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We use quantum information measures to study the local quantum phase transition that occurs for
trapped spinless fermions in one-dimensional lattices. We focus on the case of a harmonic confine-
ment. The transition occurs upon increasing the characteristic density and results in the formation
of a band insulating domain in the center of the trap. We show that the ground-state bipartite
entanglement entropy can be used as an order parameter to characterize this local quantum phase
transition. We also study excited eigenstates by calculating the average von Neumann and second
Renyi eigenstate entanglement entropies, and compare the results to the thermodynamic entropy
and the mutual information of thermal states at the same energy density. While at low temperatures
we observe a linear increase of the thermodynamic entropy with temperature at all characteristic
densities, the average eigenstate entanglement entropies exhibit a strikingly different behavior as
functions of the temperature below and above the transition. They are linear in temperature below
the transition but exhibit activated behavior above it. Hence, at nonvanishing energy densities
above the ground state, the average eigenstate entanglement entropies carry fingerprints of the local
quantum phase transition.

I. INTRODUCTION

Since the early days of the exploration of strongly
correlated many-body quantum systems with ultracold
atoms in optical lattices [1–3], paradigmatic lattice mod-
els have been realized with the presence of additional
inhomogeneous trapping potentials [4, 5]. Over the
years [6–27], one of the central goals has been to un-
derstand how the results of measurements in inhomoge-
neous systems can be related to the phases and quantum
phase transitions that occur in their homogeneous coun-
terparts [28]. In this work, we revisit this question in
the context of recent progress in measuring the second
Renyi entanglement entropy with ultracold atoms in op-
tical lattices [29, 30]. This has opened a new window
for the exploration of many-body physics and quantum
phase transitions [31–33] at the interface with quantum
information theory [34–43].

Several properties of trapped systems are noticeably
different from their homogeneous counterparts. For
example, the quasimomentum distribution function of
trapped noninteracting fermions at zero temperature
does not exhibit the traditional step function shape [44].
For lattice bosons (fermions), Mott-insulating and super-
fluid (metallic) phases can coexist space separated in a
trap [6–9]. More importantly, the emergence of Mott-
insulating domains in a trapped system does not follow
the traditional quantum phase transition paradigm, in
which a global order parameter (the compressibility) van-
ishes in the insulating phase. In trapped systems, the
global compressibility is nonzero no matter whether Mott
domains are absent or present [6]. Instead, local order
parameters, such as the fluctuations of the site occupa-
tion or local compressibilities [6, 8, 12], need to be used
to characterize the Mott domains. Hence, the term local
quantum phase transition is more fitting to describe the
formation of a Mott-insulating domain in a trapped sys-

tem. Also, rather than phase diagrams, state diagrams
are the proper way to describe trapped systems in the
thermodynamic limit [8, 17, 20, 26]. In the state dia-
grams, the characteristic density ρ, which is the ratio be-
tween the particle number N and the characteristic trap
length R [to be defined in Eq. (1)], replaces the density
used in the homogeneous case.

In this work, we study the behavior of quantum infor-
mation measures when a band-insulating domain emerges
in systems with noninteracting spinless fermions in the
presence of a harmonic trap in one-dimensional lattices.
We characterize both the ground state and excited states
using the von Neumann and second Renyi eigenstate en-
tanglement entropies. In the ground state, a local quan-
tum phase transition occurs at a critical characteristic
density ρc. Below ρc, the site occupations are smaller
than one in the entire lattice, while above ρc a band in-
sulating domain with site occupation one forms in the
center of the trap. We show that the entanglement en-
tropy, upon a bipartition of the lattice in two equal parts,
can be used as an order parameter for the local quantum
phase transition. The parameter regime we focus on,
namely ρ ∼ ρc, is complementary to the one accessed
recently in a conformal field theory study [40].

For excited eigenstates, we study the average von Neu-
mann and second Renyi entropies and compare them to
the mutual information and thermodynamic entropies
of thermal states. It was recently proved that, for
translationally-invariant fermionic quadratic models, the
half-system bipartite entanglement entropy of typical
eigenstates is smaller than the thermodynamic entropy
of thermal states at the same mean energy (the differ-
ence is extensive in the system size) [45]. Here we not
only show that the same holds for harmonically trapped
quadratic systems (i.e., in systems that are not transla-
tionally invariant), but also that the average eigenstate
entanglement entropy (with Gibbs weights) may exhibit
a completely different functional dependence on the char-
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acteristic density and the temperature than the thermo-
dynamic entropy. We note that the nature of the inhomo-
geneity considered here is different from that in previous
studies in which translational invariance was broken by
means of diagonal disorder [46] and random long-range
hoppings [47].

Our work reveals a particularly interesting behavior of
the average eigenstate entanglement entropy as a func-
tion of the temperature. At low temperatures, it in-
creases linearly with temperature below ρc (similarly
to the thermodynamic entropy of the translationally-
invariant metallic counterpart), but exhibits an activated
behavior above ρc. Hence, at nonvanishing energy den-
sities above the ground state, the average eigenstate en-
tanglement entropy allows one to identify the presence of
the ground-state local quantum phase transition. This is
in stark contrast to the thermodynamic entropy, which
is linear in temperature independently of the value of ρ.
The latter is the result of the many-body energy spec-
trum being gapless irrespective of the value of ρ.

