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We describe how color superfluidity is modified in the presence of color-flip and color-orbit fields
in the context of ultra-cold atoms, and discuss connections between this problem and that of color
superconductivity in quantum chromodynamics. We study the case of s-wave contact interactions
between different colors, and we identify several superfluid phases, with five being nodal and one
being fully gapped. When our system is described in a mixed color basis, the superfluid order pa-
rameter tensor is characterized by six independent components with explicit momentum dependence
induced by color-orbit coupling. The nodal superfluid phases are topological in nature, and the low
temperature phase diagram of color-flip field versus interaction parameter exhibits a pentacritical
point, where all five nodal color superfluid phases converge. These results are in sharp contrast to
the case of zero color-flip and color-orbit fields, where the system has perfect U(3) symmetry and
possesses a superfluid phase that is characterized by fully gapped quasiparticle excitations with a
single complex order parameter with no momentum dependence and by inert unpaired fermions
representing a non-superfluid component. In the latter case, just a crossover between a Bardeen-
Cooper-Schrieffer and a Bose-Einstein-Condensation superfluid occurs. Furthermore, we analyse
the order parameter tensor in a total pseudo-spin basis, investigate its momentum dependence in
the singlet, triplet and quintet sectors, and compare the results with the simpler case of spin-1/2
fermions in the presence of spin-flip and spin-orbit fields, where only singlet and triplet channels
arise. Finally, we analyse in detail spectroscopic properties of color superfluids in the presence of
color-flip and color-orbit fields, such as the quasiparticle excitation spectrum, momentum distri-
bution, and density of states to help characterize all the encountered topological quantum phases,
which can be realized in fermionic isotopes of Lithium, Potassium and Ytterbium atoms with three
internal states trapped.

PACS numbers: 03.75.Ss, 67.85.Lm, 67.85.-d

Ultra-cold atoms have become preferred systems to
study experimentally, because they can be used as quan-
tum simulators of various phenomena accross different
areas of physics. Today it is possible to engineer Hamil-
tonians in the laboratory that describe models that have
been investigated in the context of condensed matter
physics. For instance, two very succesful examples of
these experimental quantum simulations are studies of
the superfluid-insulator transition [1] and the evolution
from Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein
condensation (BEC) superfluidity [2–8], which were per-
formed in recent years.

The success of cold atoms as quantum simulators is
largely due to the flexibility that these systems have. It is
now routinely possible to change atomic species, dimen-
sionality, density and interactions in clouds of ultra-cold
atoms, while in the case of optical lattices, it is possi-
ble, in addition, to change the lattice structure. For in-
stance, recent experimental advances lead to the trapping
of three hyperfine states in Fermi gases, such as in 6Li
which have tunable interactions via an external magnetic
field, which become SU(3) symmetric in the limit of high
magnetic fields [9, 10]. Even larger component systems
have now been produced in the laboratory, such as in
the case of fermion isotope of Ytterbium, 173Yb, where
six internal states exist with essentially SU(6) symme-
try, that can be reduced to SU(3) by selectively trap-

ping only three internal states [11]. Current tempera-
tures that can be achieved in these systems are approx-
imately T = 0.3TF , where TF is the Fermi temperature
set by the total density of fermions. Additional experi-
ments with the goal of reducing further the temperature
are underway [12]. Thus, links to quantum chromody-
namics (QCD) are possible [13], where dense cold mat-
ter with SU(3) color symmetry is created by the forces
that confine quarks inside baryons and mesons through
the exchange of SU(3) gauge bosons known as gluons.
In particular, connections to color superconductivity in
the absence of color-flip and color-orbit fields were made
by several authors for continuum [14–16] and lattice [17]
systems.

The relation between three-component ultra-cold
fermions and color superconductivity in QCD is not only
of academic interest, but also of experimental interest, as
the gap between theoretical proposals and experimental
realization closes due to technical advances. The type of
color superfluidity in neutral ultra-cold fermions is ex-
pected to be related, but somewhat different from the
possibilities encountered in QCD, as quarks are electri-
cally charged, have different masses, colors and flavors,
and thus color superconductivity of quarks is generically
different [18–21]. For instance, it is quite difficult to
realize in neutral ultra-cold fermions analagous phases
to color flavor locking (CFL) superconductivity [21–25],
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where three flavors are degenerate, because the number
of internal degrees of freedom is very large. Even anal-
ogous phases to two-flavor superconductivity (2SC) [18–
21], where a preferred color pairing channel is selected are
difficult to realize in the context of ultra-cold fermions.
However, analogous phases to one-flavor superconductiv-
ity with three colors [26–28] are easier to realize in cold-
atom systems, because one has to deal with only three
internal states of the constitutive fermions.

Moreover, it has been suggested that color supercon-
ductivity of quark matter may occur naturally in com-
pact neutron stars [29–31]. Since the higher temperature
regions of the QCD phase diagram are now being stud-
ied in heavy ion collisions, it is important to use our
knowledge of neutron star phenomena to understand if
color superconductivity indeed appears in the high den-
sity region of the QCD phase diagram. There have been
even further suggestions that inhomogeneous color su-
perconductivity phases emerge in neutron stars and are
responsible for the glitches in rotational period of these
compact stars [32]. Therefore, there has been observa-
tional interest in determining astrophysical consequences
of color superconductivity.

Experiments involving color superconductivity in
quark matter are not easy to come along, but table-top
experimental set-ups involving ultra-cold fermions with
three internal states can serve as simulators of color su-
perfluidity similar to color superconductivity in QCD.
In addition, experiments with ultra-cold fermions with
three internal states can also stand alone to serve as
pointers for new directions and new phases of color su-
perfluids that have no counterpart in QCD. A recent ex-
perimental development with a fermionic isotope of Yt-
terbium (173Yb) demonstrated that three internal states
of the atom can be coupled to artificially created spin-
orbit fields [33] via a Raman scheme with two counter-
propagating lasers used earlier by the NIST group in the
context of a bosonic isotope of Rubidium (87Rb) with
two internal states [34]. The interactions of 87Rb cannot
be adjusted, but it was possible to study the low temper-
ature phase diagram of 87Rb in the presence of spin-orbit
coupling and Zeeman fields both experimentally [34] and
theoretically [35–37] for fixed interactions. Similar Ra-
man schemes were used succesfully in fermionic isotope
of Potassium (40K), where Fano-Feshbach resonances ex-
ist and interactions can be tuned in the presence of spin-
orbit coupling for two internal states [38, 39]. These ex-
perimental efforts on 40K were developed concomitantly
with various theoretical proposals [40–47] of spin-orbit
coupled fermions with two internal states, where inter-
actions can be changed. Although experiments involv-
ing fermions in the Raman scheme are still performed at
high temperatures (T ≈ 0.3EF ), new methods of reduc-
ing the temperature and of creating artificial spin-orbit
or color-orbit fields in the laboratory are underway [48]
using radio-frequency chip technology [49].

Thus, in this paper, we describe theoretically the pos-
sibility of color superfluidity in the presence of color-

orbit and color-flip fields for trapped fermionic isotopes
of Lithium (6Li), Potassium (40K) or Ytterbium (173Yb)
with three internal states, to which we assign the color
indices Red (R), Green (G) and Blue (B). The remainder
of the paper is organized as follows. In section I, we dis-
cuss in detail the independent particle Hamiltonian and
its spectrum, as well as the interaction terms between
fermions of different colors. We also introduce the mixed-
color representation that diagonalizes the independent
particle Hamiltonian, which is used later in section III
to clarify the origin of various color superfluid phases. In
section II, we discuss the emergence of color superfluidity
in the presence of color-orbit and color-flip fields, within
the saddle point approximation at low temperatures. We
solve the self-consistent equations for the order parameter
tensor and particle number, and obtain the low tempera-
ture phase diagram in the space of color-flip versus inter-
action parameter, for fixed color-orbit coupling. Due to
the presence of color-orbit coupling and color-flip fields, a
set of five color superfluid phases emerge, with character-
istic nodal structures in their excitation spectrum. These
phases have a topological structure similar to Lifshitz
transitions in metals under high pressure [50], but arise
only due to the simultaneous presence of color-orbit cou-
pling, color-flip fields and interactions. Where five nodal
color superfluid phases merge, we identifiy a quintuple
point that is also pentacritical, given that the transition
between superfluid phases is continuous. We also show
that the low temperature transitions between normal and
color superfluid phases are continuous when color-orbit
coupling is present and are discontinuous, when color-
orbit coupling is absent. In section III, we describe the
Hamiltonian in the mixed-color basis to make evident the
emergence of the momentum dependence of the order pa-
rameter tensor and to shine light on the physical origin
of the nodal structure of the quasiparticle and quasihole
excitation spectrum. Furthermore, we also write the or-
der parameter tensor in a total pseudo-spin basis to show
that pairing can occur in singlet, triplet and quintet sec-
tors and to make comparisons with the case of spin-1/2
fermions, where only the singlet and triplet channels ex-
ist. In section IV, we analyse the quasiparticle and quasi-
hole excitation spectra in the mixed-color basis and show
how the nodal structure and gaps emerge in the elemen-
tary excitation spectrum. Furthermore, we compute the
momentum distributions for different colored fermions in
various quantum phases to show how this easily measur-
able quantity can be used to identify different normal
and superfluid phases. We also compute the density of
states of colored fermions and show how they change as
different normal and superfluid phases are visited in the
phase diagram. In section V, we discuss the applicability
and limitations of the current work and comment on the
role of Efimov states at lower particle densities, the pos-
sible emergence of non-uniform color superfluidity over
a narrow region of the phase diagram, and the effects
of fluctations near the critical temperature between nor-
mal and color superfluid states. Lastly, in section VI, we
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summarize our conclusions.

I. HAMILTONIAN

In order to describe interacting three-component
fermions labeled by color states Red (R), Green (G) and
Blue (B), under the influence of color-orbit and color-flip
fields, we begin with the most general independent par-
ticle Hamiltonian resulting from suitably designed radio-
frequency chip or Raman beams in the rotating frame

H0(k) =




εR(k) ΩRG ΩRB

Ω∗
RG εG(k) ΩGB

Ω∗
GB Ω∗

GB εB(k)


 , (1)

where εc(k) = (k − kc)
2/(2m) + ηc represents the en-

ergy of internal state with color c = {R,G,B} after a
color dependent net momentum transfer kc provided by
the Raman beams or by the radio-frequency chip. Here,
ηc is a color-dependent reference energy of the atom in
color state c. The matrix elements Ωcc′ represent a color-
flip tensor (Rabi frequencies) that couple different atomic
color states c and c′. We note in passing the use of units
where Planck’s and Boltzmann’s constants are equal to
one, that is, h̄ = kB = 1.

We will be using throughout the manuscript the ter-
minology independent particle instead of single particle

when referring to Hamitonians, energies or other proper-
ties that describe a collection of a large number of parti-
cles that do not interact with each other. We follow the
Feynman school tradition [51], where the single particle

nomenclature is reserved to describe just an individual
particle rather than a collection of non-interacting parti-
cles.

Instead of analysing the most general theoretical case
shown in Eq. (1), we explore the simplest non-trivial ex-
perimental configuration, where the component ΩRB of
the color-flip tensor is zero, indicating that there is no
coupling between states R and B, that is, ΩRB = 0.
In addition, we consider that the matrix elements that
couple states R to G or G to B are real and equal,
that is, ΩRG = Ω∗

RG = ΩGB = Ω∗
GB = Ω. Further-

more, we choose a symmetric situation, where momen-
tum transfers occur only to color states R and B, such
that kR = kT x̂, kG = 0, and kB = −kT x̂, where kT is
the magnitude of the momentum transferred to the atom
by photons. Lastly, we can define an overall energy refer-
ence via the sum

∑
c ηc = η, leading to internal energies

ηR = −δ, ηB = η and ηG = +δ, where δ represents the de-
tuning of the photon frequencies for transitions between
color states. Thus, next, we discuss the simplest ex-
perimentally relevant independent particle Hamiltonian
for color states with color-dependent momentum transfer
and color-flip terms.

A. Independent particle Hamiltonian

For the simplest experimental realization discussed
above, the independent particle Hamiltonian for three
color states described in Eq. (1) becomes

HIP(k) = ε(k)1− hx(k)Jx − hz(k)Jz + bzJ
2
z (2)

where Jℓ, with ℓ = {x, y, x}, are spin-one angular mo-
mentum matrices, ε(k) = k2/(2m) + η is a reference ki-
netic energy which is identical for all color states, hx(k) =

−
√
2Ω plays the role of a color-flip field (like a spin-flip

Zeeman field for spins), and hz(k) = 2kTkx/(2m) + δ
plays the role momentum dependent Zeeman field along
z-axis. Notice that hz(k) = 2kTkx/(2m) + δ has two
components. The first one 2kTkx/(2m) represents color-
orbit coupling controlled by the momentum transfer mag-
nitude kT , and the second one represents a color-shift
field controlled by the detuning δ (like a Zeeman shift
for spins). Notice that hz(k) is transverse to the mo-
mentum transfer direction (x-axis). Lastly, the term
bz = k2T /(2m) − η is a quadratic color-shift (quadratic
Zeeman shift) associated with the momentum transfer
along the x direction.

To make further connections to QCD, we note that the
independent particle Hamiltonian described in Eq. (2) in
general does not commute with the Gell-Mann matrices
λj , which are the eight generators of SU(3). To see this
explicitly, it sufficient to recall that the angular momen-
tum matrices Jℓ can be written in terms of λj as Jx =

(λ1 + λ6)/
√
2 along the x-direction; Jy = (λ2 + λ7)/

√
2

along the y-direction; and Jz = (λ3+
√
3λ8)/2 along the

z-direction and to show that the commutator [HIP,λj ] 6=
0. The Hamiltonian above becomes SU(3) invariant only
when the coefficients hx(k) = hz(k) = bz = 0, rendering
HIP(k) diagonal and proportional to the unit matrix 1,
that is, all color states become degenerate.

