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We present a numerical implementation of the infinite-range exterior complex scaling (irECS)
[Phys. Rev. A 81, 053845 (2010)] as an efficient absorbing boundary to the time-dependent
complete-active-space self-consistent field (TD-CASSCF) method [Phys. Rev. A 94, 023405 (2016)]
for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau
quadrature points to construct discrete variable representation basis functions in the last radial
finite element extending to infinity. This implementation is applied to strong-field ionization and
high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of
photoelectron wave packets at the simulation boundary, enabling accurate simulations with substan-
tially reduced computational cost, even under significant (≈ 50%) double ionization. For the case
of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved,
compared to a mask-function absorption boundary.

I. INTRODUCTION

Recent developments in ultrashort intense laser pulse
techniques have opened new research fields including
strong-field phenomena (e.g., tunneling ionization, high-
harmonic generation (HHG), nonsequential double ion-
ization) and ultrafast electronic dynamics (e.g., charge
migration, photoemission delay). Although these phe-
nomena are rigorously described by the time-dependent
Schrödinger equation (TDSE), solving it for multielec-
tron systems poses a major challenge. To investigate
many-electron dynamics in intense laser fields, time-
dependent multiconfiguration self-consistent field (TD-
MCSCF) methods have been developed [1], where the
total wave function is given in the configuration interac-
tion (CI) expansion,

Ψ(~x1, ~x2, · · · , ~xN , t) =
∑
I

CI(t)ΦI(~x1, ~x2, · · · , ~xN , t).

(1)

and ~x is a set of a spin coordinate σ and spatial coordi-
nate ~r. The electronic configuration ΦI(~x1, ~x2, · · · , ~xN , t)
is a Slater determinant composed of spin orbital func-
tions {ψp(~r, t) × s(σ)}, where {ψp(~r, t)} and {s(σ)} de-
note spatial orbitals and spin functions, respectively.
Both the CI coefficients {CI} and orbitals are varied in
time. The multiconfiguration time-dependent Hartree-
Fock (MCTDHF) method [2–4] considers all the possi-
ble configurations for a given number of orbital func-
tions. However, its computational cost factorially in-
creases with the number of electrons. To overcome this

∗ ykormhk@atto.t.u-tokyo.ac.jp

difficulty, we have recently developed and successfully
implemented the time-dependent complete-active-space
self-consistent-field (TD-CASSCF) method [5], which
classifies the spatial orbitals into doubly occupied and
time-independent frozen core (FC), doubly occupied and
time-dependent dynamical core (DC), and fully corre-
lated active orbitals. The number of configurations and
the computational cost are significantly reduced with-
out degrading accuracy. We have further proposed a
more approximate and thus computationally even less
demanding time-dependent occupation-restricted multi-
ple active-space (TD-ORMAS) method [6].

One of the key issues in numerical implementations of
the TD-MCSCF methods is an absorbing boundary that
absorbs the photoelectron wave packet when it reaches
the end of the spatial grid and suppresses unphysical re-
flections. An efficient absorbing boundary plays a sig-
nificantly important role to achieve large scale simula-
tions, for example, in simulations with three-dimensional
Cartesian coordinates for general molecules [7], where
the computational cost cubically scales with the linear
dimension of the simulation box.

Whereas our previous implementations [7, 8] have
used a mask function [9] and that another commonly
used absorbing boundary is a complex absorbing poten-
tial [10, 11], exterior complex scaling (ECS) [12] is consid-
ered to be more sophisticated, which analytically contin-
ues the wave function into the complex plane (Fig. 1)
without artificially modifying the system Hamiltonian
nor the wave function. Furthermore, the infinite range
exterior complex scaling (irECS) method introduced in
[13] significantly improves the efficiency over standard
ECS by using a exponentially damped basis, thus mov-
ing the reflecting boundary to infinity.