The presentation is organized as follows. In Sec. II, we
introduce the model and the entanglement measures used
to characterize it. In Sec. III, we study the properties of
the ground state, while Sec. IV is devoted to the study
of properties at nonvanishing energy densities above the
ground state. A summary of the results is presented in
Sec. V. We discuss details of the numerical calculations
in Appendices A–E.

II. MODEL AND INFORMATION MEASURES

We consider spinless fermions in one-dimensional lat-
tice with L (even) sites, described by the Hamiltonian

Ĥ = −t
L−1∑
l=0

(f̂†l f̂l+1 + H.c.) +
t

R2

L−1∑
l=0

(
l − L− 1

2

)2

n̂l ,

(1)

where f̂l is the fermion annihilation operator at site l, and

n̂l = f̂†l f̂l. We set the unit of energy t = 1 and the lattice
spacing to one. The strength of the harmonic confining
potential is determined by the parameter R, which is a
characteristic length for the trapped lattice system. We
therefore study the properties of the system as a function
of the characteristic density ρ = N/R [44]. In order to
have a vanishing density at the edges of the lattice, in the
ground state calculations we take L & 4R [see Fig. 1(b)],
while in the excited state calculations we take L & 8R.

Even though the model is quadratic, an analytic so-
lution for the single-particle energy eigenstates is only
available at low and high energies [48]. At interme-
diate energies, relevant to the formation of the band-
insulating domain in the center of the trap, the proper-
ties of the single-particle eigenstates can be studied nu-
merically. Using local observables, such as the site occu-
pations and their fluctuations, the critical characteristic
density for the formation of the band-insulating domain

in the center of the trap was shown to be ρc ≈ 2.6 [44].
At the corresponding Fermi energy, a semiclassical WKB
approximation showed that the single-particle density of
states exhibits a logarithmic singularity [49]. These find-
ings will be further discussed in this work.

For single-particle eigenenergies greater than the Fermi
energy corresponding to ρc, the eigenstates become dou-
bly degenerate (they are even or odd upon lattice reflec-
tion). We weakly break this degeneracy by modifying
R−2 → R−2(1∓η) in Eq. (1) for sites l ≶ (L−1)/2, with
η � 1. We choose η = 1/Nc = 1/(Rρc), with the value
of ρc to be determined later [see Eq. 10].

We study the entanglement entropy of the many-body
eigenstates of Ĥ in Eq. (1) for bipartitions of the sys-
tem into equal subsystems A and Ā. For a many-body
eigenstate |m〉, the reduced density matrix of the sub-
system A is ρ̂(m) = TrĀ(|m〉〈m|). We are interested
in the second Renyi entropy, Sn(m) = 1

1−n ln Tr[ρ̂(m)n]

for n = 2, and in the von Neumann entropy, SvN(m) =
−Tr[ρ̂(m) ln ρ̂(m)], which is the limit n → 1 of Sn. For
many-body eigenstates of noninteracting fermions, the
reduced density matrix ρ̂(m) has a Gaussian form. ρ̂(m)
can be obtained from the one-body (covariance) correla-

tion matrix Fij(m) = 〈m|f̂†i f̂j |m〉 defined on the sites
i, j of subsystem A [50]. The entanglement entropies
are then unique functions of the eigenvalues λj of F (m),
which we diagonalize numerically. Specifically, the von
Neumann entanglement entropy is

SvN(m) = −
L/2∑
j=1

[
λj lnλj + (1− λj) ln(1− λj)

]
, (2)

and the second Renyi entanglement entropy is

S2(m) = −
L/2∑
j=1

ln
[
(1− λj)2 + λ2

j

]
. (3)

In the continuum, the limit ρ→ 0 in the lattice, the be-
havior of the Renyi entanglement entropies of the ground
state of trapped noninteracting fermions is well under-
stood. The leading term scales as lnN [35, 36]. It
has been shown that the prefactor in the leading term
is (1 + n−1)/12, where n is the order of the Renyi en-
tanglement entropy, i.e., it is identical to the one in ho-
mogeneous systems with open boundaries [37]. In lattice
systems with nonvanishing values of ρ, the systems of
interest here, such a scaling is in general no longer valid.

