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We study spin mixing dynamics in a chromium dipolar Bose-Einstein Condensate, after tilting
the atomic spins by an angle θ with respect to the magnetic field. Spin mixing is triggered by
dipolar coupling, but, once dynamics has started, it is mostly driven by contact interactions. For
the particular case θ = π/2, an external spin-orbit coupling term induced by a magnetic gradient
is required to enable the dynamics. Then the initial ferromagnetic character of the gas is locally
preserved, an unexpected feature that we attribute to large spin-dependent contact interactions.

For spin systems, insight on their collective behaviour
can be gained from observations following a rotation of
the individual spins initially oriented along the external
magnetic field. Deviation from an overall precession of
the spins at the Larmor frequency may reveal interparti-
cle interactions. This generic problem is encountered for
example in Nuclear Magnetic Resonance, where dipole-
dipole interactions (DDIs) is a source of decoherence [1],
and thus have to be reduced to obtain long coherence life-
times of nuclear spins [2]. Similar cancellation of DDIs
has also been demonstrated in the case of electrons in
semiconductors [3], or for impurity centers in a solid [4].

On the contrary, interaction-induced modification of
the mere precession can be desired, as it leads to inter-
esting phenomena. For example DDIs between ultracold
molecules in an optical lattice were evidenced this way
[5]. For spinor quantum gases [6], i.e. quantum degener-
ate gases with a spin degrees of freedom, tilting the spins
by an angle θ with respect to the magnetic field (see
Fig. 1a)) has lead to observation of spontaneous pattern
formation due to instabilities driven by DDIs [7, 8] or
antiferromagnetic contact interaction [9]. Dipolar spin
systems could display beyond mean field physics for an-
gles θ close to π/2 [10]. Here we rotate the spins of a
s = 3 52Cr BEC, and study how spin dynamics develops
as an interplay between contact interactions, DDIs, and
magnetic field gradients (MGs). One unexpected out-
come is that strong spin-dependent contact interactions
favor the persistence of ferromagnetic textures (see Fig.
1b)), and seem to slow down beyond mean-field effects.

Compared to alkaline spinor gases, a 52Cr BEC of-
fers two key differences: spin dependent contact interac-
tions are significantly larger [11], and DDIs are 36 times
larger. After rotation from an initially polarized BEC in
s = 3,ms = −3, atoms are in a stretched (ferromagnetic)
state corresponding to a well-defined molecular potential.
Starting from this initial state, no spin dynamics can de-
velop under the influence of contact interactions (in con-
trast with [12], where a non-ferromagnetic initial state
was prepared), which display SU(2) symmetry and pre-
serve the total spin. On the other hand, DDIs or MGs,

FIG. 1. Principle of the experiment. a) The spins of atoms in a

polarized s = 3 52Cr BEC are rotated at t = 0, and make an angle θ
with respect to the external magnetic field, Bdyn. b) After a variable
time tdyn spins point in different directions (shown by arrows) but
have a length almost constant (see color code). The figure is a result
of our Gross Pitaevskii simulation for tdyn = 5 ms. Right: Absorption
imaging after a Stern Gerlach separation allows to measure populations
in the seven spin components. Pictures show the seven separated clouds
for θ = π/2 and the magnetic field configuration of Fig. 3. c) tdyn = 0.1
ms. d) tdyn = 5 ms.

which convey spin-orbit coupling, can trigger spin mix-
ing. For example, in the mean-field approximation, the
dipoles which precess around the external magnetic field
create an effective dipolar magnetic field [13], and DDIs
result in precession of the spins around this dipolar field.
This triggers spin dynamics, unless θ = π/2, in which
case the dipolar field is parallel to the spins.

Experimentally, we find that DDIs do trigger spin dy-
namics, even when we best suppress MGs, for θ 6= π/2.
However, spin dynamics is strongly suppressed for θ =
π/2 without MGs. For θ ≈ π/2, we recover spin dynam-
ics by applying MGs, and find that dynamics preserves
the initial ferromagnetic character of the BEC. We at-
tribute this unexpected effect to large spin-dependent
contact interactions: depolarization is inhibited by an
energy gap ∝ 4πh̄2n(a6 − a4)/M (with M the atomic
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mass, n the density, and aS the scattering length associ-
ated to the molecular potential S), favouring persistence
of locally fully magnetized classical states. We confirm
this phenomenon by measuring the norm of the collective
spin during dynamics.