The application of ECS and irECS, originally formu-
lated for single-electron problems, to strongly driven mul-
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tielectron systems with the addition of the interelectronic
Coulomb interaction has been so far limited. McCurdy
et al. [12] introduced ECS to two-electron systems where
the Coulomb interaction was approximated in the ra-
dial limit. Haxton et al. [14] used ECS in their MCT-
DHF implementation but mainly dealt with photoion-
ization rather than strong-field phenomena. Telnov et
al. [15] applied ECS to the time-dependent density func-
tional theory to simulate high-harmonic generation from
Ar. In the scaled region, however, they neglected the
laser field and replaced the time-dependent Hartree and
exchange-correlation potentials with their initial values.
Majety et al [16] have recently proposed the hybrid anti-
symmetrized coupled channels method to calculate fully
differential photoelectron spectra of multielectron sys-
tems subject to strong laser fields. Though irECS is used
in the implementation, only an electronic coordinate is
scaled in each channel as the method allows only single
ionization. Zielinski et al. [17] have applied irECS to
two-electron systems, where the both electronic coordi-
nates are scaled. However, to our knowledge, irECS has
never been applied to TD-MCSCF methods yet.

In this study, we introduce ECS and irECS to the TD-
CASSCF method for ab initio simulations of multielec-
tron dynamics in atoms subject to intense laser fields.
While minimally neglecting the Coulomb force from elec-
trons residing in the scaled region, our implementation
retains all the other nuclear-electron, electron-electron,
and laser-electron interactions. We achieve stable and
highly accurate simulations of nonperturbative strong-
field phenomena such as tunneling ionization and HHG
with considerably reduced computational costs.

This paper is organized as follows. In Sec. II, the TD-
CASSCF method is briefly reviewed. In Sec. III, we de-
scribe our numerical implementation of irECS, adopting
the spherical finite-element discrete variable representa-
tion (FEDVR). Section IV discusses how to apply ECS
and irECS to the TD-CASSCF method. In Sec. V, Nu-
merical examples are presented. Conclusions are given
in Sec. VI. We use Hartree atomic units unless otherwise
indicated.

II. THE TD-CASSCF METHOD

We consider the multielectron dynamics of an N -
electron atom with atomic number Z in a laser field E(t)
linearly polarized in the z direction, described by the
Hamiltonian:

Ĥ(t) = Ĥ1(t) + Ĥ2, (2)

with Ĥ1 =
∑N
i ĥ(~ri,∇i, t) and,

ĥ(~r,∇, t) =

(
−∇

2

2
− Z

r
− i ~A(t) · ∇

)
, (3)

Ĥ2 =

N−1∑
i=1

N∑
j=i+1

1

|~ri − ~rj |
, (4)

where ~A(t) = −
∫ t
−∞

~E(t′)dt′ denotes the vector poten-
tial. The velocity gauge is used, since ECS works only
with it, and not with the length gauge [12].

In the TD-CASSCF method [5], the total wave func-
tion is given by,

Ψ = Â

[
ΦfcΦdc

∑
I

ΦICI

]
, (5)

where Â denotes the antisymmetrization operator, Φfc

and Φdc the closed-shell determinants formed with nfc
FC and ndc DC orbitals, respectively, and {ΦI} the deter-
minants constructed from na active orbitals. The active
electrons are fully correlated among the active orbitals
as in the MCTDHF method.

The equations of motion (EOMs) that describe the
temporal evolution of the CI coefficients {CI} and the
orbital functions {ψp} are derived by use of the time-
dependent variational principle. The EOMs have various
forms depending on the choice of time derivatives of the
orbitals [3–5]. In this paper, we choose the forms in our
previous study [8]. The EOMs for the CI coefficients are
given by,

i
d

dt
CI(t) =

∑
J

〈ΦJ |Ĥ2|ΦI〉CJ(t). (6)

The EOMs of the orbitals read,

i
d

dt
|ψp〉 = ĥ |ψp〉+ Q̂F̂ |ψp〉+

∑
q

|ψq〉Rqp, (7)

where Q̂ = 1 −
∑
q |ψq〉 〈ψq| the projector onto the or-

thogonal complement of the occupied orbital space. F̂
is a non-local operator describing contribution from the
interelectronic Coulomb interaction, defined as