A very similar independent particle Hamiltonian was
created in the laboratory for spin-one bosonic 87Rb
atoms [52], where magnetic phases were investigated.
Here, however, the independent particle Hamiltonian cor-
responds to colored fermions, with potential candidates
being 6Li, 40K and 173Yb. Thus, the independent particle
Hamiltonian matrix of Eq. (2) takes the explicit matrix
form

HIP(k) =




εR(k) −hx(k)/
√
2 0

−hx(k)/
√
2 εG(k) −hx(k)/

√
2

0 −hx(k)/
√
2 εB(k)


 ,(3)

where the function εR(k) = ε(k)− hz(k) + bz represents
the diagonal matrix element for the Red (R) fermion,
the function εG(k) = ε(k) represents the diagonal ma-
trix element for the Green (G) fermion, and the function
εB(k) = ε(k)+hz(k)+ bz represents the diagonal matrix
element for the Blue (B) fermion,

In second-quantized notation, the independent particle
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Hamiltonian is

ĤIP =
∑

k

F†(k)HIP(k)F(k) (4)

where the spinor operator is F†(k) =[
f †
R(k), f

†
G(k), f

†
B(k)

]
, with f †

c (k) creating a fermion

with momentum k − kc in internal color state
c = {R,G,B}. In order to bring the independent
particle Hamiltonian matrix into a diagonal form, we
introduce next a mixed-color representation.

B. Mixed color representation

The Hamiltonian matrixHIP(k) is diagonalized via the
rotation Φ(k) = R(k)F(k), where the rotation matrix
R(k) satisfies the unitarity condition R†(k)R(k) = 1.
The spinor Φ(k) represents the basis of independent par-
ticle eigenstates, whose elements are expressed as linear
combinations of the elements of spinor F(k) in the orig-
inal color basis via the rotation matrix

R(k) =




R⇑R(k) R⇑G(k) R⇑B(k)
R0R(k) R0G(k) R0B(k)
R⇓R(k) R⇓G(k) R⇓B(k)



 , (5)

where the normalization condition
∑

c |Rαc(k)|2 = 1 for
each row guarantees the unitarity of R(k).
In this case, the independent particle Hamiltonian be-

comes

ĤIP =
∑

k

Φ†(k)HM(k)Φ(k), (6)

where the spinor representing the diagonal basis is

Φ†(k) =
[
φ†
⇑(k), φ

†
0(k), φ

†
⇓(k)

]
, with φ†

α(k) being the

creation operator of a fermion with eigenenergy Eα(k)
and mixed-color label α = {⇑, 0,⇓}. The Hamiltonian
matrix in diagonal form is

HM(k) = R(k)HIP(k)R
†(k) (7)

with matrix elements [HM]αβ (k) = Eα(k)δαβ , where

Eα(k) are the eigenvalues of the matrix HIP(k) shown
in Eqs. (2) and (3). Finally, the independent particle
Hamiltonian in the mixed-color basis is simply written
as

ĤIP =
∑

k

Eα(k)φ†
α(k)φα(k), (8)

where the mixed-color operator φα(k) is written as a lin-
ear combination of the color operators fc(k) via the ma-
trix elements Rαc(k), that is, φα(k) =

∑
c Rαc(k)fc(k).

This is the general structure of eigenenergies and eigen-
states of a system of independent colored particles in the
presence of color-flip and color-orbit fields. Next, we dis-
cuss a couple of simple limits and a specific example of
this eigensystem.

C. Independent particle spectrum

We discuss first the independent particle eigenenergies
in the limit where the quadratic color-shift term is zero,
that is, bz = 0 or η = k2T /(2m), but the Rabi coupling
Ω 6= 0 and the detuning δ 6= 0. In this situation, the
eigenvalues of ĤIP have the simple form

Eα(k) = ε(k)−mα|heff(k)|, (9)

where the effectivemagnetic field magnitude is |heff(k)| =√
h2
x(k) + h2

z(k), and m⇑ = +1, m0 = 0, and m⇓ = −1.

In this case, the independent particle Hamiltonian ĤIP

describes simply a pseudo-spin 1 system in the presence
of the effective external field heff(k) = [hx(k), 0, hz(k)] .
A second simple limit of the more general color prob-

lem with bz 6= 0, η 6= 0, Ω 6= 0 and δ 6= 0 discussed in
Sec. I A corresponds to the case where bz = k2T /(2m),
η = 0, Ω = 0 and δ = 0. In this situation the kinetic en-
ergies of the Red, Green and Blue states are respectively
εR(k) = ε(k−kT ), εG(k) = ε(k), εB(k) = ε(k+kT ), in-
dicating that the Blue states are shifted towards negative
momenta along the x direction, while the Red states are
shifted towards positive momenta along the x direction,
since kT = kT x̂. In the limit where there is no color-orbit
coupling, that is kT = 0, it is clear that the three kinetic
energies are identical εR(k) = εG(k) = εB(k) = ε(k).
These two situations are illustrated in Fig. 1.

FIG. 1: (Color online) Energy dispersions εc(k) for Red (R),
Green (G) and Blue (B) states versus momentum along the
kx direction, for parameters bz = k2

T /(2m) (η = 0) and δ = 0.
The momentum transfer in a) is kT = 0.35kF and in b) is
kT = 0. The dashed red curve describes the R states, solid
green curve describes the G states, and the dotted blue curve
describes the B states. Notice that the Red dispersion is
shifted to the right, the Green dispersion has no shift, and
the Blue dispersion is shifted to the left when kT 6= 0, but
that all dispersions are identical when kT = 0.

From now on, in addition to setting η = 0 with bz =
k2T /(2m), we will also set the detuning δ to zero, leading
to hz(k) = 2kTkx/(2m), but we keep the color-flip term

hx(k) = −
√
2Ω with zero or non-zero Rabi frequencies Ω.

This case is chosen to simplify the number of parameters
involved, given that the problem of color superfluidity in
the presence of color-orbit coupling and color-flip fields
is sufficiently novel, and thus there is no need to make
matters more complex than they need to be. In passing,
we mention that the case of finite detuning (δ 6= 0) is also
very rich given that parity is not conserved, thus affecting
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the normal state and superfluid phases that emerge, as
well as their topological properties.
Throughout the text, the energy scale that we use is

the Fermi energy EF = k2F /(2m), where kF = (2π2n)1/3,
is the Fermi momentum defined from total density of
fermions n = 3k3F /(6π

2), where the factor of 3 reflects
the three colors {R,G,B}. The same kinetic energies
ε(k) = k2/(2m) are used here for all internal color states,
since our momentum (kF ) and energy (EF ) units are
fixed by setting the parameters η, kT ,Ω and δ to zero.
In Fig. 2, we show plots of eigenvalues Eα(k) versus

momentum (kx, ky) with kz = 0, for fixed momentum
transfer kT = 0.35kF , zero detuning δ = 0, and quadratic
color-shift bz = k2T /(2m) (η = 0). In Fig. 2a, we show
the case where the color-flip term is small (Ω = 0.01EF )
where single, double and triple minima are shown in the
upper, middle and lower eigenergies, respectively. In
Fig. 2b, we show the case where the Rabi frequency
(color-flip term) is sufficiently large Ω = 0.2EF , such
that the upper, middle and lower eigenergies have only
a single minimum. The presence of color-orbit (kT 6= 0)
and color-flip (Ω 6= 0) fields lifts the degeneracy of the
color states {R,G,B}, which are assumed to have the
same dispersion ε(k) = k2/(2m) when kT = 0, Ω = 0,
and η = 0. For a fixed color-orbit coupling kT = γkF ,
we can estimate when the three minima in the lower
mixed-color band disappear by comparing the energy of
the crossing point between the Red and Green or Green
and Blue energy dispersions. The crossing points oc-
cur at momenta kx = ±kT /2 = ±(γ/2)kF , so when
Ω ∼ (kT /2)

2/(2m) = (γ2/4)EF , the three minima of the
lowest mixed-color band coalesce into one. The two min-
ima in the middle mixed-color band become a single one,
when the color-flip field Ω is of the order of the energy
diference between the crossing points between Red-Blue
bands and Red-Green or Green-Blue bands, that is, when
Ω ∼

[
k2T /(2m)− (kT /2)

2/(2m)
]
= (3γ2/4)EF . For the

specific case of kT = 0.35kF , the three minima of the
lowest mixed-color band disappear when Ω ∼ 0.03EF

and the two minima of the middle mixed-color band dis-
appear when Ω ∼ 0.09EF , therefore in Fig. 2b, where
Ω = 0.2EF , each one of the three mixed-color bands have
a single minimum.
Now that we analysed the independent particle Hamil-

tonian for three-color fermions in the presence of color-
orbit and color-flip fields, we are ready to discuss next
the effects of interactions.

D. Interaction Hamiltonian

We begin our discussion of the effects of interactions
between different color states in cold atoms by recall-
ing that gluons are the mediators of quark-quark interac-
tions in the color superconductivity problem encountered
in quantum chromodynamics (QCD). Therefore, due to
their dynamical nature, the interactions between quarks
have a finite range contribution, and cannot be assumed

FIG. 2: (Color online) Three dimensional plots of the mixed-
color eigenvalues Eα(k) versus (kx, ky) with kz = 0, when
the quadratic color-shift is bz = k2

T /(2m) (η = 0) and the
color-orbit coupling momentum transfer is kT = 0.35kF . In
a) the color-flip field is Ω = 0.01EF , where the lower band
(magenta) has three minima, the middle band (yellow) has
two minima, and the upped band (cyan) has one minimum.
In b) the color-flip field is Ω = 0.2EF , where all three bands
(lower, middle, upper) have a single minimum.

to be zero-ranged. However, the situation encountered in
cold atoms is simpler than in QCD, because the atomic
fermions interact essentially via zero-ranged forces.
The interactions between different color states of

cold fermions are essentially zero-ranged and attractive
−gcc′δ(r−r′) of strength gcc′ > 0, between internal states
with different colors only, that is, c 6= c′. The use of
contact (zero-ranged) interactions really means that the
interaction range Rcc′ is much smaller than the interpar-
ticle distance k−1

F , which is indeed the situation encoun-
tered experimentally in ultra-cold fermions, since these
atoms are neutral.
Experimentally, interactions between atoms in differ-

ent color (internal) states occur predominantly in the s-
wave channel at low temperatures. Thus, we consider
only interactions between the Red-Green (gRG), Red-
Blue (gRB) and Green-Blue (gGB) states to be non-zero,
while all the Red-Red, Green-Green and Blue-Blue inter-
actions are negligible, that is, gRR = gGG = gBB = 0.
However, within the set of s-wave interactions, we could
still have different interaction parameters, that is, gRG 6=
gRB 6= gGB. The zero-ranged nature of the interactions
between colored fermions allows us to describe our sys-
tem in terms of s-wave scattering lengths as,cc′ between
different colors, as we shall see later.
In momentum coordinates, the interaction part of the

Hamiltonian has the structure

ĤINT = − 1

V

∑

Q,{c 6=c′}

gcc′a
†
cc′(Q)acc′(Q), (10)

where the volume of space is V , the paired-colors creation

operators are a†cc′(Q) =
∑

k f
†
c (k +Q/2)f †

c′(−k−Q/2),
with their center of mass momentum being Q. Here, the
operators f †

c (K) represent the creation of a fermion with
color c = {R,G,B} and momentum K. As we shall see

soon, the expectation values of the operator a†cc′(Q) in a
superfluid state describe the emergence of Cooper pairs
in the BCS regime, and of tightly-bound pairs in BEC
limit at low temperatures. We note in passing that gcc′
has dimensions of energy times volume.
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Having analysed the interactions between different col-
ored fermions, we will discuss next the full Hamiltonian,
including the addition of the chemical potential to de-
scribe thermodynamic states with fixed average number
of particles.

E. Full Hamiltonian

The full Hamiltonian for a color superfluid with color-
orbit coupling, color-flip fields and contact interactions
is

Ĥ = ĤIP + ĤINT − µN̂, (11)

with N̂ =
∑

c,k f
†
c (k)fc(k) representing the total number

of colored fermions.
Having written the full Hamiltonian for the colored

fermion problem with attractive interactions, we will
discuss next the emergence of various color superfluid
ground states, the nodal structure of their quasiparti-
cle excitations and the low temperature phase diagram
in the color-flip versus interaction parameter space for
fixed color-orbit coupling.

II. SADDLE-POINT APPROXIMATION

In order to study the emergence of color superfluid-
ity in the presence of color-flip and color-orbit fields,
we focus here on superfluid phases of paired states with
with zero center of mass momentum, that is, Q = 0.

Thus, the only relevant pairing operator is a†cc′(0) =∑
k f

†
c (k)f

†
c′(−k). This implies that the emerging super-

fluid states are uniform throughout the sample volume, as
it is discussed next, when we introduce the saddle-point
approximation. This appoximation is known to give ex-
cellent results at low temperatures as it captures both the
emergence of large Cooper pairs in the BCS region and
the emergence of tightly bound pairs (two-body bound
states) in the BEC regime [53].

A. Order Parameter and reduced Hamiltonian

Considering only pairing with zero center-of-mass mo-
mentum (Q = 0), the order parameter for color super-
fluidity is defined by the tensor ∆cc′ = −gcc′〈acc′(0)〉/V,
with color indices c 6= c′ describing paired states RG,
RB and GB. Using a mean-field (saddle-point) approx-
imation for the interaction term in Eq. (10) leads to the
reduced Hamiltonian

Ĥ0 =
1

2

∑

k

f
†
N (k)H0(k)fN (k) + V

∑

c 6=c′

|∆cc′ |2
gcc′

+ C(µ),

(12)

where the six-dimensional field operator f
†
N (k) =[

f †
R(k), f

†
G(k), f

†
B(k), fR(−k), fG(−k), fB(−k)

]
, repre-

sents a colored-Nambu spinor, while the term C(µ) =
1
2

∑
kc ξc(−k) contains the kinetic energy of colored

fermions ξc(k) = εc(k) − µ, which contributes to the
ground state energy.
The saddle-point Hamiltonian matrix is

H0(k) =

(
HIP(k) ∆

∆† −H
∗

IP(−k)

)
, (13)

where the 3×3 diagonal block matrixHIP(k) = HIP(k)−
µ1 represents the independent particle Hamiltonian with
respect to the chemical potential µ and the 3 × 3 off-
diagonal block matrix

∆ =




0 ∆RG ∆RB

−∆RG 0 ∆GB

−∆RB −∆GB 0


 (14)

represents the order parameter tensor ∆cc′ , which is
clearly anti-symmetric since its transpose is equal to its
negative ∆T = −∆, and thus traceless: Tr [∆] = 0.
The quasiparticle and quasihole excitation spec-

trum can be found by diagonalizing the matrix
shown in Eq. (13) or via the determinant P (ω) =
det [ω1−H0(k)] . The characteristic polynomial P (ω) =∏

j [ω − Ej(k)] is of sixth degree, however, in the limit
of zero detuning, where the color-shift field δ = 0, we
can use both quasiparticle-quasihole and parity symme-
tries to reduce P (ω) to the bicubic polynomial P (ω) =[
ω2 − E2

1(k)
] [

ω2 − E2
2 (k)

] [
ω2 − E2

3(k)
]
, that can be

solved analytically using Cardano’s method [54]. We
show explicit solutions for Ej(k) in section IV, but we
warn the reader that the analytic solutions are not par-
ticularly illuminating.
In general, the six energy eigenvalues can be ordered

as E1(k) > E2(k) > E3(k) > E4(k) > E5(k) > E6(k),
and exhibit quasiparticle/quasihole symmetry in momen-
tum space for any chosen value of the color-flip field
(Rabi frequency) Ω or color-shift field (detuning) δ. In
this case, we can choose quasiparticle/quasihole partners
as follows: E6(k) = −E1(−k), E5(k) = −E2(−k) and
E4(k) = −E3(−k). However, each eigenergy Ej(k) has
well defined parity only when the color-shift field (detun-
ing) is zero, that is δ = 0, in which case Ej(k) = Ej(−k)
is an even function of momentum k.
Since the excitation spectrum Ej(k) depends explicitly

on the order parameter tensor ∆cc′ and the chemical po-
tential µ, we establish next self-consistency relations for
both quantities at fixed total density of colored fermions.