The starting point of our experiments is a polarized
52Cr BEC produced in a crossed dipole trap [11], with
typically 4× 104 atoms polarized in the minimal Zeeman
energy state ms = −3. Trap frequencies are ωx,y,z =
2π × (298, 245, 210) Hz, with 5% uncertainty, Oy being
the vertical axis. The atomic spins are aligned along an
external magnetic field noted Bdyn, whose average am-
plitude B0 is in the 150− 200 mG range, and whose av-
erage direction ûB is in the horizontal xz plane. Bdyn is
maintained constant during the whole dynamics. The dy-
namics is initiated at t = 0 by a resonant radio-frequency
pulse, at the Larmor frequency fL = gµBB0 (g = 2 is the
Landé factor, µB the Bohr magneton), and a Rabi fre-
quency equal to 50 kHz; it rotates all spins by an angle
θ, so that s t=0+ = cos(θ)ûB + sin(θ)û⊥, (û⊥ ⊥ (ûB, ûy),
see Fig. 1a)). We let the system evolve for a duration
tdyn. We then switch the optical trap off and spatially
separate the 7 spin components during a time of flight
of 5 ms, using a Stern Gerlach (SG) technique (see Fig.
1c)d)).Spin populations measured after SG correspond
to a projective measurement along ûB (see Appendix).
From absorption pictures as those shown in Fig. 1c)d),
we obtain populations Nms of all seven spin components
(for details on detectivity calibration see Appendix). We
then compute the total population Ntot =

∑

ms
Nms and

fractional populations pms = Nms/Ntot. We also mea-
sured the 3D spatial dependance of Bdyn, and obtained
|Bdyn| = B0 + b.r (see Appendix).

Figure 2 displays temporal evolution of pms when we
best cancel MGs. There is almost no spin mixing dy-
namics in the case θ = π/2 as shown by Fig. 2 a). In
absence of MGs, this is expected from the mean-field
point of view [13]. On the other hand, spin models do
predict beyond mean field dynamics at θ = π/2 [10], over
a time scale ≃ 10 ms for our atomic distribution. Simula-
tions of our BEC system based on the Truncated Wigner
Approximation [14] indicate that the gap associated to
spin-dependent short range interactions delay the onset
of beyond mean field corrections.

In contrast, spin mixing dynamics is obtained for a ro-
tation by θ = π/4 when MGs are best cancelled (see Fig.
2 b)). The occurrence of spin dynamics in absence of
MGs is an experimental signature of DDIs, which break
spin rotational symmetry, contrarily to SU(2) symmetric
contact or Heisenberg spin-spin interactions. The demon-
stration of this genuine dipolar dynamics in a BEC is the
first main result of this paper.

Figure 3 shows evolution of pms for θ = π/2 in a case
where MGs are not minimized, contrarily to Fig. 2 a).
Then a significant dynamics is observed. We find that
the general trend is that larger MGs lead to faster spin

dynamics (see Appendix). Besides we find a significant
decrease ofNtot in a few ms, which we attribute to dipolar
relaxation collisions [15]. Losses due to dipolar relaxation
are more important at θ = π/2 compared to θ = π/4 due
to the larger spin rotation.
The ensemble of results shown in figures 2 and 3

demonstrate the sensitivity of the dynamics not only to
the external magnetic field configuration, but as well to
the initial preparation (angle θ). In order to understand
the influence of these different parameters, and the role
played by the different interactions, we have developed a
three dimensional spinorial Gross-Pitaevskii (GP) simu-
lation. The seven components of Ψ, the spinor describ-
ing the condensate field, obey the equations ih̄∂Ψm

∂t =
δ(H−iΓ)

δΨ∗

m
, with:

H − iΓ =

∫

d3r
(

Ψ(r)†Ĥ0Ψ(r) + µBg |Bdyn|SZ(r) +
c0
2
|n(r)|2

)

+

∫

d3r
(c1
2
|S(r)|2 + c2

2
|A00(r)|2 +

c3
2

2
∑

M=−2

|A2MS (r)|2
)

−cdd
2

∫

d3rd3r′
1− 3(ê · ûB)2

|r− r′|3
[1

2

(

SX(r)SX(r′) + SY (r)SY (r′)
)

−SZ(r)SZ(r′)
]

− i

∫

d3r
∑

l,m

βl,m |Ψm(r)|2 |Ψl(r)|2 (1)