We also study entanglement properties of excited
eigenstates. We calculate the average eigenstate entan-
glement entropy S̄n(T ) at a given mean energy density
as

S̄n(T ) =

∑
m Sn(m)e−Em/T∑

m e
−Em/T

, (4)

where n = vN or n = 2, and Em is the energy of eigen-
state |m〉. The temperature T sets the mean energy den-
sity of the eigenstates involved in the average, and the
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summation runs over eigenstates with a fixed N , i.e., it
corresponds to a canonical ensemble average. In the nu-
merical calculation of Eq. (4), we discard eigenstates with
a relative weight exp[−(Em−EGS)/T ], where EGS is the
ground-state energy, below a threshold value exp[−Λ].
We use Λ = 30, which yields a negligibly small numerical
error, as shown in Fig. B1 of Appendix B. In Eq. (C1)
of Appendix C, we also extend Eq. (4) to compute grand
canonical ensemble averages. We find that the results for
the canonical and grand canonical ensemble averages are
very similar, see Fig. C1 in Appendix C. Therefore, in
what follows we only discuss the results for the canonical
ensemble average.

We compare the average eigenstate entanglement en-
tropy in Eq. (4) to properties of (mixed) thermal states

ρ̂(T ) = e−(Ĥ−µN̂)/T /Tr{e−(Ĥ−µN̂)/T } at the same tem-
perature and average particle number N (used to deter-
mine µ). In particular, we study the quantum mutual
information

I(T ) = 2SvN(T )− SGE(T ) , (5)

where SvN(T ) is the von Neumann entropy of the reduced
density matrix of ρ̂(T ), and SGE(T ) is the thermody-
namic (grand canonical ensemble) entropy. The calcula-
tion of SvN(T ) can be done using Eq. (2), with λj being
the eigenvalues of the one-body correlations matrix F (T )

with matrix elements Fij(T ) = Tr{ρ̂(T )f̂†i f̂j}. The ther-
modynamic entropy SGE(T ) = −Tr[ρ̂(T ) ln ρ̂(T )] can be
obtained using the expression

SGE(T ) = −
L∑
j=1

[
nj lnnj + (1− nj) ln(1− nj)

]
, (6)

where nj =
[
1 + e(εj−µ)/T

]−1
, and εj is the single-

particle eigenenergy. Note that the quantum mutual in-
formation is not an entanglement measure, but it quan-
tifies the amount of correlations between the two subsys-
tems. For thermal states, it was proved that I(T ) follows
an area law with the system size [51, 52].

III. LOCAL QUANTUM PHASE TRANSITION

We first focus on the properties of the ground state of
Ĥ in Eq. (1). We define the total energy density as Ē =

E/R =
∑N
j=1 εj/R. The discrete second derivative of Ē

with respect to ρ is Ē′′ = R∆εN , where ∆εN = εN+1 −
εN is the level spacing of the single-particle spectrum of
Ĥ. Results for Ē′′(ρ) vs ρ are shown in Fig. 1(a) for
two values of R (i.e., for two system sizes). They exhibit
a perfect collapse. These results provide two important
insights. First, the scaling ∆εN ≈ const/R indicates
that the system is gapless in the thermodynamic limit
(R→∞) for all values of ρ under investigation. Second,
Ē′′ vs ρ at ρ ≈ 2.6 appears to be nonanalytic, a behavior
that is typical of a quantum phase transition [28]. We
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FIG. 1. Properties of one-dimensional lattice fermions in a
harmonic trap. (a) Second derivative of the total energy vs
ρ, Ē′′(ρ) = R∆εN , which is proportional to the level spacing

∆εN = εN+1−εN of the single-particle energy spectrum of Ĥ
in Eq. (1). The dashed line denotes the critical characteristic
density ρc = 8/π [see Eq. (10)]. We choose the parity break-
ing parameter η = 1/Nc throughout the paper [see text after
Eq. (1)]. (b) Site occupations at (from top to bottom) ρ = 3,
ρ = ρc = 8/π, and ρ = 2. Solid lines are exact numerical re-
sults nx (with integer x) and the overlapping dashed lines are
the LDA results n(x) from Eq. (9). (c) Single-particle den-
sity of states D(µ0)/R, where µ0 is the single-particle energy
(the Fermi energy of the many-body ground state). The solid
and dashed lines are the LDA results from Eq. (11) and the
corresponding leading term from Eq. (12), respectively. The
symbols are the numerical exact diagonalization results with
(η = 1/Nc) and without (η = 0) parity breaking. The results
in (b) and (c) were obtained for R = 500π.

show in what follows that Ē′′(ρ) is indeed nonanalytic at
ρ = ρc, a point at which a band-insulating domain forms
in the center of the system [see Fig. 1(b)]. The transition
in this case can be regarded as a local quantum phase
transition as argued earlier.

A. Local density approximation

Here, we use the local density approximation (LDA) to
describe two features: (i) the formation of the band insu-
lating domain in the center of the trap [26, 44], and (ii)
the divergence of the single-particle density of states [49].

Within the LDA, one constructs an effective local
chemical potential at the (continuous) position x, which
is the distance from the center of the trap

µ(x) = µ0 −
x2

R2
, (7)

where µ0 is the chemical potential (Fermi energy), with
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µ0 > −2 to have nonzero site occupations. Then, for each
value of x, the system is treated as a homogeneous one
with chemical potential µ(x), e.g., n(x) = kF (x)/π with
kF (x) and µ(x) related through µ(x) = −2 cos[kF (x)].