B. Self-consistency equations

The excitation spectrum Ej(k) is determined by solv-
ing for the values of the order parameter amplitudes
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∆RG,∆RB ,∆GB and the chemical potential µ self-
consistently. Starting from the thermodynamic potential
Q0 = −T lnZ, where Z =

∫
ΠcD

[
f †
c (k), fc(k)

]
exp [−S]

is the grand-canonical partition function and S is the
action, we obtain the saddle point action to be

TS0 = −1

2

∑

n,k

f
†
N (k)G−1fN (k) + V

∑

c 6=c′

|∆cc′ |2
gcc′

+ C(µ),

where G−1(iωn,k) = [iωn1−H0(k)] is the inverse of
the resolvent (Green’s) matrix G(iωn,k). Here, ωn =
(2n+1)πT is the fermionic Matsubara frequency, and T
is the temperature. Integration over the fermionic fields
gives the saddle-point thermodynamic potential Q0 =
A0 + C(µ), with

A0 = −T

2

∑

k

3∑

j=1

ln

{
2 + 2cosh

[
Ej(k)

T

]}
+V

∑

c 6=c′

|∆cc′ |2
gcc′

(15)
where the sum over the index j is over quasiparticles only,
that is (j = {1, 2, 3}), given that we used the quasiparti-
cle/quasihole symmetry described above.
Minimizing Q0 with respect to ∆∗

cc′ via the condition
δQ0/δ∆

∗
cc′ = 0 leads to three order parameter equations

V

gcc′
∆cc′ =

1

2

∑

k

3∑

j=1

tanh

(
βEj(k)

2

)
∂Ej(k)

∂∆∗
cc′

, (16)

for the available choices of ∆cc′ = {∆RG,∆RB ,∆GB},
since c 6= c′. The total number of particles is fixed via
the thermodynamic relation N = −∂Q0/∂µ|T,V leading
to the number equation

N =
1

2

∑

k




3∑

j=1

tanh

(
βEj(k)

2

)
∂Ej(k)

∂µ
+ 3



 . (17)

In the current problem, we can only fix the total number
of colored fermions, because for arbitrarily small color-
flip field Ω the number operator N̂c =

∑
k f

†
c (k)fc(k) for

a given color c does not commute with the full Hamilto-
nian Ĥ described in Eq. (11). For instance, the commuta-

tor of the independent particle Hamiltonian ĤIP and the

color number operator N̂m for color m is
[
ĤIP, N̂m

]
=

∑
k,c{[HIP]mc f

†
c (k)fm(k)− [HIP]cm f †

m(k)fc(k)}, which
only vanishes if the matrix HIP is diagonal, that is, when
the color-flip field that causes transitions between differ-
ent color states is zero: hx(k) = 0 (or Ω = 0).
Before solving the self-consistency equations derived

above, we use the generalized Lippman-Schwinger rela-
tion V/gcc′ = −mV/(4πas,cc′) +

∑
k(εc(k) + εc′(k))

−1,
to express the bare coupling constant gcc′ in terms of the
scattering length as,cc′ in the absence of the color-orbit
and color-flip fields, where we assume that the masses
and the energy dispersions of all colored fermions are
the same, that is, in this expression we take explicitly
εc(k) = εc′(k) = k2/(2m).

A more general case in the context of ultra-cold atoms
corresponds to the situation where the interactions be-
tween different colors are not the same, that is, gRG 6=
gRB 6= gGB, which leads to different scattering lengths
aRG 6= aRB 6= aGB. This is indeed a more general situa-
tion, however, in fermionic isotopes of Ytterbium [11, 33],
it is possible to select three internal atomic states such
that the interactions are the same, that is, gRG = gRB =
gGB = g, which leads to aRG = aRB = aGB = as, and
to tune the scattering lengths via optical Feshbach reso-
nances [55, 56]. Such techniques may allow explorations
of deep connections to SU(3) symmetric interactions in
the context of color-superconductivity of quark-matter.
Furthermore, when color-flip and color-orbit fields are
considered in systems consisting of three internal states
of fermionic isotopes of Lithium, Potassium or Ytter-
bium [57, 58], even the simple limits of: a) single-channel
interactions gRG = gGB = 0 and gRB 6= 0 (aRG =
aGB = 0 and aRB 6= 0) can lead to color-superfluidity [57]
or b) no interactions at all gRG = gGB = gRB = 0
(aRG = aGB = aRB = 0) can lead to non-trivial spinor
physics [58].

In this work, we consider the case where s-wave in-
teractions between different colors are exactly the same,
that is, gRG = gGB = gRB = g, but with gRR = gGG =
gBB = 0. In the absence of color-orbit (kT = 0), color-
flip (Ω = 0) and color-shift (δ = 0) fields the three in-
dependent particle bands corresponding to RGB states
are identical, this implies that the pairing amplitudes be-
tween fermions of different colors are also identical, that
is, ∆RG = ∆GB = ∆RB = ∆, while ∆RR = ∆GG =
∆BB = 0. In this case, the order parameter tensor ∆cc′ is
fully anti-symmetric, but characterized by a single com-
plex scalar ∆, which is independent of momentum k. In
such a situation, self-consistency is achieved via a single
order parameter equation.

However, when color-orbit fields are present (kT 6= 0),
with zero color-flip (Ω = 0) and no color-shift (δ = 0),
the three independent particle bands are no longer identi-
cal (see Fig. 1), but under momentum inversion k → −k

the Red and Blue bands are converted into each other,
that is, εR(±k) = εB(∓k), since εR(k) = ε(k− kT ) and
εB(k) = ε(k + kT ), with ε(k) being an even function
of momentum k. In this case, it is possible to have dif-
ferent uniform pairing amplitudes ∆RG, ∆GB and ∆RB ,
with the symmetry constraint that ∆RG = ∆GB = ∆2

and ∆RB = ∆1, while all the other pairing amplitudes
continue to be zero, that is ∆RR = ∆GG = ∆BB = 0.
However, it is not required by symmetry that the order
parameter amplitudes ∆1 and ∆2 are exactly the same.
Similar considerations also apply to the independent par-
ticle Hamiltonian shown in Eqs. (3) and (4) when color-
flip is present (Ω 6= 0) with zero color-shift (δ = 0).
In these cases, symmetry allows for different order pa-
rameter amplitudes ∆1 and ∆2 and two distinct order
parameter equations Eq. (16).

The situation is even more complex when color-shift
field is not zero (δ 6= 0). For instance, in the case where
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color-orbit is present (kT 6= 0) and color-flip is absent
(Ω = 0), all three color bands are different, the energy
dispersion for Red fermions is εR(k) = ε(k−kT )− δ, for
Green fermions is εG(k) = ε(k), while for Blue fermions
is εB(k) = ε(k + kT ) + δ. In this case, the pairing am-
plitudes ∆RG, ∆GB and ∆RB can be all distinct and
determined by the self-consistent relations of Eq. (16).

In general, interactions can also be different gRG 6=
gGB 6= gRB (gRR = gGG = gBB = 0) leading auto-
matically to non-identical order parameter components
∆RG 6= ∆GB 6= ∆RB (with ∆RR = ∆GG = ∆BB = 0)
even in the case of identical bands with zero color-orbit
(kT = 0), color-flip Ω = 0 and color-shift (δ = 0) parame-
ters. Therefore, three distinct order parameter equations
described in Eq. (16) may be necessary.

The order parameter amplitudes ∆RG,∆GB and ∆RB

can be regarded as variational parameters used to de-
scribe color superfluidity. In the case of identical s-wave
interactions, the simplest variational (saddle point) state
that can be considered to describe color superfluidity
of fermions with and without color-orbit and color-flip
fields is that where ∆RG = ∆GB = ∆RB = ∆ and
∆RR = ∆GG = ∆BB = 0. This saddle-point state cap-
tures substantial non-trivial effects, while reducing dra-
matically the complexity of the numerical problem. Since
we are interested in gaining insight into color superfluid-
ity of fermions in the presence of color-orbit and color-flip
fields, we discuss the simplest possible variational state
allowed by symmetry and leave the more complex cases
mentioned above for future detailed work.

Therefore, in the remainder of this paper, we consider
fermions with identical s-wave interactions with or with-
out color-orbit and color-flip fields and discuss the sim-
plest variational state corresponding to a color order pa-
rameter tensor ∆cc′ that is characterized by a single com-
plex component ∆ in all s-wave pairing channels of col-
ors {c, c′} = {R,G,B}. However, even in the simplest
scenario, as we shall see in Sec. III, the order parame-
ter becomes a momentum dependent tensor ∆αβ(k) with
unequal components in all mixed color channels {α, β},
reflecting the different interactions and momentum de-
pendences that are induced by color-flip and color-orbit
fields into the mixed color representation of the Hamilto-
nian. This leads to the emergence of momentum depen-
dences reflecting induced p-wave and f-wave components
as well as singlet, triplet and quintuplet sectors in the
total pseudo-spin basis of the mixed color description.

Before we present the phase diagram of colored
fermions in the presence of color-orbit and color-flip
fields, it is important to look first at the limit where both
terms are zero, that is, hz(k) = 0 (kT = 0 and δ = 0)
as well as hx(k) = 0 (Ω = 0). This limit serves as a
reference and is discussed next.

C. Zero color-flip and color-orbit coupling

In the limit where color-orbit and color-flip fields van-
ish the evolution of a color superfluid from the BCS to
the BEC regime is relatively simple. The independent
particle Hamiltonian matrix HIP(k) defined in Eq. (3)
simplifies dramatically, since hz(k) = 0 (kT = 0 and
δ = 0) and hx(k) = 0 (Ω = 0), making HIP(k) di-
agonal and proportional to the unit matrix 1, that is,
HIP(k) = ε(k)1, with ε(k) = k2/(2m). This simplifica-

tion makes the full Hamiltonian Ĥ defined in Eq. (11)
invariant under global U(3) rotations of the color states.

This means that Ĥ commutes with the nine generators
of U(3). Furthermore, it is possible to perform simulta-
neous global U(3) rotations in the independent particle
HIP(k) = HIP(k)−µ1 and pairing ∆ sectors of the sad-
dle point Hamiltonian matrix (13), such that the U(3)-
rotated order parameter matrix∆U(3) can be represented

by a single complex scalar ∆U(3) = ∆
√
3, with only two

non-vanishing matrix entries, namely
[
∆U(3)

]
13

= ∆
√
3,

and
[
∆U(3)

]
31

= −∆
√
3.

In this limiting case, the quasiparticle spectrum is
E1(k) = E2(k) =

√
ξ2(k) + 3|∆|2 and E3(k) = ξ(k),

where ξ(k) = k2/(2m) − µ, corresponding to a fully
gapped superfluid with two degenerate quasiparticle
states and a third quasiparticle state which is passive,
that is, it represents free non-interacting fermions. This
occurs, because of the underlying global U(3) symmetry,
which allows rotations into a mixed color state, where
only two mixed-colors are active in pairing, while the
third one is passive. In this case, a standard BCS-to-
BEC crossover occurs [16] similar to the standard case of
two internal states [59], but with the added feature that
the third passive band provides a Fermi surface when
the chemical potential lies above its minimum, and no
Fermi surface when the chemical potential is below its
minimum. This reference case is illustrated in the phase
diagram shown in Fig. 3b when Ω/EF = 0.
However, when color-orbit and color-flip fields are

present the explicit global U(3) symmetry of the full

Hamiltonian Ĥ in Eq. (11) is broken and all colors are
involved in pairing, producing a complex excitation spec-
trum that allows also for exotic gapless quantum phases
and phase transitions between them, instead of a smooth
crossover. These aspects are discussed next.

D. Low temperature phase diagrams

When color-orbit and color-flip fields are present, the
global U(3) symmetry is explicitly broken, and there is
no longer an inert mixed-color band. This means that all
mixed-color bands participate in pairing, and that the
order parameter tensor in the mixed-color representation
has no longer a single entry above the diagonal and a
single entry below the diagonal. A detail analysis of the
order parameter tensor in the mixed-color representation



9

is performed in section III.

In order to obtain the phase diagram and classify the
emergent superfluid and normal phases it is sufficient to
analyse the quasiparticle/quasihole excitation spectrum
Ej(k), since all phases seen from the {R,G,B} color ba-
sis have the same order parameter tensor ∆c,c′ and share
the same color-symmetry controlled by a single complex
component ∆. However, as the amplitude of ∆ and
chemical potential µ vary as a function of the color-flip
field Ω/EF and interactions 1/(kFas) for fixed color-orbit
fields, the nodal structure of the spectrum Ej(k) suffers
dramatic changes in momentum space and Lifshitz-like
transitions occur in the superfluid states.