The spin density vector is S(r) = Ψ
†(r) ·s ·Ψ(r) with s =

{sX , sY , sZ} spin-3 matrices. Ĥ0 = − h̄2

2M∇2 + Vtrap(r)
is the single particle Hamiltonian, with Vtrap(r) the spin-
independent harmonic trapping potential.
The term proportional to c0 describes the contact den-

sity interaction, with n(r) = Ψ
†(r) · Ψ(r) the conden-

sate density. The terms proportional to c1, c2, c3 de-
scribe the contact spin dependent interactions [16], with

ASMS (r) =
∑3

mm′=−3 〈S,MS|3,m; 3,m′〉Ψm(r)Ψm′(r).
For 52Cr, we use c0 = 71 gcaB, c1 = 3.5 gcaB; c2 = −15.5
gcaB, c3 = −46.5 gcaB, with gc = 4πh̄2/M , and aB the
Bohr radius [15, 17, 18].
The term proportional to cdd = µ0(gµB)

2/(4π) (with
µ0 the magnetic permeability of vacuum, and ê = (r −
r
′)/|r−r

′|) is the secular Hamiltonian of DDIs which con-
serves magnetization along the magnetic field. Magneti-
zation non-conserving terms of DDIs give rise to the ob-
served atom losses, which we take into account by adding
the imaginary term iΓ, following [19].
Ĥ0 can be enriched by a quadratic term q(SZ)2; for Cr,

it corresponds to the (small) tensorial light shift induced
by the 1075 nm laser creating the optical trap. We show
in Fig. 3 that q ≃ 6 Hz leads to slightly better agree-
ment with the data; it can account as well for the small
dynamics of Fig. 2a).
The GP simulations compare well to experimental

data (see Figs. 2, 3), with no adjustable parameter
(q = 0). Simulations thus allow us to probe the rela-
tive influence of the different interactions. We show on
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FIG. 2. Temporal evolutions for B0 = 189 mG, ûB = cos (34 × π/180) ûx + sin (34 × π/180) ûz , (bx, by , bz) = (3.5 ± 15, 3.6 ± 7, 1.8 ± 17)

mG.cm−1. a) θ = π/2. b) θ = π/4. We show experimental data (points) and result of our Gross Pitaevskii simulations without free parameters
(solid line), for the seven fractional populations in a), and in b) for the 4 fractional populations significantly populated. Error bars take into
account both statistical and systematics uncertainties.

FIG. 3. Temporal evolution following an initial rotation by
an angle θ = π/2, for B0 = 170 mG, ûB = ûz , (bx, by, bz) =

(1.6 ± 7, 44.6 ± 7, 5.7 ± 8) mG.cm−1. We show experimental data
(points) and results of Gross Pitaevskii simulations (full lines), for the
seven fractional populations, and for the total number of atoms (bottom
center). Error bars take into account both statistical and systematics
uncertainties. Bottom right: influence of a non zero quadratic effect.
The χ2 criteria, evaluated over the full spin populations data, is plotted
as a function of q.

Fig. 4a) what is the expected dynamics if DDIs or con-
tact spin dependent interactions are neglected (setting
a0 = a2 = a4 = a6 = (9a4 + 2a6)real/11). The striking
differences seen for the different cases show the promi-
nent role played by contact spin exchange processes. In
this example θ = π/2, but even in the case of θ = π/4,
where DDIs are instrumental in triggering spin dynamics

(see Fig. 2b)), similar conclusions hold.

Furthermore, simulations confirm that in presence of
small MGs spin mixing develops for θ = π/4 (see Fig.
2 b)); and that, on the contrary, spin mixing dynamics
is much reduced for θ = π/2 (see Fig. 2 a)), unless a
MG is applied (see Fig. 3). This was discussed in [8]
for the particular case b//ûB; our simulations indicate
that MGs with b ⊥ ûB are even more efficient to trigger
dynamics. Therefore MGs play a key role to trigger spin
mixing dynamics in our system (as opposed to e.g. [20],
where MGs can suppress spin exchange processes).

Just after rotation, all spins are maximally stretched
(and aligned), so that the sample is ferromagnetic. One
striking observation in our simulations is that a ferromag-
netic character is maintained while dynamics proceeds.
We investigate this property by computing the local spin
length Π(r) = |S(r)| /n(r) (0 ≤ Π(r) ≤ 3) integrated over
the cloud, which is maximal for a ferromagnetic state.
We find that the integrated spin length remains close to
3 (see Fig. 4b)) during dynamics. This protection of
ferromagnetism, which would be even more pronounced
in absence of DDIs (see Fig.4 b)), comes as a surprise
since a6 > a4 energetically disfavors ferromagnetism in
the 52Cr BEC [21].