F̂ |ψp〉 =
∑
oqsr

(D−1)opP
qs
or Ŵ

r
s |ψq〉 , (8)

where D and P are the one- and two-electron reduced
density matrices, and Ŵ r

s is the mean field potential,
given, in the coordinate space, by

Ŵ r
s (~r) =

∫
d~r′

ψ∗r (~r′)ψs(~r
′)

|~r − ~r′|
. (9)

The matrix element Rqp,

Rqp = i 〈ψq|ψ̇p〉 − hqp, (10)

where hqp = 〈ψq|ĥ|ψp〉, determines the components of the
time derivative of the orbitals within the subspace that
the occupied orbitals span. The elements within one or-
bital subspace (core or active) can be arbitrary Hermitian
matrix elements, and, in this paper, we set them to zero,
i.e., Rij = Rtu = 0, where i and j belong to the core or-
bital space and t and u belong to the active orbital space.
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FIG. 1. Schematic illustration of radial exterior complex scal-
ing contour R(r) with scaling radius R0 and scaling angle η.

On the other hand, the elements between the core and
active subspaces are given by,

Rti =
(
Rit
)∗

= −hti − ~E(t) · ~r ti (for i ∈ frozen core)

(11)

Rti =
(
Rit
)∗

=
∑
u

[(2−D)−1]tu(2Fui −
∑
v

Du
vF

i∗
v ) (12)

(for i ∈ dynamical core),

where Fui = 〈ψu|F̂ |ψi〉, and ~r ti denotes a matrix element
of the position vector ~r. It should be noted that frozen
core orbitals, which are time-independent in the length
gauge, are to be propagated in the velocity gauge as [8],

ψi(~r, t) = e−i
~A(t)·~rψi(~r, 0) (for i ∈ frozen core).

(13)

III. IMPLEMENTATION OF INFINITE-RANGE
ECS WITH FEDVR METHOD

A. Exterior complex scaling for a single-electron
system

In this subsection, we briefly review exterior complex
scaling for a single-electron system. Let us consider the
velocity-gauge TDSE for a single-electron system in a
laser field,

i
∂

∂t
Ψ(~r, t) = ĥ1(t)Ψ(~r, t)

=

(
−∇

2

2
+ V (~r)− i ~A(t) · ∇

)
Ψ(~r, t),(14)

with V (~r) being a system potential. For polar coordi-
nated, ECS is based on the scaling

r → R(r) =

{
r (r < R0)

R0 + (r −R0)eλ+iη (r > R0),
(15)

where λ and η is real numbers, and specifically η is called
a scaling angle. For η > 0, outgoing waves exponentially
decay at radii r > R0 and numerically vanish before they
reach the simulation boundary and are unphysically re-
flected.

The transformation Eq. (15) defines an “exterior com-

plex scaling operator” ÛηR0

(ÛηR0Ψ)(~r) :=

Ψ(~R(r)) (r < R0)

e
λ+iη

2
R(r)

r
Ψ(~R(r)) (r > R0),

(16)

where,

~R(r) =
R(r)

r
~r. (17)

The factor e
λ+iη

2 R(r)/r ensures that UηR0
is unitary for

η = 0. In the unitary case, one can replace h1(t) in
Eq. (14) with

ĥη=0R0(t) = Ûη=0R0 ĥ1(t)Û−1η=0R0
, (18)

without changing the dynamics. The solution for the
scaled Hamiltonian is trivially Ψη=0R0

:= Ûη=0R0
Ψ and

coincides with the unscaled solution Ψ for r < R0.
In the ECS case, the scaled operator is ĥηR0

(t) = ĥ1(t)
on r < R0 and for r > R0

ĥηR0
= −1

2
∇2
ηR0

+ V [~R(r)]− i ~A(t) · ∇ηR0
, (19)

with the scaled nabla operator ∇ηR0
given by

∇ηR0 = ~er
1

eλ+iηr

∂

∂r
r

+
1

R(r) sin θ

(
~eθ

∂

∂θ
sin θ + ~eφ

∂

∂φ

)
. (20)

This form of the scaled operator is formally obtained by
analytically continuing that of the unitary case [Eq. (18)]
with η = 0 → η 6= 0 [18]. The essential point of ECS is
that, given sufficient analyticity properties of hηR0

, also
for η > 0 the solution ΨηR0 remains invariant on r < R0,
while it decays exponentially in the absorbing region [13].