In Fig. 3, we show the phase diagrams of color superflu-
ids in the color-flip field Ω/EF versus interaction parame-
ter 1/(kFas) plane. We consider only s-wave interactions
between different colors and set the color-shift field to
zero, that is, the detuning is set to zero δ = 0, such
that parity is preserved in the excitation spectrum. For
Fig. 3a, the parameters are kT = 0.35kF , bz = k2T /(2m)
(η = 0) and for Fig. 3b, the parameters are kT = 0,
bz = k2T /(2m) (η = 0). The contrast between the two fig-
ures is remarkable, indicating that the presence of color-
orbit and color-flip couplings induce novel superfluids
states as interactions are changed. The phases N1, N2
and N3 correspond to the normal phases with one, two
and three Fermi surfaces associated with the eigenvalues
of HIP(k) and characterize the regime where the colored
Fermi gas is degenerate. The lines separating these nor-
mal phases correspond to simple Lifshitz transitions [50].

The superfluid phases in Fig. 3a are labeled accord-
ing to their nodal structure, which in the present case,
correspond to rings of zero-energy quasiparticles repre-
senting the residual Fermi surface of the starting degen-
erate colored Fermi gas. In the presence of color-orbit
and color-flip fields, the quasiparticle excitation energies
E1(k), E2(k) and E3(k) have more complex momentum
dependence, but only E3(k) can have zeros. The zeros
of E3(k) define the loci (points, lines or surfaces) in mo-
mentum space, where there is no energy cost to create
quasiparticle excitations. The connectivity of these loci

of zero energy can be used to classify the topologically
distinct superfluid phases of colored fermions.

To analyse the phase diagram, we make use of the
mixed color bands Eα(k) with α = {⇑, 0,⇓}, as discussed
in section IB. For definiteness, we fix first the color-flip
coupling to Ω/EF = 0.29, in which case there are three
mixed colored bands participating in pairing. As the
scattering parameter 1/(kFas) increases a nodal phase
R5 with five rings, three in the outer ⇑, one the middle
0, and one in the inner ⇓ band, gives way to a nodal
phase R3 with three rings in the outer ⇑ band, where
the two internal rings annihilate at finite momenta in
the (0, ky, kz) plane. This leads to the opening of a gap
at the R5/R3 boundary, but residual node lines persist.
An additional increase of the scattering parameter leads
to the one ring R1 phase in the outer ⇑ band, where the
two other rings shrink to points at finite momenta along

FIG. 3: (Color online) Phase diagrams of color-flip field Ω/EF

versus scattering parameter 1/(kF as) for non-zero quadratic
color-shift bz = k2

T /2m (η = 0) and two values color-orbit
coupling controlled by momentum transfer kT . The temper-
ature is T/EF = 0.01. In a) kT = 0.35kF and the superfluid
phases are labelled according to the nodal structure of the
quasiparticle excitation spectrum that the color-orbit cou-
pling induces when the Rabi field Ω/EF is non-zero. The
normal phases N1, N2, and N3 are labelled according to the
number of Fermi surfaces they possess. The superfluid phases
are labeled according to the number of nodal rings they pos-
sess (R1, R2, R3, R4, and R5). Phase transitions between
various superfluid phases and between superfluid phases and
normal states are continuous. In b) kT = 0 and the super-
fluid phases have either a fully nodal surface (S1) or a fully
gapped (FG) phase. The fully nodal phase is reminiscent of
the passive band when Ω = 0, where only a crossover exist.
The phase transition from the S1 phase to the normal phases
is discontinous.

the (kx, 0, 0) direction when the phase boundary R3/R1
is reached. Finally, further increase in the scattering pa-
rameter transforms the R1 phase into a fully gapped FG
phase with no nodal regions. A similar analysis can be
done for different fixed values of Ω/EF and varying scat-
tering parameter. An important observation is the ex-
istence of a quintuple point, where the five superfluid
phases R1, R2, R3, R4 and R5 merge. The transitions
between these topologically distinct superfluid phases are
all continuous, therefore this quintuple point is also pen-
tacritical. In Fig. 4, we plot the nodal structure of the
N3, R5, R3 and R1 phases illustrated in the phase dia-
gram of Fig. 3(a), for fixed value of Ω/EF = 0.29 and
varying scattering parameter 1/(kFas).

The richness of the phase diagram in Fig. 3a should
be contrasted with simplicity of that in Fig. 3b, where
the color-orbit coupling parameter is set to zero, that is
kT = 0. Indeed, in the case of Fig. 3b the phase dia-
gram is much simpler. When the color-orbit and color-
flip couplings are zero, that is, kT = 0 and Ω = 0, pairing
occurs only between two mixed colors which produce a
fully gapped superfluid, but the third mixed color is com-
pletely inert [16] and thus possesses the original Fermi
surface for non-interacting fermions when the chemical
potential lies above the minimum of the band. This situ-
ation corresponds to the line of Ω/EF = 0 in Fig. 3b and
describes standard BCS-BEC crossover physics, where
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FIG. 4: (Color online) Nodal structure of the quasiparticle
excitation spectrum for phases N3, R5, R3 and R1 with
parameters Ω = 0.29EF , kT = 0.35kF , and bz = k2

T /2m
(η = 0). a) Normal phase N3 with three Fermi surfaces,
where 1/(kF as) = −1.31, µ/EF = 0.97 and |∆| = 0; b)
Five-ringed superfluid phase R5, where 1/(kF as) = −1.03,
µ/EF = 0.97, |∆|/EF = 0.0056; c) Three-ringed super-
fluid phase R3, where 1/(kF as) = −0.069; µ/EF = 0.81,
|∆|/EF = 0.31; d) One-ringed superfluid phase R1, where
1/(kF as) = 0.62, µ/EF = 0.19, |∆|/EF = 0.73.

the superfluid is always gapped as a function the inter-
action parameter 1/(kFas).

However, when kT is still zero, but the color-flip field
Ω is non-zero, extra mixing of colors occur and the inert
band becomes active. Nevertheless a single nodal surface
continues to exist, as illustrated in the blue (S1) region.
For Ω/EF 6= 0, the quasi-particle dispersion E3(k) is no
longer identical to the independent particle energy ξ(k),
and the nodal structure of E3(k) is completely isotropic
in momentum space. Thus, for finite Ω/EF , there is a
phase transition between a gapless superfluid with sur-
face nodes (S1) to a fully gapped (FG) superfluid phase.
For fixed Ω/EF , the line separating the S1 and FG
phases appears when the degeneracy between the low-
est energy mixed color band ξ⇑(k) = E⇑(k) − µ and its
counterpart −ξ⇑(k) at ξ⇑(k) = 0 is lifted by non-zero
color-flip fields (Ω 6= 0). This occurs when the chemical
potential µ falls below the minimum value mink{E⇑(k)},
when a full gap in the excitation spectrum E3(k) emerges
leading to the yellow (FG) region in Fig. 3b. The quasi-
particle bands E1(k) and E2(k) are always gapped in the
present case.

In addition, when color-orbit coupling is zero (kT = 0),
the transition from superfluid to normal phases is discon-
tinuous (first order) at the low temperatures indicated

in Fig. 3b and the phase boundary corresponds to the
balancing of the color-flip (magnetic) energy hxχxxhx/2,
where χxx is the color-flip (magnetic) susceptibility, and
the condensation energy of the superfluid γ|∆|2. This
leads to Ω = |∆|γ/χxx at the phase boundary, where the
order parameter amplitude |∆| jumps discontinuously to
zero. Such relation for color superfluids is a generaliza-
tion of Clogston’s result for Fermi superfluids paired with
zero center of mass momentum in the singlet s-wave state
of two spin-1/2 fermions [60].

Another important difference between phase diagrams
illustrated in Figs. 3a and 3b concerns the limit when the
color-flip field vanishes, that is, when Ω → 0. In Fig. 3a
the color-orbit coupling is non-zero, that is kT 6= 0, mean-
ing that the Red-color (R) band is shifted to the left, the
Green-color (G) band remains in the same place, and the
Blue-color (B) band is shifted to the right, as seen in
Fig. 1. Given that s-wave interactions only lead to RG,
RB and GB pairs, this implies that pairing with zero
center-of-mass momentum for RB pairs can occur with-
out energy cost, but pairing with zero center-of-mass mo-
mentum for RG and GB pairs cost energy of an amount
k2T /(2m) ± kxkT /m. Therefore, even for zero color-flip
fields (Ω = 0), a uniform zero center-of-mass superfluid
phase is not favored until a critical value of the inter-
action parameter 1/(kFas) is reached. This is in sharp
contrast with the case of two internal states, where the
spin-orbit coupling shifts one band to the right and the
other to the left and does not affect zero center-of-mass
momentum pairing. This occurs because of the existence
of a spin-gauge symmetry, which can be used to gauge
away the momentum transfer kT from the problem when
Ω = 0. The corresponding color-gauge symmetry for
the color superfluid problem is broken, and thus a color-
gauge symmetry does not exist even when Ω = 0. This
means that the cases of Ω = 0 with kT = 0 and with
kT 6= 0 are not equivalent. Furthermore, while in the
two-state case uniform superfluidity is always present at
zero temperature for any values of Ω 6= 0 and kT 6= 0 [46],
in the color problem at hand this is not the case, be-
cause of the energy cost associated with pairing in the
RG and GB channels, and thus normal states phases
may be present at zero temperature.

Having discussed some general aspects of the phase di-
agram of color superfluids in the presence of color-orbit
coupling and color-flip fields, we discuss next a few ther-
modynamic consequences involving the thermodynamic
potential and the equation of state for the chemical po-
tential.

E. Thermodynamic potential

In the vicinity of the phase transition between the nor-
mal and superfluid phases, the thermodynamic potential
in the superfluid phaseQ0[∆,∆∗] can be expanded about
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the normal state value QN as

Q0 = QN + a|∆|2 + b

2
|∆|4 + c

3
|∆|6. (18)

The coefficients a, b, c and QN depend on the microscopic
parameters of the theory such as the color-flip field Ω,
the color-orbit momentum transfer kT , and the scatter-
ing length as, as well as on thermodynamic parameters
such as chemical potential µ and temperature T . The
coefficient c is found to be always positive in the range of
parameters investigated, and that guarantees the stabil-
ity of the Ginzburg-Landau expansion shown in Eq. (18).

FIG. 5: (Color online) Difference δQ between thermodynamic
potentials of superfluid Q0 and normal state QN are shown
in a) and b) at T/EF = 0.01 and Ω/EF = 0.29. In a) δQ
is shown for kT /kF = 0.35, the dashed line exhibits a global
minimum at |∆| = 0, and describes the normal phase for pa-
rameter values 1/(kF as) = −1.17 and µ/EF = 0.97. The
solid line shows a global minimum at |∆|/EF = 0.015, and
describes a superfluid phase for parameter values 1/(kF as) =
−0.97 and µ/EF = 0.97. The transition from the superfluid
to the normal state is continuous (second-order). In b) δQ is
shown for kT /kF = 0, the dashed line shows a global mini-
mum at |∆| = 0, and describes the normal phase for parame-
ter values 1/(kF as) = −0.62 and µ/EF = 0.97. The solid line
shows a global minimum at |∆|/EF = 0.18, and describes a
superfluid phase for parameter values 1/(kF as) = −0.48 and
µ/EF = 0.91. In c) and d) the curves with blue circles de-
scribe the case of zero color-orbit coupling (kT = 0) and the
curves with red crosses describe the case with kT 6= 0. In c) we
show the order parameter amplitude |∆|/EF versus scatter-
ing parameter 1/(kF as) for T/EF = 0.01 and Ω/EF = 0.29.
In d) we show the chemical potential µ/EF versus scatter-
ing parameter 1/(kF as) for T/EF = 0.01 and Ω/EF = 0.29.
Notice the discontinuous jumps in |∆|/EF and µ/EF for the
curves with blue circles at the transition from the superfluid
to normal state.

In Fig. 5, all plots correspond to fixed temperature
T/EF = 0.01 and color-flip field Ω/EF = 0.29. In
Figs. 5a and 5b, we show the thermodynamic potential
difference δQ = Q0−QN for two values of scattering pa-
rameter 1/(kFas) slightly before and after the transition

from the normal to the superfluid state. The difference
δQ is shown in units of NEF , where N is the total par-
ticle number. In Fig. 5a (Fig. 5b), the color-orbit cou-
pling momentum transfer is kT /kF = 0.35 (kT /kF = 0)
and the transition from the normal phase to the super-
fluid phase is continuous (discontinuous), according to
Landau’s classification, as can be seen from the plot of
δQ versus |∆|/EF . For the range of parameters inves-
tigated at temperature T/EF = 0.01 the phase tran-
sition between the normal and superfluid phase is al-
ways discontinous for the case of kT = 0 and is always
continuous for the case of kT /kF = 0.35. The order
parameter amplitude |∆|/EF versus scattering param-
eter 1/(kFas) are shown in Fig. 5c for kT = 0 and
kT /kF = 0.35, and a clear discontinuity in |∆|/EF

occurs at the normal/superfluid phase boundary when
kT = 0, while |∆|/EF reaches zero continuously when
kT /kF = 0.35. In Fig. 5d, we show the chemical poten-
tial µ/EF for kT /kF = 0, and for kT /kF = 0.35. While
for kT /kF = 0.35, the chemical potential µ/EF evolves
smoothly with scattering parameter 1/(kFas), by con-
trast, there is a discontinuous jump in µ/EF in the case
of kT /kF = 0, as the phase boundary between the normal
and superfluid states is crossed.

In order to investigate the existence of the Clogston
limit, we analyse our system at the unitarity limit where
the scattering parameter 1/(kFas) = 0 and describe
changes in the thermodynamic potential, order parame-
ter amplitude |∆|/EF and chemical potential µ/EF ver-
sus the color-flip parameter Ω/EF . In Fig. 6 we show
the difference δQ between thermodynamic potentials of
superfluid Q0 and normal state QN .

The plots shown in Fig. 6 refer to the unitarity limit
1/(kFas) = 0 at temperatures T/EF = 0.01. In Fig. 6a,
the thermodynamic potential difference δQ is plotted for
color-orbit coupling kT = 0.35kF : the solid line corre-
sponds to parameters Ω/EF = 0.64 and µ/EF = 0.81,
while the dashed line corresponds to Ω/EF = 0.67 and
µ/EF = 0.79. In Fig. 6b, δQ is plotted for color-orbit
coupling kT = 0: the solid line corresponds to parame-
ters Ω/EF = 0.47 and µ/EF = 0.77, while the dashed
line corresponds to Ω/EF = 0.53 and µ/EF = 0.77. In
Figs. 6c and d, the blue circles (red crosses) correspond
to kT /kF = 0 (kT /kF = 0.35). In Fig. 6c, the order pa-
rameter amplitude |∆|/EF versus Ω/EF is shown, and
in Fig. 6d the chemical potential µ/EF versus Ω/EF

is shown. Notice the hysteretic behaviour characteris-
tic of discontinous (first order) phase transitions when
the color-orbit coupling is kT /kF = 0.