To understand this effect, we have solved the GP equa-
tion for a homogeneous BEC in presence of MGs. We
find that the initial ferromagnetic character of the BEC
is protected by spin exchange contact interactions, which
provide self-locking of the spinor components, similar to
the one observed in atomic clocks [22]. Such locking oc-
curs because the initial spinor state lies at an extremum
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(for us a maximum) in energy. On the other hand, phase
scrambling between the different ms components arises
due to increasing kinetic energy associated to accelera-
tion by MG. For a homogeneous gas of density n after
an evolution time T , and provided incoherent scattering
remains negligible [23], ferromagnetic protection is en-

sured if (msgµBb)
2 T 2/(2M) << c1n [24]. This criterion,

which can also be derived from a linear response theory
(see Appendix), highlights the crucial role of the energy
mismatch set by c1 (further investigated in Appendix).
In a trap the criterion is set by the ratio between max-
imal kinetic energy (corresponding to T = π/(2ω)) and
c1n, which is equal to about 0.05 in our case.

Taking the phenomenological assumption that the lo-
cal spinor remains ferromagnetic, we derived the fol-
lowing evolution of the fractional populations (see Ap-
pendix) after a π/2 pulse, assuming that the system is
described by the ferromagnetic hydrodynamics equations
[25] (which underlines a connection to the physics of fer-
rofluids), and taking an initial Gaussian ansatz of 1/e2

radius R:

pms(t)

pms(0)
= 1 +

1

2

(

gµBb

MR

)2


m2
s −

∑

ms′

m2
s′pm′

s
(0)



 t4

(2)
Thus a state can remain ferromagnetic only if spin ex-
change processes counterbalance the change in local pop-
ulations due to the separation between spin components
induced by MGs. We find excellent agreement of this
surprisingly simple equation with simulations at short
time when only contact interactions are taken into ac-
count (see Fig. 4a), and Appendix). We stress that
this equation is independent of interactions, which are
in practice adiabatically eliminated. Large enough spin-
dependent interactions thus convey metastability to fer-
romagnetism and lead to a universal behavior, whether
the spinor ground state is ferromagnetic, or not (e.g. 52Cr
is expected to have a cyclic ground state [18]). This find-
ing is the second main result of our paper.

To confirm the persistence of ferromagnetism, we per-
formed experiments where we applied a second π/2 rf
pulse with a random phase of the rf field, just before
Stern-Gerlach projection. We then measure the abso-
lute value of the normalized magnetization, |∑mspms |.
The envelop of the fluctuating data provides a lower-
range value for the norm of the collective spin L =
∣

∣

∫

d3rS(r)
∣

∣ /N (see e.g. [26], and Appendix). Experi-
mental results, shown in Fig. 4c), are thus in very good
agreement with numerical simulations for L. Unlike Π(r),
L significantly departs from 3: this indicates that while
the spins remain (almost) locally polarized, spin textures
grow, mostly corresponding to S(r) pointing along differ-
ent directions in different parts of the BEC. On the other
hand, the fact that L reaches a value close to the initial
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FIG. 4. Top: results of numerical simulations for the magnetic field
configuration of Fig. 3. We compare the real case (thick full lines)
to the case where contact spin dependent (dashed lines) or dipolar
interactions (dotted lines) are suppressed (see text). a): fractional
populations in ms = 0. The (red) thin line corresponds to our model
at short time (see eq.(2)). b): spin length integrated over all cloud.
Bottom: measurement of the norm of the collective spin, L. Circles
are the measured values of |

∑
mspms | after a π/2− t− π/2 sequence,

while the full line is the value of L, obtained from our GP simulations.

one at tdyn = 10 − 13 ms is an experimental proof that
the spins are then almost in a stretched state, and almost
parallel.