The site occupations n(x) vanish for all |x| > x0, where
x0 = R

√
µ0 + 2. For µ0 < 2, n(x) < 1 for all x since

n(x) =
1

π
arccos

[
−µ(x)

2

]
. (8)

On the other hand, for µ0 ≥ 2, a band insulating domain
is present for |x| < x1, where x1 = R

√
µ0 − 2. The site-

occupation distribution in the trap is then

n(x) =

{
1 |x| < x1

1
π arccos

(
−µ(x)

2

)
x1 < |x| < x0

. (9)

Next, we relate the total number of particles in the
trap, N =

∫ x0

−x0
n(x) dx, to the chemical potential µ0.

The integration results in N = Rg(µ0) [16, 27], where
g(µ0) is given by Eq. (A1) in Appendix A, for µ0 ≤ 2.
This explains why the characteristic density ρ = N/R
needs to be kept constant when taking the thermody-
namic limit in a trapped system [8, 16, 17, 26, 27]. Fig-
ure 1(b) shows the site-occupation distribution n(x) pre-
dicted by the LDA at three characteristic densities ρ as
a function of x/R. They are indistinguishable from the
exact numerical results nx = 〈n̂x〉. Figure A1 in Ap-
pendix A shows site-occupation profiles for small values
of ρ compared against the predictions of the LDA in the
continuum limit.

The band insulating domain emerges in the center of
the trap when the occupation there becomes one, i.e.,
when µ0 = 2. This allows us to obtain the critical particle
number Nc =

∫ x0

−x0
nc(x) dx = 8R/π, so that the critical

characteristic density is

ρc =
Nc
R

=
8

π
. (10)

This value matches the point at which the second deriva-
tive of the total energy density appears to behave non-
analytically in Fig. 1(a).

The LDA also allows one to calculate the single-
particle density of states, D(µ0) = dN/dµ0. It gives

D(µ0) =
2R

π
√

2− µ0

{
K(t) −2 ≤ µ0 < 2

K(t)− F (t−1/2|t) µ0 > 2
,

(11)
where t = (µ0 + 2)/(µ0 − 2), and F (t

∣∣m) [K(t)] is the
elliptic integral [complete elliptic integral] of the first
kind [53]. A divergence of the density of states occurs
at µ0 = 2, which corresponds to ρc in Eq. (10). Beyond
this point (εj > 2), single-particle states become local-
ized at either the left or the right side of the center of
the trap, due to the Bragg reflection [44, 49]. The ex-
act numerical results for the density of states shown in
Fig. 1(c) are in perfect agreement with the ones obtained

evaluating Eq. (11). Close to µ0 = 2, one can expand
Eq. (11) to obtain the leading order term

lim
µ0→2

D(µ0) =
R

2π
(6 ln 2− ln |µ0 − 2|) , (12)

which confirms that the divergence is logarithmic, as ad-
vanced in Ref. [49].

B. Order parameter: Entanglement entropies

Our analysis so far has revealed that, for ρ > ρc in the
thermodynamic limit, there are lattice sites in the cen-
ter of the trap with site occupation one. The correlations

〈f̂†i f̂j〉 across those sites are therefore zero (in the absence
of degeneracies in the single-particle spectrum, which is
our case). Those sites with occupation one split the L by
L one-body correlation matrix F into two disconnected
blocks. The eigenvalues within each block (relevant to
obtain SvN and Sn) are those of a pure state. The en-
tanglement entropies SvN and Sn therefore must vanish
for ρ > ρc, which make them suitable candidates for the
order parameter of the local quantum phase transition.

The main panel of Fig. 2(a) shows SvN as a func-
tion of ρ across the local quantum phase transition, for
four values of R. In finite systems, SvN vanishes when
ρ > ρc. Moreover, the curves for different values of R

2.52 2.54 2.56 2.58
ρ

0

0.5

1

1.5

S
v
N

R =   500π

R = 1000π

R = 1500π

R = 2000π

-20 -10 0 10 20
(ρ−ρ

c
)R

0

0.5

1

S
v
N

R =   500π

R = 1000π

R = 1500π

R = 2000π

0.01 0.1 1
ρ

0

1

S
v
N

-20 -10 0 10
(ρ−ρ

c
)R

0

0.4

0.8

S
2

(a)

(b)

FIG. 2. Ground state entanglement entropy. (a) von Neu-
mann entanglement entropy SvN vs ρ about the critical point
(main panel), and in a wider range (inset, results for R =
500π). The vertical dashed line in the main panel denotes
the critical point ρc = 8/π. The dashed line in the inset is
SvN = (1/6) [lnN + ln 8 + 1.485] from Ref. [37]. (b) Rescal-
ing of the x-axis, ρ→ (ρ−ρc)R, which results in data collapse
about the critical point. We plot SvN (main panel) and S2

(inset) for different values of R, as indicated in the legend.
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(for sufficiently large R) cross at ρc [see the vertical line
in Fig. 2(a)], and they become sharper with increasing
R. This observation is consistent with a vanishing SvN

for any ρ > ρc in the thermodynamic limit. We note
that SvN is not an extensive quantity [54, 55], so it is
fitting that this is the kind of order parameter that one
needs to characterize the local quantum phase transition
undergone by these systems.