Two important effects are illustrated in the panels
of Fig. 6. First, there is a well defined Clogston limit
when the color-orbit coupling kT /kF = 0 leading to a
discontinuous (first order) transition from superfluid to
normal phases. Second, when the color-orbit parame-
ter kT /kF 6= 0, the standard Clogston limit is exceeded
and the transition to the normal state becomes continu-
ous (second-order). The discontinuous phase transition
from superfluid to normal phases for zero color-orbit cou-
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FIG. 6: (Color online) This figure refers to the unitarity limit
1/(kF as) = 0 at temperatures T/EF = 0.01. The difference
δQ between thermodynamic potentials of superfluid Q0 and
normal state QN is shown in a) and b). In a) the color-orbit
coupling is kT = 0.35kF , the solid line corresponds to param-
eters Ω/EF = 0.64 and µ/EF = 0.81, while the dashed line
corresponds to Ω/EF = 0.67 and µ/EF = 0.79. In b) the
color-orbit coupling is kT = 0, the solid line corresponds to
parameters Ω/EF = 0.47 and µ/EF = 0.77, while the dashed
line corresponds to Ω/EF = 0.53 and µ/EF = 0.77. In c)
and d) the blue circles (red crosses) correspond to kT /kF = 0
(kT /kF = 0.35). In c) the order parameter amplitude |∆|/EF

versus Ω/EF is shown. In d) the chemical potential µ/EF ver-
sus Ω/EF is plotted. The vertical blue-solid lines indicate the
location of the discontinuous transitions, and the end points
of the lines of blue-circles show the hysteretic behavior in
|∆|/EF and µ/EF due to the existence of a metastable min-
imum in the thermodynamic potential shown in b).

pling (kT /kF = 0) and finite color-flip field Ω 6= 0 be-
comes continuous for arbitrarily small kT /kF ≪ 1 and
Ω 6= 0, provided that a uniform superfluid is the stable
ground state. The discontinuity in the order parameter
|∆|/EF at the phase boundary ceases to exist for arbi-
trarily small color-orbit coupling, suggesting that kT /kF
is a microscopic parameter that controls the non-uniform
convergence of |∆|/EF versus the scattering parameter
1/(kFas) or versus the color-flip parameter Ω/EF .
The non-uniform convergence of |∆|/EF is similar

mathematically to the non-uniform convergence of the
Fermi function, where only at zero temperature it de-
velops a discontinuity as a function of momentum. In
the present case, the physical origin of the non-uniform
convergence is quite different. In our current problem, at-
tractive interactions are assumed to occur only between
different colors, such that pairing can only exist in the s-
wave channel. Thus, in the strict case where color-orbit
coupling is zero (kT /kF = 0) there is a cost in color-
flip energy associated with pairing and thus there is a
Clogston limit even in the color problem at low temper-
atures. However, when a uniform superfluid solution is
the ground state for kT /kF 6= 0, then higher-order an-
gular momentum pairing is induced by the color-orbit

coupling as suggested by the nodal structures shown in
Fig. 4. Thus, pairing in the mixed-color states may oc-
cur not only in the singlet channel, but also in the triplet
or quintet channels. This allows the color superfluid to
respond to a color-flip field by simply rotating the triplet
or quintet mixed-color state without breaking pairs, and
thus beating the standard Clogston limit. An analysis
of the order parameter in the mixed color basis is there-
fore important for a deeper understanding of the phase
diagram obtained in Fig. 3.
Now that we have analysed a few thermodynamic prop-

erties of color superfluids, and characterized the transi-
tions between the normal and superfluid states, we are
ready to investigate in detail the structure of the order
parameter in each one of the superfluid phases found.

III. HAMILTONIAN IN MIXED COLOR BASIS

In order to understand in more detail the different su-
perfluid phases that emerge, it is important to analyse
the microscopic Hamiltonian in a mixed color basis that
diagonalizes the independent particle Hamiltonian dis-
cussed in section IA.
The excitation spectrum and the momentum space

topology of colored quasiparticles and quasiholes can
be understood by writing the saddle-point Hamiltonian
H0(k) defined in Eq. (13) as

H̃0(k) =

(
HM (k) ∆M

∆
†
M −H∗

M (−k)

)
(19)

in the mixed color basis. The matrix elements of HM (k)
represent the mixed color energy bands, and are given by
HM,αβ(k) = ξα(k)δαβ with energies ξα(k) = Eα(k) − µ
measured with respect to the chemical potential µ. While
the matrix elements of∆M are ∆M,αβ(k) = ∆αβ(k), rep-
resenting the order parameter tensor in the mixed color
basis labeled by indices {α, β} = {⇑, 0,⇓}. The elements
∆αβ(k) are strongly momentum dependent in sharp con-
trast to the elements ∆cc′(k) of the original matrix ∆,
defined in Eq. (14), which are independent of momentum.
In order to ellucidate the symmetry properties of fermion
pairs, we analyse next the order parameter tensor in the
mixed color basis.

A. Order parameter in mixed color basis

The order parameter tensor in the mixed color basis
can be written as

∆αβ(k) = Rαc(k)∆cc′Rc′β(−k), (20)

where Einstein’s summation convention of repeated in-
dices is understood and Rαc(k) are matrix elements of
the color mixing matrix R(k) in Eq. (5), where the α-
row elementsRα(k) = [RαR(k), RαG(k), RαB(k)] are the
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eigenvectors of the independent particle Hamiltonian ma-
trix HIP(k). The order parameter matrix in the mixed
color basis has the property ∆αβ(k) = −∆βα(−k) due
to Fermi statistics. Such condition ensures that the di-
agonal elements ∆αα(k) have odd parity, as required by
the Pauli exclusion principle. However, in general, this
is not sufficient to force the off-diagonal elements to have
well defined parity.

In Fig. 7, we describe in detail the momentum de-
pendence of the order parameter tensor along (kx, 0, 0)
in the mixed color basis (Figs. 7a and b), and in the
total pseudo-spin basis (Figs. 7c and d) for parameters
Ω/EF = 0.29, kT /kF = 0.35, bz = k2T /(2m) (η = 0). The
order parameter tensor on either basis depends on mo-
mentum only along the kx direction and is independent of
momentum along ky and kz , due to the one dimensional
nature of the color-orbit coupling. In Figs. 7a, b, c and d,
we show only two cases. The first one corresponds to the
R3 phase with scattering parameter 1/(kFas) = −0.07
(µ/EF = 0.81 and |∆|/EF = 0.31) and the plots corre-
spond to the vertical scale on the left. The second case
corresponds to the R1 phase with scattering parameter
1/(kFas) = 0.62 (µ/EF = 0.19 and |∆|/EF = 0.73) and
the plots correspond to the vertical scale on the right.

In Fig. 7a, we show the momentum dependence of the
diagonal components ∆αα(k) of the order parameter ten-
sor in two cases. From these plots it is evident that the
nodal structure of the order parameter tensor compo-
nents ∆αα(k) is exactly the same for the R3 and R1
phases. The only difference between the two cases is the
overall magnitude of the amplitude |∆| reflected in the
two different scales. This implies that the nodal structure
of the lowest quasiparticle band E3(k) does not coincide
with the nodal structure of the order parameter matrix
elements ∆αα(k). The solid blue curve describes ∆⇑⇑(k),
which has an f-wave character (three nodes); the dashed
red curve describes ∆00(k), which has a p-wave character
(one node); the dot-dashed green curve describes ∆⇓⇓(k),
which also has a p-wave character (one node).

In Fig. 7b, we show the momentum dependence of the
off-diagonal components ∆αβ(k) of the order parameter
tensor, with α 6= β, in two cases. From these plots it is
also evident that the nodal structure of the order parame-
ter tensor components ∆αβ(k) is exactly the same for the
R3 and R1 phases. Again, the only difference between
the two cases is the overall magnitude of the amplitude
|∆|. As in the case of diagonal components, this implies
that the nodal structure of the lowest quasiparticle band
E3(k) does not coincide with the nodal structure of the
off-diagonal matrix elements ∆αβ(k). The solid brown
curve describes ∆⇑0(k), which has an f-wave character
(two nodes and a discontinous sign change); the dashed
magenta curve describes ∆⇓0(k), which has an f-wave
character (two nodes and a discontinous sign change); the
dot-dashed orange curve describes ∆⇑⇓(k), which has a
p-wave character (one node).

A very important property that emerges from Figs. 7a
and b is that the order parameter tensor ∆αβ(k) for color

superfluids (with three colors) is always an odd func-
tion of momentum k when the one-dimensional color-
orbit coupling hz(k) = 2kTkx/(2m) is present with zero
color shift (detuning δ = 0), meaning that the condi-
tion ∆αβ(k) = −∆αβ(−k) is satisfied. The odd parity
condition combined with the Fermi statistics property
∆αβ(k) = −∆βα(−k) leads to a symmetric order pa-
rameter tensor ∆αβ(k) = ∆βα(k) under mixed color ex-
change α ↔ β, when kT 6= 0. Furthermore, the order
parameter tensor is odd under reflection along the kx di-
rection, but even under reflections along the ky and kz
directions.
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FIG. 7: (Color online) Plots of the components of the or-

der parameter tensor ∆αβ(k) and ∆̃Sms
(k) versus momentum

(kx, 0, 0) are shown in a,b and c,d respectively. We show plots
for the R3 phase with scattering parameter 1/(kF as) = −0.07
(µ/EF = 0.81 and |∆|/EF = 0.31) corresponding to the ver-
tical scale on the left. We also show plots for the R1 phase
with scattering parameter 1/(kF as) = 0.62 (µ/EF = 0.19
and |∆|/EF = 0.73) corresponding to the vertical scale on
the right. In a) the solid blue curve describes ∆⇑⇑(k), the
dashed red curve describes ∆00(k), and the dot-dashed green
curve describes ∆⇓⇓(k). In b) the solid brown line represents
∆⇑0(k), the dashed magenta line represents ∆⇓0(k), the dot-
dashed orange line represents ∆⇑⇓(k). In c) the solid yellow

curve corresponds to ∆̃22(k), the dashed cyan curve corre-

sponds to ∆̃21(k), the dot-dashed purple curve corresponds

to ∆̃20(k). In d) the solid light-blue line indicates ∆̃21̄(k),

the dashed red line indicates ∆̃22̄(k), the dot-dashed black

line indicates ∆̃00(k).

As seen in Fig. 4c, the nodal structure of quasipar-
ticle excitations in the R3 phase is similar to that of
the excitation spectrum of a fully spin-polarized triplet
f-wave superfluid of spin-1/2 fermions with energy band
ξk = k2/(2m) − µ and order parameter amplitude
|∆k| = |afk3x − apkx|, with af and ap being positive. In
this case, the quasiparticle excitation spectrum is simply
E(k) =

√
ξ2k + |∆k|2, and the nodes Ek occur at the in-

tersection of the surfaces ξk = 0 and |∆k| = 0. Since
the zeros of the order parameter are located at kx = 0,
and kx = ±

√
(ap/af), and the zeros of ξk are located at

(k2y + k2z)/(2m) = µ− k2x/(2m), the loci of zero quasipar-
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ticle energy has a three ring structure. Additionally, the
nodal structure of quasiparticle excitations in the super-
fluid state R1, shown in Fig. 4d, is similar to that of a
triplet p-wave superfludid of fully spin-polarized spin-1/2
fermions with order parameter amplitude |∆k| = |apkx|.
In this case, the nodes in E(k) occur at the intersection
of the surfaces kx = 0 and (k2y+k2z)/(2m) = µ−k2x/(2m),
thus leading to a single ring nodal strucure for the loci of
zero quasiparticle energy. It is important to emphasize,
though, that in the color problem the location of zeros of
the quasiparticle band E3(k) does not coincide with the
simultaneous zeros of the order parameter tensor compo-
nents ∆αβ(k) = 0 and band dispersions ξα(k)− µ.

It is also important to compare the momentum de-
pendence of the order parameter tensor ∆αβ(k) for the
color problem with color-orbit and color-flip fields, and
the corresponding spin-1/2 problem with spin-orbit and
Zeeman fields [46]. As shown in Figs. 7a and b the
momentum dependence of ∆αβ(k) shows higher angu-
lar momentum pairing in the color indices. It does so
in a similar, but more complicated fashion in compar-
ison to the spin-1/2 case [46], where the 2 × 2 order
parameter tensor ∆αβ(k) in the generalized helicity ba-
sis {⇑,⇓} acquires also a triplet component with dom-
inant p-wave character. A particularly notable differ-
ence between the color case and the spin-1/2 case is that
the order parameter tensor ∆αβ(k) is a symmetric ten-
sor when both color-orbit and color-flip fields are non-
zero, that is ∆αβ(k) = ∆βα(k), while in the spin-1/2 the
corresponding order parameter tensor ∆αβ(k) is neither
anti-symmetric or symmetric, that is, the off-diagonal el-
ements ∆⇑⇓(k) and ∆⇓⇑(k) are neither equal or opposite
in sign. Therefore the order parameter tensor has sym-
metric components ∆⇑⇑(k), [∆⇑⇓(k) + ∆⇓⇑(k)] /2, and
∆⇓⇓(k), corresponding to the triplet sector and an anti-
symmetric component [∆⇑⇓(k)−∆⇓⇑(k)] /2, correspon-
ing to the singlet sector.

In the color problem discussed here, the tensor ∆αβ(k)
is only antisymmetric when the color-orbit field hz(k) =
2kTkx/(2m) is zero, that is, the color-dependent momen-
tum transfer kT = 0. This jump from an antisymmetric
tensor for zero color-orbit fields to a symmetric tensor
for non-zero color-orbit fields, arises due to the absence
of color-gauge symmetry associated with the three-color
states even when the color-flip field is zero. This sin-
gular perturbation caused by the color-orbit field hz(k)
introduces only parity odd momentum dependences in
the mixed color representation of the order parameter
tensor, provided that the color shift field δ = 0, as it is
the case throughout this manuscript.

To highlight further the structure of the order param-
eter tensor in the color problem with color-flip and color-
orbit fields, we discuss next its structure in the total
pseudo-spin basis, where singlet, triplet and quintet sec-
tors emerge in a similar fashion to the singlet and triplet
sectors that arise for the order parameter tensor of spin-
1/2 Fermi superfluids with spin-orbit coupling and Zee-
man fields.