Our GP simulations confirm this scenario, and the ap-
pearance of spin textures (see Fig. 1b)). However, in
contrast to [8], in situ spin structures are strongly modi-
fied after time of flight in our case, and their study goes
beyond the scope of this paper. In our experiment, spin
textures of dipolar origin can be created at a rate of or-
der [13] Γdd = (3ncdd)/h̄ = 2.5 × 102 s−1, with n =
2.5× 1020m−3. On the other hand, the relevant spin ex-
change rate reads Γ4,6 = 4πh̄n(a6−a4)/(11M) = 7×102

s−1. These estimates show the interplay between con-
tact and dipolar interactions for the appearance of spin
textures.

In conclusion, we have investigated the spin mixing
dynamics for a s = 3 spinor BEC following a rotation
of the individual spins, initially aligned along the mag-
netic field. We have observed that while DDIs can trigger
dynamics for θ 6= π/2, MGs are necessary for θ = π/2.
For this case, we have demonstrated the occurrence of
an original scenario, in which strong spin dependent in-
teractions drive the dynamics as a response to MGs, and
tend to lock the spinor onto a ferromagnetic state, even
though depolarization is energetically favoured. Unfortu-
nately this scenario seems to disfavour appearance of be-
yond mean field effects in our system, which by contrast
would reduce the local spin length. Our configuration
is thus probably at the limit of seeing beyond mean-field
physics, which could for example be enhanced by working
in lower dimensions.
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APPENDIX

In this Appendix, we give experimental details con-
cerning the Stern-Gerlach (SG) procedure, the mea-
surement of magnetic field gradients, the calibration of
spin detection measurement, and the measurement of
the norm of the collective spin. We also discuss why
spin exchange interactions provide a feedback mecha-
nism which tends to maintain the ferromagnetic char-
acter of the spins during spin dynamics. We show from
our Gross-Pitaevskii simulations that conservation of fer-
romagnetism is provided by spin-dependent interactions
corresponding to the term c1. We finally provide two
models to explain the role of magnetic gradients in the
spin dynamics, a basic one, and one based on an hydro-
dynamic approach, which both allow to retrieve equation
(2). Supplemental experimental data is also provided.

Stern Gerlach procedure

The SG field is in the horizontal plane along a direction
x’, and has the form: ~BSG = (BSG + bx′) ~ux′ , with b ≈
0.5 G.cm−1. Atoms in different spin states are separated
by the associated spin-dependent force. After tTOF =
5 ms of free fall in presence of the gradient, atoms are
imaged through standard absorption imaging, with a 425
nm resonant circularly polarized laser beam. The value
of tTOF was chosen in order to have sufficient spatial
separation between spin components, while maintaining
good signal to noise ratio for imaging (see Fig 1 c)d) of
the main article).

Measurement of magnetic field gradients

To measure the magnetic field gradient during spin dy-
namics, we proceed to a differential measurement, con-
sisting in measuring the ballistic expansion of a BEC
prepared for two different ms states. We let the cloud
expand in ~Bdyn for 10 ms. We compare the final po-
sition of atoms initially in ms = 3 with that of atoms
initially in ms = −3, by applying or not a frequency
sweep across the Larmor frequency fL before expan-
sion. For ~Bdyn = (B0 + αx+ βy + γz)~uB + B1~u⊥,

with {αx, βy, γz,B1} ≪ B0 in the entire cloud,
∣

∣

∣

~B
∣

∣

∣
≃

B0 + αx+ βy + γz, so that the force experienced by the
atom is gmSµB (α~ux + β~uy + γ~uz). To measure α, β and
γ, we take absorption images along two approximately
orthogonal directions.

Calibration of imaging system

The raw values of the populations of the spin compo-
nents obtained by integration of absorption images do
not give absolute values of the populations. This can be
for example inferred from the picture shown in Fig. 1
c). The initial rotation θ = π/2 is then expected to lead
to a symmetric population distribution (Nms = N−ms),
but in Fig. 1 c), there is a growing deficit in popula-
tion with ms, so that in particular N+3 is substantially
undervalued.

This systematic effect mostly derives from the fact that
the cross section for absorption of resonant light strongly
depends on the ms states, through Clebsch-Gordan co-
efficients. First, the magnetic field during imaging is not
parallel to the imaging beam axis. Second, optical pump-
ing by the imaging beam is not fast enough compared to
the 75 µs duration of the imaging pulse, on the 425 nm
J → J + 1 transition, with an intensity of 0.04 the satu-
ration intensity.