The inset in Fig. 2(a) shows that SvN is nonzero for all
nonzero ρ < ρc (the same holds true for S2, not shown).
The dashed line depicts the analytical result in the con-
tinuum limit [37], SvN = (1/6) [lnN + ln 8 + y1], with
y1 ≈ 1.485. It provides an excellent description for the
results in the lattice for small values of the characteristic
density, ρ . 0.5.

Finally we use the value of ρc predicted by the LDA,
Eq. (10), to study the scaling of the entanglement en-
tropies across the transition. The main panel (inset) of
Fig. 2(b) shows a perfect data collapse for SvN (S2) vs
(ρ− ρc)R for four values of R. This suggest that

Sn = Fn [(ρ− ρc)R] = Fn [N −Nc] (13)

is a universal scaling function that describes the corre-
sponding entanglement entropy across the local quantum
phase transition.

From our results in this section we conclude that,
through a scaling analysis, experimental measurements
of entanglement entropies in finite systems can enable
the location of the local quantum phase transition in the
thermodynamic limit. The result obtained from such an
analysis will be much more accurate than those obtained
using local observables such as the site occupations and
their fluctuations.

IV. FINITE TEMPERATURE PROPERTIES

A. Thermal states: Mutual information and
thermodynamic entropy

Here we study the properties of the trapped sys-
tem in thermal equilibrium. The density plots in
Figs. 3(a) and 3(b) show the thermodynamic entropy
density SGE(T, ρ)/R and the mutual information I(T, ρ),
respectively, as a function of ρ and the temperature.

The most prominent characteristic of SGE is that it is
maximal about ρc. This is better seen in Fig. 4(a), where
we plot SGE vs ρ for six temperatures (notice the log scale
in the y-axis). At low temperatures, a sharp peak can be
seen about ρc. With increasing T , SGE increases for all
values of ρ, and the peak broadens and eventually disap-
pears. The presence of a sharp peak at low temperatures
is a direct consequence of the divergence of the density
of states at the Fermi energy corresponding to ρc [see
Fig. 1(c) and Eq. (12)], and could also be used to lo-
cate the local quantum phase transition in our trapped
one-dimensional systems at low temperatures.

FIG. 3. Numerical results for: (a) the thermodynamic en-
tropy density, SGE/R, and (b) the mutual information, I, as
a function of ρ and T for trapped systems with R = 125π.

We should, however, mention that a similar peak can
be seen in the entropy of noninteracting fermions in the
translationally invariant square lattice with Hamiltonian

H2D = −t
∑
〈i,j〉

(
f̂†i f̂j + H.c.

)
, (14)

where 〈i, j〉 stands for nearest neighbor sites. Such a sys-
tem also exhibits a logarithmic divergence of the density
of states at half filling (µ0 = 0). The entropy density
for noninteracting fermion in a square lattice (with L2

sites) is depicted in Fig. 4(b). It can be seen to be qual-
itatively, and quantitatively, similar to that of the one-
dimensional trapped system [whose number of occupied
sites is about 4R, see Fig. 1(b)]. Hence, while a sharp
peak in the entropy density does not necessarily indicate
a local quantum phase transition (there is none in the
two-dimensional system), it does for our trapped one-
dimensional system.

On the other hand, at low temperatures, the behav-
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FIG. 4. Thermodynamic entropy density SGE/N . (a) En-
tropy density of harmonically trapped fermions in a one-
dimensional lattice, Eq. (1), with N = 4R, as a function of
the characteristic density ρ = 〈N〉/R for R = 250π. (b) En-
tropy density of fermions in a translationally invariant square
lattice, Eq. (14), with N = L2, as a function of the site occu-
pation r = 〈N〉/L for L = 2000.
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ior of the mutual information I [Fig. 3(b)] is qualita-
tively similar to that of the ground-state entanglement
entropy. Namely, it is nonvanishing for ρ < ρc, and it is
vanishingly small for ρ > ρc. Upon increasing the T , the
fingerprints of the local quantum phase transition disap-
pear because I(ρ < ρc) decreases (correlations between
the two halves of the system decrease, an expected effect
of the temperature) and I(ρ > ρc) slightly increases (cor-
relations between the two halves slightly increase because
of the “melting” of the band-insulating domain), leading
to a featureless structure at large temperatures. This is
better seen in the inset of Fig. 5, in which we plot the
mutual information vs ρ for five temperatures.

We note that, unlike SGE, the mutual information ex-
hibits an area-law scaling (it is not divided by R). This is
the result of the prefactor in the extensive part of SvN(T )
being identical to that of SGE(T )/2. One of the main
goals of the next section is to show that this observation
does not hold for the entanglement entropy of excited
eigenstates at the same energy density. In particular, the
prefactor in the extensive part of SvN(m) for the over-
whelming majority of the many-body eigenstates |m〉 at
a given energy density can be considerably smaller than
that in SvN(T ) at the same energy density.