B. Order parameter in the total pseudo-spin basis

In order to understand further the order parameter
structure in the color problem, we also analyse it in the
total pseudo-spin basis |S,ms〉 built from the colored
mixed states {| ⇑〉, |0〉, | ⇓〉} ⊗ {| ⇑〉, |0〉, | ⇓〉}. The order

parameter tensor in the total pseudo-spin basis ∆̃Sms
(k)

can be separated into singlet, triplet and quintet sectors,

and can be written as ∆̃Sms
(k) = MSms

αβ ∆αβ(k), where

MSms

αβ is a tensor whose elements represent generalized
Clebysh-Gordon coefficients. The singlet sector is de-
scribed by fermion pairs in the state |Sms〉 = |00〉 with
order parameter element

∆̃00(k) =
1√
3
∆⇑⇓(k)−

1√
3
∆00(k) +

1√
3
∆⇓⇑(k),

while the triplet sector is characterized by fermions pairs
in the states {|Sms〉} = {|11〉, |10〉, |11̄〉}, with order pa-
rameter elements

∆̃11(k) =
1√
2
∆⇑0(k)−

1√
2
∆0⇑(k),

∆̃10(k) =
1√
2
∆⇑⇓(k) −

1√
2
∆⇓⇑(k),

∆̃11̄(k) =
1√
2
∆0⇓(k)−

1√
2
∆⇓0(k),

where we used the notation 1̄ = −1. Finally, the
quintet sector is described by fermion pairs in states
{|Sms〉} = {|22〉, |21〉, |20〉, |21̄〉, |22̄〉}, with order param-
eter elements

∆̃22(k) = ∆⇑⇑(k),

∆̃21(k) =
1√
2
∆⇑0(k) +

1√
2
∆0⇑(k),

∆̃20(k) =
1√
6
∆⇑⇓(k) +

√
2

3
∆00(k) +

1√
6
∆⇓⇑(k),

∆̃21̄(k) =
1√
2
∆0⇓(k) +

1√
2
∆⇓0(k),

∆̃22̄(k) = ∆⇓⇓(k),

where we used the notation m̄s = −ms.
From the linear combinations given above, we can see

that the order parameter components in the singlet and
quintet sectors are symmetric with respect to mixed-
color exchange, while those in the triplet sector are anti-
symmetric with respect to mixed-color exchange. How-
ever, for non-zero color-orbit coupling and color-flip field,
but zero color-shift (δ = 0), the tensor ∆αβ(k) is sym-
metric in mixed-color indices, and thus the only non-

vanishing components of ∆̃Sms
(k) occur in the singlet or

quintet sectors, while all the components in the triplet
sector vanish identically. In Figs. 7c and d, we show the

non-vanishing components of ∆̃Sms
(k).

In Figs. 7c and d, the momentum dependences of the

order parameter tensor ∆̃Sms
(k) are the same for the
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R3 and R1 superfluid phases for fixed Ω/EF and varying
1/(kFas), but the overall magnitude is different. Again,
this shows that the nodes in the quasiparticle band E3(k)
are not trivially related to the nodes of the order pa-

rameter tensor ∆̃Sms
(k). In Fig. 7c the solid yellow

curve corresponds to ∆̃22(k), the dashed cyan curve in-

dicates ∆̃21(k), the dot-dashed purple curve describes

∆̃20(k). Notice that ∆̃22(k) has an f-wave character

(three nodes), ∆̃21(k) has also an f-wave character (two

nodes and one discontinous sign change), and ∆̃20(k) has
a p-wave character (one node). In Fig. 7d the solid light-

blue line indicates ∆̃21̄(k), the dashed red line shows

∆̃22̄(k), the dot-dashed black line describes ∆̃00(k). No-

tice that ∆̃21̄(k) has an f-wave character (two nodes and

a discontinuous sign change), ∆̃22̄(k) has a p-wave char-

acter (one node), and ∆̃00(k) has also a p-wave character
(one node). Lastly, since the mixed-color order param-
eter tensor ∆αβ(k) is symmetric in α ↔ β, the triplet

sector tensor components ∆̃1,1(k), ∆̃1,0(k) and ∆̃1,1̄(k)
all vanish identically, and thus these components are not
shown in Fig. 7.
In order to understand better color pairing phenomena

and color superfluid phases, we discuss next spectroscopic
properties, such as quasiparticle excitation spectrum ob-
tained via pairing in the mixed-color basis, as well as mo-
mentum distributions and density of states of fermions in
their original colors {R,G,B}.

IV. SPECTROSCOPIC PROPERTIES

In this section, we discuss several spectroscopic proper-
ties of color superfluids in the presence of color-orbit cou-
pling and color-flip fields. These spectroscopic properties
can help characterize the different topological phases that
emerge for fixed color-orbit coupling, but changing color-
flip fields Ω/EF and interactions 1/(kFas). We begin our
discussion by analysing the quasiparticle and quasihole
excitation spectrum.

A. Quasiparticle energy spectrum

To investigate in detail the quasiparticle and quasi-
hole excitation spectrum, it is easier to start from the
Hamiltonian written in the mixed color basis {⇑, 0,⇓} as
described in Eq. (19). In this case, the matrix HM (k)
has only diagonal elements {ξ⇑(k), ξ0(k), ξ⇓(k)} corre-
sponding to mixed-color particle energies. Furthermore,
the matrix −H∗

M (−k) has also only diagonal elements
{−ξ⇑(−k),−ξ0(−k),−ξ⇓(−k)} corresponding to mixed-

color hole energies. The matrices ∆M and ∆†
M are

characterized by the elements [∆M ]αβ = ∆αβ(k) and[
∆†

M

]

αβ
= ∆∗

βα(k), which couple mixed-color bands

with indices {α, β} = {⇑, 0,⇓}, and thus tend to lift

degeneracies between particle ξα(k) and hole −ξβ(−k)
mixed-color bands.

The quasiparticle and quasihole excitation spectrum
can be found analytically from the secular equa-

tion det
[
ω1− H̃0(k)

]
= 0. Notice that P (ω) =

det
[
ω1− H̃0(k)

]
=

∏
j [ω − Ej(k)] is in general a poly-

nomial of order six, and admits six eigenvalues Ej(k),
three of them with positive energy corresponding to
quasiparticles, and three with negative energy corre-
sponding to quasiholes. Since the eigenvalues of the
Hamiltonian matrix are independent of the basis repre-
sentation that is used, we recover the same eigenvalues as
those from the direct diagonalization of the Hamiltonian
matrix in the original color basis {c, c′} = {R,G,B}.
Recall that the Hamiltonian H̃0(k) is particle-hole

symmetric, implying that its eigenvalues Ej(k) sat-
isfy the quasiparticle-quasihole symmetry Ej(k) =
−E7−j(−k), and in the case of zero color-shift field δ = 0,
where parity is a good quantum number, the eigen-
values are parity even satisfying the relation Ej(k) =
Ej(−k). In this case, the characteristic polynomial be-
comes P (ω) = a0(k)+a2(k)ω

2+a4(k)ω
4+ω6. The nodal

structure can be found by setting ω = 0, and coincides
with the results for the original Hamiltonian matrix, that
is a0(k) = 0 leads to the same nodal structure previously
obtained. At this point it is illustrative to compare the
present situation in color Fermi superfluids with that of
spin-1/2 Fermi superfluids, where the nodal structure in
the quasiparticle energies is directly related to the nodal
structure of the 2× 2 order parameter tensor ∆αβ(k) or
more precisely related to the nodal structure of ∆Sms

(k)
in the singlet and triplet sectors [46]. The situation for
color Fermi superfluids is very different, given that the
coefficient a0(k) depends in a non-trivial way not only
on the components of the ∆αβ(k), but also on the eigen-
ergies ξα(k) of the mixed color states {⇑, 0,⇓}.
Given that the Hamiltonian matrix H̃0(k) is Hermi-

tian, its eigenvalues are guaranteed to be real, so the
discriminant D of the cubic equation obtained with the
substitution z = ω2 is always non-positive, that is,
D ≤ 0. The cubic equation obtained can be writ-
ten as P3(z) = c + bz + az2 + z3, where c = a0(k),
b = a2(k) and a = a4(k), and can be solved exactly
using the Cardano method [54]. The discriminant can be
obtained from the auxiliary functions Q = (3b − a2)/9
and R = (9ab − 27c − 2a3)/54 as D = Q3 + R2. If
D ≤ 0, it is clear that Q3 = D − R2 is also nega-
tive, and thus both −Q3 and −Q are positive. If we let

cos(θ) = R/
√
−Q3, then the three real roots of P3(z) are

z1 = 2
√−Q cos(θ/3)−a/3, z2 = 2

√−Q cos [(θ + 2π)/3]−
a/3, and z3 = 2

√−Q cos [(θ + 4π)/3)] − a/3. The three
roots of the cubic polynomial P3(z) correspond to the
squares of the excitations energies E2

j (k), and thus lead
to the six solutions Ej(k) that we are seeking. The pos-
itive energy solutions E1(k), E2(k), E3(k) correspond to
quasiparticle excitations and the negative energy solu-
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tions E4(k), E5(k), E6(k) correspond to quasihole exci-
tations. The analytic solutions for Ej(k) agree with the
direct numerical diagonalization of either H0(k) in the

color basis {R,G,B} defined in Eq. (13) or H̃0(k) in the
mixed color basis {⇑, 0,⇓} defined in Eq. (19). However,
the reader must agree that these analytic solutions are
not particularly illuminating.

In order to understand the excitation spectrum ob-
tained on physical grounds, it is more convenient to work
in the mixed-color basis {⇑, 0,⇓}. The excitation spectra
shown in Fig. 8 can be generically understood as result-
ing from the coupling of mixed-color particle states with
energies Eα(k) and mixed-color hole states with energies
−Eβ(−k) via the order parameter ∆αβ(k). Thus, wher-
ever the energies Eα(k) and −Eβ(−k) cross in momen-
tum space, the order parameter matrix elements ∆αβ(k)
can lift the degeneracies between the bands labeled by
α and β at the crossing loci (points, lines, surfaces) and
impound additional momentum dependence.

In Fig. 8, we show representative quasiparticle and
quasihole energies Ej(k) versus momentum k in super-
fluid phases R3 and R1 for fixed parameters Ω/EF =
0.29, kT = 0.35kF , T/EF = 0.01, and bz = k2T /(2m).
The spectrum is sorted out such that E1(k) is the high-
est energy and E6(k) is the lowest energy for fixed k.
The solid blue curves correspond to E1(k), the dashed
red plots describe E2(k), the dotted green lines show
E3(k), the dash-dotted cyan curves correspond to E4(k),
the dash-double-dotted brown plots describe E5(k), and
the double-dashed-dotted magenta lines show E6(k).
The excitation spectrum Ej(k) has cylindrical symme-
try around the kx axis, and thus its momentum depen-
dence (kx, ky, kz) is characterized only by the coordinates

(kx, k⊥), where k⊥ =
√

k2y + k2z is the magnitude of mo-

mentum in the kykz plane.

In Figs. 8a and b, we show Ej(k) versus (kx, 0, 0) and
(0, 0, kz), respectively, for the R3 phase with parameters
1/(kFas) = −0.069 (µ/EF = 0.81, |∆|/EF = 0.31). No-
tice, that only one ring of nodes is illustrated in Fig. 8b
where kx = 0, since the nodal points in kz correspond
to a ring of nodes in the (ky, kz) plane due to cylindri-
cal symmetry. The other two rings of nodes for the R3
phase occur at characteristic values kx = ±k∗x 6= 0 and
k⊥ = k∗⊥ 6= 0 as found in Fig. 4c. The additional rings
of the R3 phase are not seen in the spectrum shown in
Fig. 8, because in Fig. 8a the magnitude of the momen-
tum in the (ky , kz) plane is k⊥ = 0 and in Fig. 8b the
momentum along the kx direction is kx = 0.

In Figs. 8c and d, we show Ej(k) versus (kx, 0, 0) and
(0, 0, kz), respectively, for the R1 phase with parameters
1/(kFas) = 0.62 (µ/EF = 0.19, |∆|/EF = 0.73). The
R1 phase has only one ring of nodes (see Fig. 4d), and
this ring is illustrated in the spectrum shown in Fig. 8d,
where kx = 0 and the nodal points in kz correspond to a
ring of nodes in the (ky, kz) plane.

We would like to point out that photoemission spec-
troscopy has been already used to probe directly the el-
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FIG. 8: (Color online) Quasiparticle and quasihole excitation
spectra Ej(k) in superfluid phases R3 and R1 for fixed pa-
rameters Ω/EF = 0.29, kT = 0.35kF , T/EF = 0.01, and
bz = k2

T /(2m). The style-color code for energies Ej(k) is:
E1(k) is solid blue, E2(k) is dashed red, E3(k) is dotted green,
E4(k) is dash-dotted cyan, E5(k) is dashed-double-dotted
brown, and E6(k) is double-dashed-dotted magenta. In a)
and b), we show Ej(k) versus (kx, 0, 0) and (0, 0, kz), respec-
tively for the R3 phase with parameters 1/(kF as) = −0.069
(µ/EF = 0.81, |∆|/EF = 0.31). In c) and d), we show
Ej(k) versus (kx, 0, 0) and (kx = 0, 0, kz), respectively, for
the R1 phase with parameters 1/(kF as) = 0.62 (µ/EF =
0.19, |∆|/EF = 0.73).

ementary excitations and energy dispersion in a strongly
interacting Fermi gas of 40K atoms with two internal
states throughout the evolution from the BCS to the BEC
limits [61], but without spin-orbit coupling or Zeeman
fields. The use of the same technique for the color prob-
lem with 6Li, 40K or 173Yb should reveal the rich nodal
structure of the excitation spectrum when color-orbit and
color-flip fields are present, and thus provide direct evi-
dence of the various topological superfluid phases shown
in the phase diagram of Fig. 3a.
In addition to measuring the quasiparticle dispersions,

there are other auxiliary experiments than can help char-
acterize the quantum phases found in the color problem.
Therefore, we analyse next the momentum distribution
nc(k) for color states c = {R,G,B} as color-flip fields and
interactions are changed for fixed color-orbit coupling.

