+i〉 + c3 |−i〉 + c4 |gg〉 collapses to(
c1 |+i〉 + ic2 |gg〉

)
/
√
|c1|2 + |c2|2 with probability density

pL = Γ(|c1|2 + |c2|2). If |c1| � |c2|, there is no second jump,
leading to photon antibunching. However, if |c1| � |c2|, there
is likely to be a second jump, producing photon bunching.
And those two situations may have similar jump probability
density pL. This explains the two peaks of the WTD shown in
Fig. 5(a).

If there are two jumps at the same time, then the system is
in |gg〉, in which cases some time is required to have a third
jump. That is, if τ1 is small then τ2 must be large. But if
the system evolves for some time between the first and sec-
ond jump, i.e. τ1 is large, then it is possible to have |c1| larger
or smaller than |c2|, which leads to a small and large τ2 re-
spectively. These three cases explain the three islands in the
AWTD shown in Fig. 5(b).

In g(2)(τ) there are some veiled signatures of the complex
photon statistics, as can be seen in Fig. 5(a) by comparing it
with W(τ). After decreasing to a value less than 1, g(2)(τ)
slightly overshoots 1 before approaching it asymptotically.
Since g(2)(τ) ≥ W(τ), the valley in g(2)(τ) implies a val-
ley inW(τ) and so indicates an anti-bunching component to
the statistics. However, the fact that the most likely separa-
tion between photons (other than 0) is near τ̄ /2 is completely
missed in g(2)(τ), a rather dramatic failure to provide a good
qualitative picture of the complex photon statistics present.

VI. CONCLUSION

To correctly describe the detection of single photons in
waveguide QED, we have defined jump operators from input-
output relations that correctly account for the interference

between different components of photons. From quantum
jumps, the meaning of photon bunching and antibunching
can be understood more clearly and precisely using the WTD
W(τ) and AWTD A(τ1, τ2). We showed, for instance, that
bunching in waveguide QED is caused by successive down
jumps heralded by an up jump. For two qubits in a 1d waveg-
uide, complex photon statistics such as a mixture of bunch-
ing and antibunching was discovered, statistics that cannot be
simply categorized as bunching or antibunching.

We expect that for other complex systems the photon statis-
tics will also be too complex to be precisely and clearly char-
acterized by g(2)(τ), not to mention g(2)(0). The distribution
and correlations of waiting times provide more precise and
clearer methods to characterize photon statistics and to go be-
yond the simple-minded categorization of bunching and anti-
bunching. Although we used waveguide QED as an example
system, our method and conclusions are very general and can
be adapted to other optical and electronic systems [56, 58].
For the future, given the current interest in non-Markovian
effects [59, 60], non-Markovian quantum jumps [61] offer a
possible method to study the relation between photon statistics
and non-Markovianity [62, 63]. In addition, previous quan-
tum jump studies of a large number of qubits reveal quantum
many-body effects [14, 16], whose connection with photon
statistics can be studied with our method.
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Appendix A: Derivation of the Master Equations

With the input-output relation shown in Eq. (2) and the
input coherent state defined in Eq. (3), we redefine r(t) =
r(t)e−ikt, l(t) = l(t)e−ikt and σ−(t) = σ−(t)e−ikt in an
interaction picture with respect to 1

2kσz corresponding to a
rotating frame. The input-output relation then becomes

rout(t) =
αk√
2π
− i
√

2πgσ−(t),

lout(t) = −i
√

2πgσ−(t).

(A1)

By including the coherent state driving in the unitary evolu-
tion, one finds a master equation that describes the decay of a
qubit in a waveguide [49],

∂

∂t
ρs = −i

[
1

2
∆σz + gαkσ+ + gα?kσ− , ρs

]
+
∑
i=R,L

L̃iρs,

(A2)
with the Lindblad superoperators L̃R and L̃R that describe
emission into a right-going (left-going) mode given by

L̃R(L)ρs = πg2
(
2σ−ρsσ+ − σ+σ−ρs − ρsσ+σ−

)
. (A3)

It follows that the decay rates are ΓR = ΓL = 2πg2.
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With the jump operators J−R and J−L defined in Eq. (4), we
can rewrite the master equation (A2) into a completely equiv-
alent Lindblad form given in Eqs. (5) and (6). Comparison
between (A2) and Eq. (6) shows that J−R and J−L become new
jump operators and, in addition, the effective driving strength
in the unitary evolution changes from α to α/2.

For two qubits the input-output relation can be shown to be
[49]

rout(t) = rin(t)− i
√

2πg1σ
(1)
− (t)− i

√
2πg2σ

(2)
− (t+ ∆t),

lout(t) = lin(t)− i
√

2πg1σ
(1)
− (t)− i

√
2πg2σ

(2)
− (t−∆t),

(A4)

where ∆t is the time delay between the two qubits and gi the
coupling strength between the i-th qubit and the waveguide.
To deal with this time delay, we apply the Markov approx-
imation [49] by setting σ(i)

− (t − ∆t) = σ
(i)
− (t)eiω

(i)
eg ∆t. In

view of the input-output relation (A4), we then define the
jump operators as J−R = i rout(−∆t) and J−L = i lout(0).