B. Average eigenstate entanglement entropy

We now turn our focus to the average entanglement
entropies of excited many-body eigenstates of the Hamil-
tonian (1), at mean energy densities that correspond to
nonzero temperatures T . We perform large-scale numer-
ical calculations to compute the weighted averages S̄vN

and S̄2, defined in Eq. (4). Note that since there are
exponentially large numbers of eigenstates involved in
the calculations, the values of R accessible to us in this
section are much smaller than in the previous sections.
Still, they allow us to extract low-temperature properties
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FIG. 5. (Main panel) Average von Neumann entanglement
entropy S̄vN/R (solid lines) and second Renyi entanglement
entropy S̄2/R (dashed lines) in eigenstates of the Hamiltonian
plotted as functions of ρ for two temperatures. (Inset) Mutual
information I vs ρ for five temperatures. All results were
obtained for R = 7.5π.

in the thermodynamic limit.
The main panel of Fig. 5(a) shows results for S̄vN and

S̄2 as functions of ρ for two temperatures. In contrast to
the mutual information I, plotted in the inset of Fig. 5
and in Fig. 3, S̄vN and S̄2 increase with increasing tem-
perature for all values of ρ. This is understandable as,
at nonzero mean energy densities above the ground state,
the overwhelming majority of the many-body eigenstates
are expected to exhibit a volume-law scaling with the
system size, with a prefactor that increases with tem-
perature. We explicitly verify the volume law scaling in
Appendix D for ρ = 2 and 3. Hence, at a fixed tempera-
ture T and characteristic density ρ, we fit the numerical
results with the ansatz

S̄n(T, ρ) = sn(T, ρ)R+ δn(T, ρ), (15)

and extract the prefactor in the extensive part sn, i.e., the
average eigenstate entanglement entropy density. Since
ρ needs to be kept fixed when taking the thermodynamic
limit, the leading term in Eq. (15) can also be written
as S̄n(T, ρ) ≈ [sn(T, ρ)/ρ]N , making explicit the linear
dependence on the number of particles. The numerical
results in Fig. D1 of Appendix D agree perfectly with the
functional form given in Eq. (15). As expected, the von
Neumann entropy density svN is always above the second
Renyi entropy density s2.

Figures 6(a) and 6(b) show the average eigenstate
entanglement entropy densities sn, together with the
corresponding thermodynamic entropy density sGE =
limR→∞ SGE/(2R), as functions of temperature at low
temperatures. The thermodynamic entropy density ex-
hibits a linear increase with T for all values of ρ, analo-
gous to the one observed for free fermions in a homoge-
neous lattice. This is a consequence of the system being
gapless independently of the value of ρ.

On the other hand, the average eigenstate entangle-
ment entropy densities exhibit a qualitatively different
behavior depending on whether ρ is smaller or larger than
ρc. For ρ < ρc, as sGE, they exhibit a linear increase with
temperature

sn(T, ρ) = αn(ρ)T , sGE(T, ρ) = αGE(ρ)T , (16)

with αn(ρ) < αGE(ρ). For ρ > ρc, however, the av-
erage eigenstate entanglement entropy densities exhibit
an activated-like behavior that is absent in sGE. We fit
the results for the von Neumann entanglement entropy
density with the ansatz

svN(T, ρ) = a T ζ exp

[
−b
(

∆(ρ)

T

)γ]
, (17)

where ∆(ρ) = ρ − ρc. The analysis described in Ap-
pendix E reveals that the optimal exponent of the tem-
perature dependent prefactor is ζ = 0.28. We then eval-
uate the rescaled function s̃vN = − ln[svN/T

ζ ], see the
symbols in Fig. 6(c), which results in excellent data col-
lapse for different values of ρ when T/∆ . 0.5. The
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FIG. 6. Average eigenstate entanglement entropy density sn, as obtained from fits to Eq. (15), and the thermodynamic entropy
density sGE = limR→∞ SGE/(2R). The entropy densities are plotted as functions of temperature for: (a) ρ = 2 and (b) ρ = 3.
(c) Data collapse of the von Neumann entanglement entropy density for different values of ρ & ρc. The symbols depict the
numerical results. The dashed lines in (a) are linear fits according to Eq. (16), while the solid lines in (a) and (b) are guides to
the eye. The dashed line in (c) is the function 1.295(∆/T ) + 1.288.

dashed line in Fig. 6(c) is a simple algebraic function
b (∆/T ) − ln a [i.e., setting γ = 1 in Eq. (17)], which is
an excellent match to the numerical results.