On formal grounds one may expect such a behavior.
However, it is not at all obvious as the operator ÛηR0

and its inverse are poorly defined for η > 0. This math-
ematical fact is reflected in numerical breakdown when
approximating the inverse Û−1ηR0

in any discretization.
For the numerical solution of the complex scaled TDSE

with the simple scaling of Eq. (19) one needs to ensure
that the discretization method can represent the discon-
tinuous behavior of the solution at r = Rc, Eq. (16). This
is case for the FEDVR basis set described below.

While ECS is usually applied on a finite discretiza-
tion range, one can infinitely extend the scaled region
by using a finite number of exponentially damped basis
functions [13]. This method, called infinite-range ECS,
not only has a conceptual advantage of simulating the
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entire space with artificially modifying neither the sys-
tem Hamiltonian nor the wave functions, but also has
achieved high accuracy and efficiency with a consider-
ably smaller number of basis functions [13].

B. FEDVR basis for infinite-range ECS

In this paper, we implement irECS with a spherical-
FEDVR basis [19, 20], which is used in our TD-CASSCF
code [8].

Here, as usual, we set λ = 0 in the scaling factor. For
the discretization in radial direction we absorb the factor
R(r) into the basis functions ryi(r), which is equavalent
to working with radial functions Φ(~r) = rΨ(~r) and fur-
ther simplifies the expression for ∇ηR0 . For the imple-
mentation we follow Refs. [20, 21].

In FEDVR methods with a finite range, Gauss-Lobatto
and Gauss-Radau quadrature points are usually used in
each finite element for integral evaluation. For irECS,
instead, we introduce Gauss-Laguerre-Radau quadrature
points [22, 23] to construct DVR basis functions in the
last finite element extending to infinity. Gauss-Laguerre-
Radau quadrature approximates the semi-infinite inte-
gral of an exponentially damped function as

∫ ∞
rL

dre−α(r−rL)f(r) ≈
Ngrid∑
i=1

wif(ri) (21)

rL = r1 < r2 < · · · < rNgrid

with wi’s and ri’s being weights and grid points, re-
spectively. We choose the lower element boundary as
rL = R0. As discussed in Refs. [20, 21], the integration
weights in complex scaled region r ≥ R0 are multplied
by eiη.

For irECS, one uses exponentially damped functions
as the FEDVR basis functions on the last element,

yi(r) =

e−
α
2 (r−rL) 1

r

Li(r)√
wi

(r ≥ rL)

0 (r < rL)
(22)

with Lagrange polynomials,

Li(r) =
∏
j 6=i

r − rj
ri − rj

. (23)

Note that these basis functions are not truncated within a
finite range unlike usual FEDVR basis, but extend to the
infinite range and decay exponentially due to the factor
e−

α
2 (r−rL). This infinitely-extended exponential tail can

describe exponentially damped orbital functions by ECS
and provides high accuracy with a small number of basis
functions.

The basis functions appear as orthonormal under the

approximate Gauss quadrature,∫ ∞
0

dr r2yi(r)yj(r) ≈
Ngrid∑
k=1

wke
α(rk−rL)yi(rk)∗yj(rk)

= δij . (24)

Thus, in the last finite element a radial part of scaled
orbital functions ϕ(r) is expressed by

ϕ(r) ≈
Ngrid∑
i

ciyi(r) (25)

ci =

∫ ∞
0

dr r2yi(r)ϕ(r) ≈
√
wiriϕ(ri). (26)

Likewise, the matrix elements of one-body potentials are
diagonal,

Vij =

∫ ∞
0

dr r2yi(r)V (r)yj(r) ≈ V (ri)δij . (27)

The first derivative of the FEDVR basis functions are
given by

∂

∂r
yi(r) = −1

r
yi(r) +

1
√
wi

e−
1
2α(r−rL)

r
Pi(r), (28)

where

Pi(r) = −α
2
Li(r) +

∂

∂r
Li(r)

=


1

ri − rj

∏
k 6=i,j

rj − rk
ri − rk

for r = rj , i 6= j

− 1

2w1
δi1 for r = rj , i = j.