With these jump operators, we can write down a master
equation of Lindblad form:

d

dt
ρS = i

[
ρS,

(
∆1

2
σ(1)
z +

∆2

2
σ(2)
z +

(
1− 1

2
ei∆1∆t

)
g1α

?
kσ

(1)
− +

1

2
e−ik∆tg2α

?
kσ

(2)
− + h.c.

+ πg1g2

(
iσ

(2)
+ σ

(1)
− e−iω

(2)
eg ∆t + iσ

(2)
+ σ

(1)
− e−iω

(1)
eg ∆t + h.c.

))]
+
∑
i=R,L

J−i ρSJ
+
i −

1

2

{
ρS, J

+
i J
−
i

}
.

(A5)

It is worth noting that the effective coupling/driving strength
on qubit 1 can be tuned by the detuning and separation with
the phase factor ∆1∆t. When there is no detuning or sep-
aration, the driving of the two qubits is the same. Effective
interactions between the two qubits mediated by propagating
photons appear in the master equation as expected.

Appendix B: Quantum Jump Simulation

We use the single qubit case as an example. The two-
qubit case is a straightforward generalization. From the mas-
ter equation given in Eq. (6) of the main text, we define the
non-Hermitian effective Hamiltonian Heff as

Heff =
1

2
∆σz + (

1

2
gαkσ+ +

1

2
gα?kσ−)− i1

2

∑
i=R,L

J+
i J
−
i .

(B1)

Then the quantum jump simulation follows the standard
method [23] with J−R and J−L as jump operators into the right
and left-going modes respectively.

1. Choose the initial state of the wave function |ψ(0)〉 by

ρs(0) =
∑
ψ

Pψ |ψ(0)〉 〈ψ(0)| . (B2)

2. Choose a suitable time step dt. Note that dt must be
smaller than both the lifetime 1/Γ = 1/(4πg2) and the aver-
age spacing of photons in the input coherent state 2π/α2.

3. In the absence of a quantum jump, the wave
function |ψ(t)〉 evolves into an unnormalized wavefunction
|ψ̃(t+ dt)〉 according to

|ψ̃(t+ dt)〉 = (1− iHeffdt) |ψ(t)〉 . (B3)

Then

| |ψ̃(t+ dt)〉 |2 = 1− idt 〈ψ(t)| (Heff −H†eff) |ψ(t)〉+O(dt2)

= 1− PR − PL ≡ 1− P,
(B4)

where

PR(L) = dt 〈ψ(t)|J+
R(L)J

−
R(L)|ψ(t)〉 (B5)

is the the probability of decaying into right-going (left-going)
mode and P = PR + PL is the total decay probability.

4. Choose a random number r between 0 and 1. If r < PR,
there is a decay into right-going mode:

|ψ(t+ dt)〉 =
J−R |ψ(t)〉√

〈ψ(t)|J+
R J
−
R |ψ(t)〉

=
J−R |ψ(t)〉√
PR/dt

; (B6)

If PR < r < (PR + PL), there is a decay into left-going
mode:

|ψ(t+ dt)〉 =
J−L |ψ(t)〉√

〈ψ(t)|J+
L J
−
L |ψ(t)〉

=
J−L |ψ(t)〉√
PL/dt

; (B7)

If r > (PR + PL), there is no decay:

|ψ(t+ dt)〉 =
|ψ̃(t+ dt)〉√
1− (PR + PL)

. (B8)

5. The density matrix is the average of all the trajectories
|ψm〉 obtained from each simulation:

ρs(t) =
∑
m

|ψm(t)〉 〈ψm(t)| . (B9)
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Appendix C: Second-Order Correlation Function

As a check of our calculation, the second-order correlation
function g(2)(τ) can be obtained from a quantum jump simu-
lation by plotting a histogram of τ for many trajectories. First
choose an initial jump time t in a trajectory. Then record the
time intervals s1, s2, s3, · · · between this jump and all others.
of in this trajectory. Note that there is no ‘next-photon’ re-
quirement for these intervals. Repeat this process for many
trajectories, or for the steady state one can use just a single
trajectory and vary the starting jump time t. The histogram of
all these intervals s1, s2, s3, · · · gives us the g(2)(τ) as shown
in Fig. 6. It can be seen that the results obtained by this new
quantum jump approach agree with the results from input-
output theory, within the statistical fluctuations. This verifies
that our jump operators correctly describe photon detections
at the output ends.

FIG. 6. Steady state second-order correlation function g(2)(τ) for
transmitted (R) and reflected (L) light for one qubit coupled to a 1d
waveguide. Dots are data obtained from the quantum jump simu-
lation (QJ) and lines are results calculated with input-output theory
(IO). (Parameters: α = 1, ∆ = 0.)
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