It is expected that, in general, sn is smaller than sGE

at all temperatures and characteristic densities. This fol-
lows after a recent study [45], in which it was proved that
svN < sGE for identical bipartitions of translationally-
invariant fermionic quadratic models at infinite temper-
ature. Our results for ρ > ρc in trapped systems show
that the average eigenstate entanglement entropy density
sn and the thermodynamic entropy density sGE can ac-
tually exhibit qualitatively different behavior (which was
not the case in Ref. [45]). The former exhibits activated-
like behavior while the latter is linear in temperature.
Furthermore, the data collapse in Fig. 6(c) shows that
∆ acts as a sort of gap for the eigenstate entanglement
entropies in trapped systems (it determines the width of
the band insulating domain in the center of the trap).
This despite the fact that that there is no energy gap
in the single-particle spectrum of the Hamiltonian (1),
as shown in Fig. 1(a), and, consequently, in the many-
body energy spectrum. Hence, at low temperatures, the
average eigenstate entanglement entropies exhibit finger-
prints of the formation of the band insulating domain,
i.e., of the local quantum phase transition, and could be
used to locate it.

V. SUMMARY

We used quantum information measures to study spin-
less fermions in one-dimensional lattices in the presence
of a harmonic trap. In contrast to most studies of en-
tanglement entropies, which focus on small subsystems
of ground states, here we considered a bipartition of the
system in two equal parts and studied ground states, ex-
cited states, and finite-temperature mixed states.

In the ground state, we showed that the entangle-
ment entropies scale as lnN at small characteristic den-

sities [37], while they vanish after the emergence of the
band insulating domain (as expected from the fact that
one has two disconnected metallic domains). More im-
portantly, we showed that a scaling analysis of the en-
tanglement entropies in finite systems allows one to accu-
rately determine the critical characteristic density for the
formation of the band insulating domain. Hence, ground-
state bipartite entanglement entropies are excellent order
parameters to describe the characteristic-density driven
local quantum phase transition in those systems.

For low-temperature thermal states, we showed that:
(i) a sharp peak in the thermodynamic entropy, asso-
ciated to a divergence of the single-particle density of
states at the Fermi energy corresponding to ρc, signals
the critical point, and (ii) the mutual information ex-
hibits a behavior that is qualitatively similar to that of
the entanglement entropies in the ground state, namely,
it is nonzero below the local quantum phase transition
and very small above it. Increasing the temperature de-
stroys this contrast.

Finally, we systematically studied excited eigenstates.
We showed that their average entanglement entropy
scales linearly with N , i.e., the overwhelming majority
of the excited states exhibit a volume law, but the pref-
actor is always smaller than that of the thermodynamic
entropy. This complements many recent works that have
studied entanglement entropies for lattice bipartitions in
which the smaller subsystem is not a vanishing fraction of
the system [56–67], and, in particular, the works dealing
with quadratic models [45, 58, 61]. Our main finding for
excited states is that, as functions of the temperature, the
average eigenstate entanglement entropy densities behave
very differently for ρ < ρc (linear increase with the tem-
perature) and ρ > ρc (activated like behavior). Hence,
at low temperatures, they carry the fingerprints of the
local quantum phase transition.
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Appendix A: Site occupations for ρ ≤ ρc

For ρ ≤ ρc, the site occupations n(x) within the LDA
are given by Eq. (8). We obtain the relation between ρ
and µ0 from the equation ρ =

∫ x0

−x0
n(x)dx /R. It yields

ρ =
4
√

2− µ0

π

(
E

[
µ0 + 2

µ0 − 2

]
−K

[
µ0 + 2

µ0 − 2

])
, (A1)

where K and E are the complete elliptic integrals of
the first and second kind, respectively. For any given
ρ, we calculate µ0 numerically from Eq. (A1). µ0 is
needed to determine n(x). The agreement between n(x)
(dashed lines) and the numerically exact site occupations
nx (solid lines), shown in Fig. 1(b) and Fig. A1 as a func-
tion of x/R, is excellent. We also compare both results to
the ones in the continuum limit (see, e.g., Refs. [27, 40]),
which can be obtained from Eq. (A1) by expanding µ0

around −2. This yields a simple relation ρ = 1 + µ0/2
and the semicircle particle distribution

nsc(x) =
1

π

√
2ρ−

( x
R

)2

. (A2)

The results for nsc(x) are shown as dashed-dotted lines
in Fig. A1. They are nearly indistinguishable from the
exact ones up to ρ . 0.5.
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FIG. A1. Site occupations as functions of x/R for different
values of ρ. Solid lines are exact numerical results nx = 〈n̂x〉
(with integer x and R = 500π), and the overlapping dashed
lines are the LDA results n(x) from Eq. (8). The dashed-
dotted lines are the results for the continuum (limit ρ→ 0 in
a lattice), given by Eq. (A2).

Appendix B: Numerical evaluation of Eq. (4)

We here describe how the average eigenstate entangle-
ment entropy S̄n, defined in Eq. (4), is evaluated numer-
ically. We focus on systems with a fixed particle num-
ber N (canonical ensemble averages), while a comparison

0 10 20 30
Λ

10
-16

10
-12

10
-8

10
-4

S
e

x
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 S
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 _
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(a) (b)

FIG. B1. Accuracy of the truncation used to evaluate the
average von Neumann eigenstate entanglement entropy in
Eq. (4), for ρ = 2 and T = 0.1. (a) Difference between the
exact average S̄exact and the result after the truncation S̄(Λ),
for R = 5 and L = 24 lattice sites. (b) S̄(40) − S̄(Λ) for
R = 20 and L = 150.

with grand canonical ensemble averages is presented in
Appendix C.