B. Momentum Distribution

The measurement of momentum distributions is an
easy experiment to do in systems of cold-atoms, and it is
routinely realized in atomic fermions and bosons. More
recently these types of measurements have also been per-
formed in ultracold fermions such as 40K with two inter-
nal states and spin-orbit coupling [38], as well as 173Yb
with three or more internal states and spin-orbit orbit
coupling [33].
Therefore, in this section, we describe how the mo-
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mentum distribution nc(k) for different color states c =
{R,G,B} can be obtained directly from the resolvent
operator

Ĝ(z) =
[
zÎ− Ĥ

]−1

, (21)

where z is a complex energy, Î is the identity operator and
Ĥ is the full Hamiltonian of the system. In the present
case, the resolvent operator can be written in energy and
momentum space as the 6× 6 matrix

Gνν′(z,k) = [zI−H0(k)]
−1
νν′ , (22)

where H0(k) is the Hamiltonian matrix defined
in Eq. (13) describing the color superfluid phases
at low temperatures, and {ν, ν′} are Nambu color
indices representing the states created by the

six-dimensional colored-Nambu spinor f
†
N (k) =[

f †
R(k), f

†
G(k), f

†
B(k), fR(−k), fG(−k), fB(−k)

]
, which

was defined in section IIA.
Writing the eigenstates of the Hamiltonian matrix

H0(k) as |j,k〉 = Mjν(k)|ν,k〉 in terms of the Nambu
color states |ν,k〉 and using the corresponding eigenval-
ues Ej(k), leads to the Green’s function matrix

Gνν′(z,k) =
∑

j

Mjν(k)M
∗
ν′j(k)

z − Ej(k)
. (23)

The momentum distribution for color state c can be writ-
ten as nc(k) = −T

∑
iωn

Gcc(iωn,k), where Gcc(iωn,k)

are the first three diagonal elements of Gνν′(z = iωn,k),
where T is the temperature and ωn = (2n + 1)π/T be-
ing the fermionic Matsubara frequencies. Performing the
Matsubara sums leads to the momentum distribution

nc(k) =
∑

j

|Mjc(k)|2F [Ej(k)] , (24)

where the matrix element Mjc(k) represents the proba-
bility amplitude of finding the color state |c,k〉 as part
of the eigenstate |j,k〉 and |Mjc(k)|2 = Mjc(k)M

∗
cj(k).

Here, F [Ej(k)] is the Fermi function associated with
eigenergy Ej(k), and the summation over j includes both
quasiparticle and quasihole states, that is, j runs from 1
to 6.
In Figs. 9a-d, we show momentum distributions nc(k)

for Ω = 0.29EF , kT = 0.35kF , bz = k2T /(2m) and
T = 0.01EF that describe the normal phaseN3 in a) with
scattering parameter 1/(kFas) = −1.8 (µ/EF = 0.97 and
|∆|/EF = 0.0); the three-rings superfluid phase R3 in b)
with scattering parameter 1/(kFas) = −0.069 (µ/EF =
0.81 and ∆/EF = 0.31); the one-ring superfluid phase
R1 in c) with scattering parameter 1/(kFas) = 0.62
(µ/EF = 0.19 and |∆|/EF = 0.73); the fully gapped
superfluid phase FG in d) with scattering parameter
1/(kFas) = 1.8 (µ/EF = −2.88 and |∆|/EF = 1.25).
A general key feature of the momentum distributions

shown in Fig. 9 is that the distributions of Red fermions

FIG. 9: (Color online) Momentum distributions nc(k) for
for Ω = 0.29EF , kT = 0.35kF , bz = k2

T /(2m) and T =
0.01EF along direction (kx, 0, 0) for different color indices
c = {R,G,B}. The solid blue lines correspond to Blue states,
the long-dashed green lines to Green states, and the short-
dashed red lines to Red states. In a) we show plots for the the
normal phase N3 with scattering parameter 1/(kF as) = −1.8
(µ/EF = 0.97 and |∆|/EF = 0.0). In b) we show plots for
the three-rings superfluid phase R3 with scattering parameter
1/(kF as) = −0.069 (µ/EF = 0.81 and |∆|/EF = 0.31). In
c) we show plots for the one-ring superfluid phase R1 with
scattering parameter 1/(kF as) = 0.62 (µ/EF = 0.19 and
|∆|/EF = 0.73). In d) we show plots for the fully gapped su-
perfluid phase FG with scattering parameter 1/(kF as) = 1.8
(µ/EF = −2.88 and |∆|/EF = 1.25).

are shifted to the right (towards positive kx), and that
of the Blue fermions are shifted to the left (towards neg-
ative kx), while the distribution of Green fermions re-
main centered at zero momentum. A second general fea-
ture revealed by the panels of Fig. 9 is that the momen-
tum distributions get smeared and broadened along kx
by the emergence of order parameter of the superfluid
state and by increasing scattering parameter. This leads
to an overall reduction of the maximum values of the mo-
mentum distributions, making the fermionic system less
degenerate, similarly to the case of two internal states,
that is, the spin-1/2 case. Another important observa-
tion about Fig. 9 is that the momentum distributions
nR(k) of the Red (R) states and nB(k) of the Blue (B)
states satisfy the relation nR(k) = nB(−k), because the
quasiparticle and quasihole energies are even functions
of momentum Ej(−k) = Ej(k) and the matrix elements
MjR(k) = MjB(−k). The latter symmetry relation fol-
lows from the fact that the R and B states experience
momentum shifts kT in opposite directions.

In Fig. 10, we show the momentum distributions nc(k)
for zero color-orbit coupling kT = 0, zero quadratic color-
shift bz = k2T /(2m) = 0, but for finite color-flip field
Ω/EF = 0.29 at T = 0.01EF . The distributions are
shown along direction (kx, 0, 0) for different color indices
c = {R,G,B} and can be constrasted with those of
Fig. 9, where the color-orbit coupling is kT = 0.35kF .
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To facilitate comparison between Figs. 9 and 10, we use
the same scattering parameters for corresponding panels.
In a) we show plots for the normal phase N3 with scat-
tering parameter 1/(kFas) = −1.8 (µ/EF = 0.97 and
|∆|/EF = 0.0). In b) we show plots for the superfluid
phase S1 with scattering parameter 1/(kFas) = −0.069
(µ/EF = 0.78 and |∆|/EF = 0.33). In c) we show plots
for the superfluid phase S1 with scattering parameter
1/(kFas) = 0.62 (µ/EF = 0.17 and |∆|/EF = 0.73).
In d) we show plots for the fully gapped superfluid
phase FG with scattering parameter 1/(kFas) = 1.8
(µ/EF = −2.88 and |∆|/EF = 1.25). Notice that the
interaction parameters and color-flip fields are exactly
the same as those of the corresponding panels in Fig. 9
and were chosen as such in order to illustrate the effect
of the color-orbit coupling kT .
Momentum distributions are relatively easy to measure

experimentally in the case of two internal states, and
there should be no additional difficulties in measuring
them for the case of color states. However, it is impor-
tant to emphasize that only measurements of the quasi-
particle and quasihole excitation spectrum can identify
fully each of the topological superfluid phases and their
nodal structure, as discussed in section IVA.

FIG. 10: (Color online) Momentum distributions nc(k) for
kT = 0 and bz = k2

T /(2m) = 0 at T = 0.01EF along direction
(kx, 0, 0) for different color indices c = {R,G,B}. The solid
blue lines corresponds to the Blue states, the long-dashed
green lines to the Green states, and the short-dashed red
lines to the Red states. In a) we show plots for the nor-
mal phase N3 with scattering parameter 1/(kF as) = −1.8
(µ/EF = 0.97 and |∆|/EF = 0.0). In b) we show plots for
the superfluid phase S1 with scattering parameter 1/(kF as) =
−0.069 (µ/EF = 0.78 and |∆|/EF = 0.33). In c) we show
plots for the superfluid phase S1 with scattering parameter
1/(kF as) = 0.62 (µ/EF = 0.17 and |∆|/EF = 0.73). In d)
we show plots for the fully gapped superfluid phase FG with
scattering parameter 1/(kF as) = 1.8 (µ/EF = −2.88 and
|∆|/EF = 1.25).

A general feature of the momentum distributions
shown in Fig. 10 is that the distributions of Red and
Blue fermions are not shifted with respect to that of the

Green fermions, because there is no color-orbit coupling
(kT = 0), and thus no color-dependent momentum trans-
fer. A second general feature revealed by the panels of
Fig. 10 is that the momentum distributions get smeared
and broadened along kx by the emergence of the order
parameter of the superfluid and by the increasing scatter-
ing parameter. This leads to an overall reduction of the
maximum values of the momentum distributions, mak-
ing the fermionic system less degenerate, similarly to the
case of Fig. 9, where the color-orbit coupling is non-zero
(kT 6= 0). Another important observation about Fig. 10
is that the momentum distributions nR(k) of the Red
(R) states and nB(k) of the Blue (B) states are iden-
tical, that is, nR(k) = nB(k), because the matrix ele-
ments MjR(k) and MjB(k) in Eq. (24) satisfy the rela-
tion |MjR(k)|2 = |MjB(k)|2. This implies that the R
and B states can no longer be distinguished by measure-
ments of their momentum distribution since they do not
experience momentum shifts in opposite directions, that
is, kT = 0.
In order to sharpen our understanding of spectroscopic

properties of color superfluids in the presence of color-
orbit coupling and color-flip fields, we will discuss next
the density of states for each color.

C. Color Density of States

The density of states ρc(ω) for each color c = {R,G,B}
can be obtained from the Green’s function defined in
Eq. (23) as

ρc(ω) = − 1

π

∑

k

lim
δ→0

I [Gcc(z = ω + iδ,k)] , (25)

where I denotes the imaginary part. Taking the limit of
δ → 0 leads to the simplified expression

ρc(ω) =
∑

k,j

|Mjc(k)|2δ [ω − Ej(k)] , (26)

where the sum over j = {1, ..., 6} spans over all quasipar-
ticle and quasihole states.
In Fig. 11, we show plots of frequency ω/EF versus

density of the states ρc(ω/EF ) and the corresponding
excitation spectrum Ej(k) along the kx direction, for
parameters Ω = 0.29EF , kT = 0.35kF , bz = k2T /(2m)
at temperature T = 0.01EF . The panels a) and b)
correspond to the normal phase N3 with parameters
1/(kFas) = −1.8 (µ/EF = 0.97, |∆|/EF = 0). The pan-
els c) and d) correspond to the superfluid phase R3 with
parameters 1/(kFas) = −0.069 (µ/EF = 0.81, |∆|/EF =
0.31). The panels e) and f) correspond to the su-
perfluid phase R1 with parameters 1/(kFas) = 0.62
(µ/EF = 0.19, |∆|/EF = 0.73). The panels g) and h)
correspond to the superfluid phase FG with parameters
1/(kFas) = 1.1 (µ/EF = −0.73, |∆|/EF = 0.99). A
general feature of all the panels in Fig. 11 is that the
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density of states of the Blue and Red colors is identi-
cal, that is, ρB(ω/EF ) = ρR(ω/EF ). This symmetry
is ultimately connected to the shifts in the color dis-
persions εR(k) = ε(k − kT) to positive momenta, and
εB(k) = ε(k + kT) to negative momenta, which to-
gether with the eveness of ε(k) leads to the relationship
εR(∓k) = εB(±k). This color-parity symmetry leads
to identical density of states for the Red and Blue col-
ored fermions, since it is no longer possible to distin-
guish between Red and Blue fermions after integration
over momentum states. This last observation is an ex-
plicit consequence of the symmetry relations for the ma-
trix element Mj,R(±k) = Mj,B(∓k) and for the quasi-
particle and quasihole energies Ej(k) = Ej(−k), which
follow from the fact that the Red (R) and Blue (B) states
get momentum kicks kT in opposite directions. Another
overall feature of the plots is that cusps and peaks in the
density of states ρc(ω/EF ) are associated with maxima,
minima and flat regions in the energy dispersions Ej(k).

In Fig. 11a, the color density of states ρc(ω/EF ) of
the normal phase N3 with non-zero Ω/EF and kT /kF
has similar features to those of the normal state when
Ω/EF and kT /kF are zero and the Red, Green and Blue
color states are degenerate. However, non-zero Ω/EF

and kT /kF mix the original R,G,B states and lift degen-
eracies making the density of states of the Green fermions
different from that of the Red and Blue fermions, how-
ever the density of states of Red and Blue fermions
remain the same because of the color-parity symme-
try εR(∓k) = εB(±k). The corresponding quasiparti-
cle/quasihole spectrum is shown in Fig. 11b.

In Fig. 11c, the color density of states for the R3 super-
fluid phase is illustrated. At low frequencies |ω|/EF ≪
|∆|/EF the density of states grows linearly with fre-
quency ω, that is ρc(ω/EF ) = γcω/EF , because of the
three nodal lines (rings) in the excitation spectrum. The
coefficient γc depends on color. In the present case γR =
γB 6= γG. Peaks in the color density of states appear at
maxima and minima of the quasiparticle/quasihole exci-
tation spectrum, as can be seen from the plots in Fig. 11c
and d.

In Fig. 11e, the color density of states for the R1 super-
fluid phase is shown. Again, the color density of states is
ρc(ω/EF ) = γcω/EF for low frequencies, because there
is a nodal line (ring) in the excitation energies Ej(k). In
the R1 phase, the coefficient γc is color-dependent with
γR = γB 6= γG similarly to the R3 phase. Again, peaks
in ρc(ω/EF ) appear at maxima and minima of the quasi-
particle/quasihole excitation spectrum as seen in Fig. 11e
and f.