Calibration of normalization factors fms , with Nms =
fmsNms,raw, are obtained by comparing measured
populations following immediately rotations of θ =
π/4, π/2, 3π/4, and π, with theoretically expected val-
ues. This calibration depends on the magnetic field direc-
tion during spin dynamics, as eddy currents do not allow
to rapidly set the direction of the magnetic field during
imaging. For example for the data in Fig. 3 of the main
article: f−3 = 1± 0.15, f−2 = 1± 0.1, f−1 = 1.4± 0.15,
f0 = 2.25 ± 0.2, f+1 = 4.35 ± 0.45, f+2 = 5.4 ± 0.2,
f+3 = 6 ± 2. Error bars in this calibration are used to
compute systematic errors on relative populations.
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Norm of the collective spin

In the case θ = π/2, our GP simulations show a per-
sistence of the local ferromagnetic character of the 52Cr
BEC. Experimentally, we cannot measure local quantities
such as local spin length: we have only access to collec-
tive quantities. In particular, we can measure the norm
of the collective spin, normalized to the atom number,
that we note L. The maximum of L is 3 (as we deal with
spin 3 atoms), and is only obtained in the case of a fer-
romagnetic sample with all spins aligned (e.g. the initial
state in our experiment). On the other hand the mini-
mum of L, 0, can be reached even with a ferromagnetic
sample, when all spins are in a stretched state but point
along random directions; or if all atoms are prepared in
ms = 0.
The measurement of L provides an other comparison

between experiment and our GP simulations. Besides,
a large value of L (close to 3) is only compatible with
a ferromagnetic sample: measuring L close to 3 after
the spin dynamics has processed demonstrate that the
ferromagnetic character of the gas is preserved (see Fig.4
c) of the main article).
To measure L at a given time tdyn of the spin dynamics,

we use a second π/2 RF pulse at tdyn. As the first RF
pulse, it induces a rotation of all spins by π/2 around the
Oy axis, while the external B field is along Oz. Because
of a jitter of the Larmor frequency during the dynamics,
the direction of the collective spin just before the second
RF pulse is random in the Oxy plane for tdyn > 1 ms.
We then measure populations in the z basis with our SG
analysis. The quantity |∑mspms | will range from 0 to
L, depending if the collective spin just before the second
RF pulse points along Oy or Ox. To evaluate the value of
L we therefore repeat the measurement a large number
of times (50 for the data of Fig. 4c)) and the maximal
value of |∑mspms | is a lower-range value for L.

Interaction-driven ferromagnetic protection in an
homogeneous gas

One of the surprising features revealed by the numer-
ical simulations is that, in the presence of a magnetic
field gradient, spin dynamics takes place while preserv-

ing the local ferromagnetic character of the spinor order
parameter. Here we present a short derivation of the
conditions for the ferromagnetic protection for an homo-
geneous spinor BEC gas. The results are derived from
a linear response analysis of the Gross-Pitaevskii equa-
tion (GPE). For simplicity we set to zero all subleading
spin dependent interactions and only keep c1 (direct ex-
change ) i.e. c2 = c3 = cdd = 0. We also set Vtrap = 0
and B0 = 0. The latter is because the constant part
of the magnetic field can be factored out and does not

play a role in the dynamics. The initial condition is a
ferromagnetic state along the x direction which we de-
note as Ψm(x, t = 0) = n〈m| − sx〉. The exact dynamics
generated by the GPE is rather complex. However, its
short-time limit can be captured quite easily when b is
small by postulating a solution of the form :

Ψm(x, t) =
√
n e−iµt[〈m| − sx〉+ zm(x, t)],

with µ =
(

c0 + s2c1
)

n and |zm| ≪ 1 (zm is complex and
depends only on x), and expand non-linear terms in the
GPE in powers of zm. After some straightforward algebra
we arrive at the time-dependent fractional populations:

pm(t)

pm(0)
= 1 +

h̄2(gµBb)
2

2Mν3
ζ(τ)

[

m2 −
∑

n
n2pn(0)

]

with ζ(τ) = [τ2 − sin2 τ ], τ = νt/h̄ and ν = c1sn. For
times t < h̄/c1n, spin dynamics occurs, with a population
change ∝ c1n. For large enough spin-dependent interac-

tions, corresponding to β = h̄2(gµBb)2

Mν3 → 0, this corre-
sponds to a very small change in populations, which can
be in practice neglected. In our experiment, β < 10−6.
For times t > h̄/c1n, while still considering the perturba-
tive regime valid, we only need to keep the quadratic term
in ζ (τ2 ≫ sin2 τ) and the populations remain locked in
a ferromagnetic state when (gµBb)

2t2/[M(c1sn)] << 1.
This condition (also given in the main part) insures that
no population dynamics occurs for a homogeneous gas

and that the gas remains ferromagnetic.