In a system of N spinless fermions in a one-dimensional
lattice with L sites, the total number of many-body en-
ergy eigenstates is

(
L
N

)
. Among all the energy eigen-

states, we systematically find the ones (|m〉) with a rel-
ative weight exp [−(Em − EGS)/T ] > exp [−Λ], where

EGS is the ground state energy, EGS =
∑N
i=1 εi, and Λ

sets the numerical accuracy. Note that the single-particle
eigenenergies εi are ordered such that εi < εi+1.

The accuracy of such a truncation scheme is studied in
Fig. B1(a) for the von Neumann entanglement entropy
S̄vN, for ρ = 2, T = 0.1, and L = 24. The results
show that the difference between the exact average S̄exact

and the average after truncating the sum S̄(Λ) decreases
exponentially with Λ. For larger systems (L & 100),
however, it is numerically impossible to obtain the exact
averages. In Fig. B1(b), we report the difference between
S̄(Λ) and S̄(Λ = 40), for ρ = 2, T = 0.1, and L = 150
(Λ = 40 is about the largest cut off we can consider for
that system size). The differences can again be seen to
decay nearly exponentially, and to be very small (∼ 10−8)
for Λ = 30. That is value of Λ used to obtain the results
reported in Figs. 5, 6, C1, and D1.

Appendix C: Canonical vs grand canonical averages

We extend the average eigenstate entanglement en-
tropy in Eq. (4), which corresponds to a canonical calcu-
lation, to a grand canonical average

S̄n(T ) =

∑
N

∑
m(N) Sn(m)e−(Em−µN)/T∑

N

∑
m(N) e

−(Em−µN)/T
, (C1)

where the chemical potential µ is determined so that the
average particle number is N . In contrast to the canoni-
cal average, one needs to perform an additional sum over
sectors with different particle numbers N and many-body
eigenstates {|m(N)〉}. This increases significantly the
computation time.
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FIG. C1. Comparison between the canonical and grand
canonical averages of the von Neumann eigenstate entangle-
ment entropy S̄vN. The former is calculated using Eq. (4),
while the latter one is calculated using Eq. (C1). (a) Results
for R = 7.5π as a function of ρ, for two temperatures. (b)

Absolute difference between S̄
(CE)
vN and S̄

(GE)
vN , at ρ = 2 and

T = 0.1, as a function of R.

Figure C1(a) compares the canonical and grand canon-
ical averages of the von Neumann entanglement entropy
S̄vN, plotted as functions of ρ. The results are very close
for all ρ. Figure C1(b) shows the difference between the
two averages upon increasing the system size (or, equiv-
alently, R) for ρ = 2. As expected, the differences de-
crease with increasing system size, and are expected to
vanishes in the thermodynamic limit (R→∞ while keep-
ing ρ constant). Because of this, we only report results
for canonical averages in Figs. 5, 6, and D1.

Appendix D: Volume-law scaling of the average
eigenstate entanglement entropy

Figure D1 shows that S̄n increases linearly with R at
fixed temperature, as stated in Sec. IV B. Note that re-

sults are reported for ρ = 2 (ρ < ρc) and ρ = 3 (ρ > ρc)
for different temperatures. This justifies the use of the
ansatz in Eq. (15) to extract the average eigenstate en-
tanglement entropy density sn reported in Fig. 6.
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FIG. D1. Volume-law scaling of the average eigenstate en-
tanglement entropies. (a) ρ = 2 and (b) ρ = 3. Symbols
display the von Neumann entropy S̄vN and the second Renyi
entropy S̄2 for different temperatures. Dashed lines are linear
fits using the ansatz in Eq. (15).

Appendix E: Average eigenstate entanglement
entropy for ρ > ρc

Figure 6(b) shows an activated-like behavior of sn(T, ρ)
as a function of T , for ρ > ρc. We fitted the numerical
results to the ansatz in Eq. (17) with ζ = 0.28. To de-
termine this optimal value of ζ, we did as follows. We
calculated s̃vN = − ln[svN/T

ζ ] vs ∆/T for different val-
ues of ζ in the interval ζ ∈ [−0.5, 1]. For a fixed value of
ζ, we fitted the results for s̃vN (obtained for seven values
of ρ = {2.7, 2.8, ..., 3.3}) with a high-order polynomial∑6
n=0 an(∆/T )n in the regime ∆/T ≤ 0.5. We then cal-

culated the sum of squares of the differences between s̃vN

and the fitted polynomial. This sum was found to have
a minimum at ζ = 0.28.

[1] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Cold bosonic atoms in optical lattices, Phys.
Rev. Lett. 81, 3108 (1998).

[2] M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and
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