In Fig. 11g, the color density of states for the FG su-
perfluid phase is shown. There is now a clear gap Eg

in the color density of states ρc(ω/EF ) as seen in the
excitation spectrum Ej(k) shown in Fig. 11h. Deep in
this phase, where the scattering parameter 1/(kFas) is
large, the quasihole energies carry essentially no spectral
weight. The physical reason for the very small quasi-
hole spectral weight is that interactions are sufficiently
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FIG. 11: (Color online) Frequency ω/EF versus color density
of states ρc(ω/EF ) in the original c = {R,G,B} basis, and
the corresponding excitation spectrum Ej(k) along the kx di-
rection. The parameters used are Ω = 0.29EF , kT = 0.35kF ,
bz = k2

T /(2m) at temperature T = 0.01EF , and various in-
teractions. In the left panels, the red dotted line represents
the Red fermions, the dashed green line represents the Green
fermions, and the blue solid line represents the Blue fermions.
On the right panels, the style-color code for energies Ej(k)
is: E1(k) is solid blue, E2(k) is dashed red, E3(k) is dotted
green, E4(k) is dash-dotted cyan, E5(k) is dashed-double-
dotted brown, and E6(k) is double-dashed-dotted magenta.
The panels a) and b) correspond to the normal phase N3
with 1/(kF as) = −1.8 (µ/EF = 0.97, |∆|/EF = 0). The
panels c) and d) correspond to the superfluid phase R3 with
1/(kF as) = −0.069 (µ/EF = 0.81, |∆|/EF = 0.31). The
panels e) and f) correspond to the superfluid phase R1 with
1/(kF as) = 0.62 (µ/EF = 0.19, |∆|/EF = 0.73). The pan-
els g) and h) correspond to the superfluid phase FG with
1/(kF as) = 1.1 (µ/EF = −0.73, |∆|/EF = 0.99).

strong 1/(kFas) ∼ O(1), and colored fermions are suf-
ficiently non-degenerate (µ/EF ≪ −1) that two-body
bound states (colored pairs) are well established. There-
fore, the creation of elementary (single fermion) excita-
tions requires the breaking of two-body bound states, and
thus only positive energy states are accessible.
It is important to mention that the color density of

states can also be measured using the photoemission
spectroscopy technique developed for cold atoms, which
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was used to probe the density of states of strongly inter-
acting Fermi gas of 40K atoms with two internal states
throughout the evolution from the BCS to the BEC lim-
its [61]. Now that we have finalized our discussion of
spectroscopic quantities, we would like make some final
remarks, before we summarize our conclusions.

V. FINAL REMARKS

We would like to make some final remarks on a few
important issues that we have not discussed so far, such
as Efimov states, non-uniform superfluidity, the critical
temperature of color superfluids and trap effects. It is
important to understand how these topics are affected
by color-orbit and color-flip fields. However, this analy-
sis lie beyond the regions of applicability of our current
work, but can be included in refined generalizations as
discussed below.
We begin our discussion by pointing out that Efimov

trimers in ultra-cold fermions with three internal states
{c = R,G,B} can be formed in an extremely dilute cloud
of atoms. The densities for which these RGB triatomic
molecules may form and remain stable is typically less
than 1012 atoms per cubic centimeter, based on a ex-
tensive description of Efimov states in a variety of sys-
tems [62]. Below the upper bound density for 1012/cm3

it may be sufficient to regard the trimers as isolated,
however with increasing atom densities in the range of
1012/cm3 to 1014/cm3 the surrounding medium largely
limits the formation of stable triatomic molecules. In
the particular case of fermions, the Pauli exclusion prin-
ciple plays an important role as the density increases
eventually preventing the formation of Efimov trimers.
If we were to consider that the binding energy of an
Efimov RGB trimer was slightly lower than that of
dimers RG,GB and RB, and assumed that the lifetime
of trimers and dimers were infinitely long, then at low
temperatures, a trimer liquid would be expected at lower
densities, and a dimer superfluid would be expected at
higher densities [17, 63] in the limit of zero color-orbit
(kT = 0), color-flip (Ω = 0) and color-shifts (δ = 0).
This situation is similar to what happens in QCD, where
at lower densities baryons (RGB trimers of quarks) ex-
ist, but at higher densities color superfluids (RG, GB
and RB dimers of quarks) emerge [13, 64].
A conjectured zero-temperature phase diagram de-

scribing Efimov trimers and color dimers with infi-
nite lifetimes have been sketched for a three-component
(color) Fermi mixture in the regime of narrow Fesh-
bach resonances [63], but without color-orbit, color-flip
or color-shift fields. The phase space parameters used
were the resonance strength parameter kFR

∗ and the
interaction parameter 1/(kFas), where kF is the Fermi
momentum for the three-component system, R∗ is the
scattering strength length and as is the s-wave scatter-
ing length. Indeed at lower densities Efimov trimers are
present, but they dissociate and disappear as density is

increased [62, 63]. In the broad resonance regime that we

are considering, the three-body parameter κ
(0)
∗ plays the

same role as the inverse of the length associated with the
strength of the resonance [62], that is, (R∗)−1. There-

fore, a similar qualitative phase diagram of kF /κ
(0)
∗ ver-

sus 1/(kFas) is expected in the absence of color-orbit
and color-flip fields [62, 65]. However, the inclusion of
color-flip fields creates internal population imbalances,
which exacerbate the effects of the Pauli exclusion prin-
ciple, thus making the formation of Efimov states more
difficult. A quantitative analysis of Efimov states for col-
ored fermions with three internal states in the presence
of color-orbit and color-flip fields is currently underway
and it is the subject of a future publication [65] meant
to describe the low density regime n <∼ 1012/cm3 of the
present problem.
However, in the context of cold atoms, the formation of

dimers and trimers occurs mostly in excited states and
not in their ground states. This means that such ex-
cited state dimers and trimers have lifetimes and can
decay into lower energy states spontaneously or disso-
ciate via collisional processes. For instance, the exis-
tence of Efimov trimers in 6Li has been observed ex-
perimentaly via an increasse in the particle loss rate
mediated by triatomic molecules [9, 10] and via atom-
dimer loss rates [66, 67]. Although, for three-component
fermions, we are not aware of experiments that mea-
sure directly the lifetimes of excited state dimers and
trimers at different scattering lengths, a recent exper-
iment involving 85Rb has shown that excited trimers
85Rb∗3 have a much shorter lifetime than dimers 85Rb∗2
with slightly smaller binding energy [68] at various fixed
scattering lengths and for densities in the range of 1011

to 1013 atoms/cm3. For example, in this density inter-
val, lifetimes for trimers range from 125µs to 97µs, while
the lifetime of dimers range from 2ms to 1ms at s-wave
scattering length as = 700a0, where a0 is the Bohr ra-
dius. This indicates that excited dimers can live about
ten times longer than excited trimers with comparable
binding energy. If for three-component fermions a similar
scenario applies, that is, if at low densities the lifetime of
trimers is much shorter than that of dimers with compa-
rable binding energy, then there is a time regime which is
sufficient long for trimers to decay, but sufficiently short
for dimers not to decay. In this experimental time regime,
we can consider just the quantum phases that emerge
due to existence of atoms and excited dimers, that is,
normal state and color-superfluid phases, as discussed in
this work. On the other hand, if the lifetimes of dimers
and trimers are comparable, it is clear that one must also
include possible phases of trimers in the putative phase
diagram of three-component fermions.
Another important point to mention is that non-

uniform color superfluidity may exist over a narrow
area in the BCS regime of the phase diagram shown
in Fig. 3, that is, in the range of parameters Ω/EF

<∼
0.2 and 1/(kFas) <∼ −1. For continuum problems in
three spatial dimensions, non-uniform superfluids occur
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only in the BCS regime and at very low temperatures
T/TF << 10−3, as its formation requires a large de-
gree of particle-particle nesting which parabolic bands
do not provide [69, 70]. Therefore, in three-dimensional
continuum systems, non-uniform superfluid states of the
Larkin-Ovchinikov [69] or Fulde-Ferrel [70] type may ex-
ist only in a very limited region of phase space, which is
confined to the BCS regime and very low temperatures.
The situation is similar for color superfluids with color-
flip and color-orbit fields.

In addition, we would like to comment on the effects of
fluctuations and on its importance in obtaining the criti-
cal temperature of the system away from the BCS regime.
In the case of zero olor-orbit and color-flip fields, the
critical temperature of color superfluids has been investi-
gated as a function of the interaction parameter 1/(kFas)
using the T-matrix approach [16] and leads to qualita-
tively similar results to those of spin-1/2 Fermi super-
fluids [59]. Without color-orbit and color-flip fields the
normal state of the system evolves from a color (RGB)
Fermi liquid to a color Bose liquid with RG, GB and
RB molecules (dimers) of masses MD equal to twice the
massm of their consituent fermions. The critical temper-
ature in the Bose-Einstein condensation regime is that of
non-interacting bosons (dimers) of mass MD = 2m and
density nD = n/6, where n is the density of fermions.

Therefore, TBEC = (2π/MD) [nD/ζ(3/2)]
2/3

= 0.137EF

is proportional to Fermi energy.

The critical temperature of spin-1/2 ultra-cold
fermions was recently investigated in the presence of
Zeeman fields and of the experimentally relevant equal-
Rashba-Dresselhaus (ERD) spin-orbit coupling [71].
That analysis revealed that spin-orbit coupling and Zee-
man fields modify the masses of the Bose molecules and
lead to an enhancement of the critical temperature in
the BEC regime. Furthermore, in the BCS region, the
critical temperature lies always below that of a system
without Zeeman fields and spin-orbit coupling. A de-
tailed analysis of the fluctuation effects and the critical
temperature of color superfluids in the presence of color-
orbit and color-flip fields is an important issue and will
be carried out at a later publication following the works
on spin-1/2 fermions [71] and on color superfluids [16].

Lastly, we would like to comment on the effects of trap-
ing potentials. Historically, harmonic confining poten-
tials have been consistently used to trap atomic Fermi
gases and the local density approximation (LDA) has
been widely used to describe the resulting inhomoge-
neous states. For harmonic traps Vtrap(r), the chemical
potential µ of our system is mapped into a local chem-
ical potential µ̃(r) = µ − Vtrap(r) within LDA. Thus,
several of the phases described in our phase diagram,
shown in Fig. 3a, may coexist in a harmonic trap. For
example, at unitarity, the single ring and the three ring
color superfluid phases can coexist in harmonic traps and
the detailed inhomogeneous spatial structure of color su-
perfluids needs to be mapped for fixed color-orbit and
color-flip fields. However, the current trend in experi-

mental work is to create different types of trapping po-
tentials including that of a box-type variety using digi-
tal micromirror devices (DMD) [72], which can produce
homogeneous states. This trend to study experimentally
homogeneous systems is reflected in recent work covering
both Bose [73] and Fermi [74] atomic superfluids. Thus,
we expect that homogeneous color superfluids with and
without color-orbit and color-flip fields will be studied us-
ing box potentials in the near future, such that a direct
comparison to our work can be made.
With our final remarks completed, we are ready to

state our conclusions next.

VI. CONCLUSIONS

We studied the quantum phases of interacting colored
fermions in the presence of color-orbit coupling and color-
flip fields. Experimental candidates for the observation
of such phases include 6Li, 40K, and 173Yb, which pos-
sess at least three internal states, that can be labeled Red
(R), Green (G) and Blue (B), and therefore can be used
to simulate exotic phases related to quantum chromody-
namic (QCD) systems in table top experiments.
Among many possibilities of analogous exotic QCD

phases, we focused on the emergence of color superfluid-
ity, where the presence of color-orbit coupling and color-
flip fields induce Lifshitz-type topological phase transi-
tions. In such transitions, the symmetry of the order pa-
rameter tensor does not change, but the structures of the
ground state wavefunctions and of the energy spectrum
of elementary excitations (quasiparticles and quasiholes)
do.
We constructed the low temperature phase diagram

of color-flip field versus scattering parameter (interac-
tions) and classified the emerging color superfluid phases
in terms of the loci of zeros of the quasiparticle excita-
tion spectrum in momentum space. For fixed color-orbit
coupling and quadratic color-shift field, we identified five
gapless phases with one, two, three, four or five rings of
nodes in the excitation spectrum, and one fully gapped
phase. In addition, we found that a very rare quintu-
ple point exists where five gapless superfluid phases with
line nodes converge. Given that the phase transitions
from one nodal superfluid to another is continuous (sec-
ond order) the quintuple point is also pentacritical. Fur-
thermore, in the limit of zero color-flip fields, but finite
color-orbit coupling, phase transitions from the normal
state to a nodal superfluid, and from a nodal to fully
gapped superfluids occur.
We constrasted the phase diagram of non-zero color-

orbit coupling with the simpler case of zero color-orbit
coupling, where the color-flip field versus scattering pa-
rameter phase diagram has only one gapless and one fully
gapped superfluid phase. In the limit of zero color-flip
field, the gapless phase is described by an inert degen-
erate mixed-color fermion band and two fully gapped
bands of quasiparticle excitations, while the fully gapped
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phase is described by an inert non-degenerate mixed-
color fermion band and two fully gapped bands of quasi-
particle excitations. In this case, only a crossover be-
tween BCS and BEC superfluids occurs.
We used the connectivity of the nodal regions in mo-

mentum space to classify the topology of the superfluid
phases, and analysed the order parameter tensor struc-
ture in a mixed color representation, as well as, in a
pseudo-spin representation exploring the singlet, triplet
and quintet sectors. We found that the nodal structure
of the order parameter tensor does not coincide with the
nodes in the quasiparticle/quasihole excitation spectrum,
which is the case for the more familiar example of spin-
1/2 fermions.
In addition to topological aspects, we investigated in

detail spectroscopic properties of colored fermions in
their normal and superfluid phases. We analysed the
quasiparticle/quasihole excitation spectrum, as well as

the momentum distribution and density of states of col-
ored fermions and concluded that these properties can
be used to help distinguish between different topological
nodal phases of color superfluids, and can be measured
using current experimental techniques.
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[13] C. A. R. Sá de Melo, “When fermions become bosons:

Pairing in ultracold gases, Physics Today, 45, October
(2008).

[14] L. He, M. Jin, and P. Zhuang, “Superfluidity in a three-

flavor Fermi gas with SU(3) symmetry”, Phys. Rev. A
74, 033604 (2006).

[15] R. W. Cherng, G. Refael, and E. Demler, “Superfluidity
and Magnetism in Multicomponent Ultracold Fermions”,
Phys. Rev. Lett. 99, 130406 (2007).

[16] T. Ozawa and G. Baym, “Population imbalance and pair-

ing in the BCS-BEC crossover of three-component ultra-

cold fermions”, Phys. Rev. A 82, 063615 (2010).
[17] A. Rapp, G. Zarand, C. Honerkamp, and W. Hofstetter,

“Color Superfluidity and “Baryon” Formation in Ultra-

cold Fermions”, Phys. Rev. Lett. 98, 160405 (2007).
[18] B. Barrois, “Superconducting quark matter”, Nucl. Phys.

B 129, 390 (1977).
[19] D. Bailin and A. Love, “Superfluidity and superconduc-

tivity in relativistic fermion systems”, Phys. Rept. 107,
325 (1984).
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