Effect of the different spin-dependent contact
interaction terms

We have performed a systematic study with our Gross-
Pitaevskii simulation, where we vary the different spin-
dependent interaction terms c1,2,3. We consider four
different cases. The first case corresponds to all spin-
dependent interactions canceled. The second case is
when only c1 is kept non zero. The third case is when
only c2 is kept non zero. The fourth case is when only c3
is kept non zero. Coefficients ci are set by the numerical
values of the 4 scattering lengthes of 52Cr coming into
play ([16]): a0,2,4,6. To ensure relevant comparison, we
start for all cases from the same fully polarized initial
state, entirely defined by the value of a6: for all cases the
numerical value of a6 is the real one. We then vary the
numerical values of a0,2,4 to obtain the desired value of ci.
For example in the first case we set a0 = a2 = a4 = a6.
We plot in Fig. 5 the fractional populations, and the

integrated spin length as a function of time, for these
different cases. We find that, while any of the c1,2,3 by
itself can drive spin dynamics, the local ferromagnetic
character of the gas is only preserved when c1 is non



7

0 5 10
0.0

0.2

0.4
p
m

(t
)

a)

0 5 10
0.0

0.2

0.4
b)

0 5 10
0.0

0.2

0.4
c)

0 5 10
0.0

0.2

0.4
d)

0 5 10
1.5

2.0

2.5

3.0

tdyn(ms)

sp
in

le
n

g
th

0 5 10
1.5

2.0

2.5

3.0

tdyn(ms)

0 5 10
1.5

2.0

2.5

3.0

tdyn(ms)

0 5 10
1.5

2.0

2.5

3.0

tdyn(ms)

FIG. 5. Results of our Gross-Pitaevskii simulation without DDIs, for the experimental conditions of Fig. 3). We keep the
same initial (fully polarized) ground state, and set some of the spin dependent interactions terms c1,2,3 to 0. Top: fractional
populations, corresponding from top to bottom at t = 0 to p0, p±1, p±2, p±3. Bottom: spin length integrated over all cloud.
a): c1 = c2 = c3 = 0, b): c2 = c3 = 0, c): c1 = c3 = 0, d): c1 = c2 = 0.

vanishing. This confirms the crucial impact of the energy
mismatch c1n to preserve ferromagnetism.

A physical interpretation of this result is the following.
Atoms are initially in state ms = −3 along the Ox axis,
which first couples to state ms = −2 through MGs. The
ms = −2 state involve collisions only in the molecular
channels S = 6 and S = 4. Therefore, the molecular
channels S = 2 and S = 0 do not come into play at the
earlier stage of the dynamics, hence the leading role of c1
compared to c2,3 which involve a0,2 (see [16]).

Basic derivation of equation (2)

In this paragraph we provide a basic derivation of equa-
tion 2 describing perturbative population dynamics in
the limit of very fast spin exchange dynamics. We con-
sider a spinor BEC with a spin equal to s, initially in
a ferromagnetic state, characterized by initial fractional
populations pms,i. For t > 0, a magnetic gradient b im-
parts differential accelerations ams to the different ms

states: ams = msa, with a = gµBb/M .

At t = 0, all atomic distributions are the same. At
a given time t > 0 atomic distributions of the different
ms states are translated by xms(t) = 1

2amst
2. In this

basic approach we consider that population of a given
ms state is split in two. First, the part which has moved
away from the initial volume occupied by the atoms (with
corresponding population Nms,ext), which does not ex-
perience spin mixing. And second, the part which is
still in this initial volume (with corresponding population
Nms,c). We therefore obtain the following decomposition
for the population of all ms states:

Nms,i = Nms,ext +Nms,c (3)

At short times we have:

Nms,c = Nms,i

(

1− xms(t)
2

W 2

)

(4)

where W is the typical spatial extension of the cloud.
The populations in the inner part are modified by spin

mixing such that, after mixing has taken place, the ferro-
magnetic character is recovered; we note the correspond-
ing populations Nms,c,f . For θ = π/2, transport asso-
ciated to MGs preserve locally the initial magnetization
(0), and the condition to recover ferromagnetism is:

Nms,c,f

Nc,tot
= pms,i (5)

with Nc,tot =
∑

ms
Nms,c. After spin dynamics the total

spin population in a given ms state, Nms,f , is given by
Nms,f = Nms,ext + Nms,c,f , and consequently the final
fractional populations are given by:

pms(t) = pms,f = pms,i
xms(t)

2

W 2

+pms,i

∑

ms′

pms′ ,i

(

1− xms′
(t)2

W 2

)

(6)

which gives:

pms(t)

pms,i
= 1 +

(

gµBb

2MW

)2


m2
s −

∑

ms′

m2
s′pms′ ,i



 t4 (7)

This simple approach qualitatively yields the good re-
sult of eq. (2). Below, integration over the spatial distri-
butions is done exactly.
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Hydrodynamic approach

The metastability of the ferromagnetic character of
the gas, justified above, provides a way to considerably
simplify the theoretical treatment. We phenomenologi-
cally assume that the BEC always remains locally ferro-
magnetic, which allows us to derive hydrodynamic equa-
tions, which are equivalent to the ferromagnetic Gross-
Pitaevskii equation. For a fully polarized BEC, one can
find dynamics equations for the density ρ, mass velocity
vmass, spin velocity v spin

µ and for the spin density F of
component Fµ [16]. In the following, the dipolar interac-
tion is neglected. The equation for Fµ then reads:

∂Fµ

∂t
+∇.

[

ρv spin
µ

]

=
gµB

h̄
(Bdyn × F)µ (8)

where µ = (x, y, z), g is the Landé factor, µB the Bohr
magneton, andBdyn the (inhomogeneous) magnetic field.
We define the local spin density f = F/ρ and we sup-
pose that vmass ∼ 0 therefore ∂ρ

∂t = −∇. [ρvmass] ∼ 0
(in accordance with our full numerical simulations of the
Gross-Pitaevskii equation). Then Eq.(8) becomes:

ρ
∂fµ
∂t

+∇.
[

ρv spin
µ

]

=
gµBρ

h̄
(Bdyn × f)µ (9)

where

v spin
x = − h̄

2Ms (fy∇fz − fz∇fy) (10)

v spin
y = − h̄

2Ms (fz∇fx − fx∇fz)

v spin
z = − h̄

2Ms (fx∇fy − fy∇fx)

where s is the spin (s = 3 in our case); M is the mass.
Starting from a fully polarized BEC we rotate the

spins around the Oy axis with an angle θ. In the
presence of an inhomogeneous magnetic field Bdyn =
gµBB0ez+gµBbxez , the spin precess around ez (in addi-
tion to the homogeneous Larmor precession at frequency
ωL = gµbB0x/h̄ which factors out of the problem) with
a frequency ωb = gµBbx/h̄. We used a Gaussian ansatz
for the density ρ = N

(π
2 )

3/2
R3

exp
[

−2r2/R2
]

, with N he

number of atoms and R the size of the cloud. We then
recover eq. (2).
In Fig. 6, we plot the result of eq.(2) alongside our

numerical simulations of the Gross-Pitaevskii equation
without dipole-dipole interactions for the different frac-
tional populations in states ms. The agreement is re-
markable, confirming the validity of the ferromagnetic
approximation and the hydrodynamic approach.

Supplemental data

We plot in Fig. 7 supplemental data, showing the evo-
lution of pms for θ = π/2 and a Bdyn configuration differ-
ent than the ones in Fig. 2 a) and Fig. 3. The agreement
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FIG. 6. Comparison between our perturbative ferromagnetic
model to fourth order, and the full numerical simulation of
the Gross-Pitaevskii equation. Populations as a function of
time, corresponding from top to bottom at t = 0 to p0, p±1,
p±2, p±3. The trap is spherical with a trap frequency of 320
Hz, the atom number is 30 000, and the magnetic gradient is
equal to 3.5 mG.cm−1.
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FIG. 7. Data for smaller gradient than in Figure 3. B0 =
176 mG, ~uB = ~ux, (bx, by , bz) = (0 ± 10, 7 ± 7, 19.6 ± 10)
mG.cm−1. Full lines are result of our simulations with no
adjustable parameters.

between experimental data and numerical simulations is
as good as in these Figures, confirming the validity of our
numerical simulations. We find again that the data ex-

hibit spin dynamics over the timescale
(

2MR
gµBb

)1/2

given

by eq. (2).
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