(29)

Thus, the matrix elements of the radial second derivative
operator can be expressed under Gauss quadrature by
using a partial integral,∫ ∞
0

r2dr yi(r)
1

r

∂2

∂r2
ryj(r) = −

∫ ∞
0

dr
∂

∂r
(ryi(r))

∂

∂r
(ryj(r))

≈ −
∑
k

wk√
wiwj

Pi(rk)Pj(rk)

(30)

For simplicity, we have discussed without considering
the bridge function to connect the element boundary be-
tween the last element and the second to last element. In
the actual implementation, we introduced this as well as
in the usual FEDVR method [19].

IV. APPLICATION OF ECS TO THE
TD-CASSCF MULTIELECTRON DYNAMICS

In this Section, we discuss how to apply ECS to TD-
CASSCF simulations of the multielectron dynamics in-
volving the interelectronic Coulomb interaction. By anal-
ogy with the single-electron case, we propagate the scaled
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orbital function ÛηR0
|ψp〉 rather than the unscaled |ψp〉,

by transforming Eq. (7) into the scaled EOMs of the or-
bitals,

i
d

dt
(ÛηR0

|ψp〉) = (ÛηR0
ĥÛ−1ηR0

)(ÛηR0
|ψp〉)

+

[
1−

∑
t

(ÛηR0
|ψt〉)(〈ψt| Û−1ηR0

)

]
×
∑
oqsr

(D−1)opP
qs
or (ÛηR0

Ŵ r
s Û
−1
ηR0

)(ÛηR0
|ψq〉)

+
∑
q

(ÛηR0 |ψq〉)Rqp. (31)

A significant difference from the EOMs without ECS is
that {〈ψp| Û−1ηR0

}is required, instead of {〈ψp|}, to apply

Q̂ = 1−
∑
t |ψt〉 〈ψt| and evaluate W and R. It is formally

defined in the coordinate space as

(〈ψq| Û−1ηR0
) |~r〉 =

[
〈~r|
(
Û(−η)R0

|ψq〉
)]∗

. (32)

It should be noticed that information of {〈ψp| Û−1ηR0
}

is available in the unscaled region but not available in
the scaled region during the simulation, which poses a
problem. Although formally one might attempt to ob-
tain these by analytically continuing {ÛηR0

|ψp〉} , such
a procedure turns out to be numerically unstable.

Since the scaled region is usually far from the origin, it
is reasonable to assume that the scaled part of the orbital
functions hardly affects the electron dynamics close to the
nucleus and that the interaction between electrons resid-
ing in the scaled region is negligible. Thus, we approxi-
mately neglect {〈ψp| Û−1ηR0

} in the scaled region wherever
their information is necessary to evaluate the right-hand
side (RHS) of Eq. (31).

Specifically, the scaled mean field operator is approxi-
mated as,

UηR0Ŵ
r
s (~r)U−1ηR0

= Ŵ r
s (~R(r))

≈
∫
r′<R0

d~r′
ψ∗r (~r′)ψs(~r

′)

|~R(r)− ~r′|
≡ Ŵ ′rs(~R(r)) (33)

Here, it should be noticed that the Coulomb force acting
on a scaled-region electron (r > R0) from an unscaled-
region electron (r′ < R0) is not neglected. Hence, the
effect of the ionic Coulomb potential is properly taken
into account in the dynamics of departing electrons. The
way to numerically evaluate the truncated scaled mean

field operator Ŵ ′
r
s(~R(r)) is given in Appendix A. Then,

in the second term of the RHS of Eq. (31),

(〈ψt| Û−1ηR0
)(D−1)opP

qs
or (ÛηR0

Ŵ r
s Û
−1
ηR0

)(ÛηR0
|ψq〉), (34)

is approximated as,

(D−1)opP
qs
or

∫
r<R0

d~rψ∗t (~r)Ŵ ′
r
s(
~R(r))ψq(~r). (35)

Similarly, in the evaluation of Eq. (11), the RHS is ap-
proximated as,

hti ≈
∫
r<R0

d~rψ∗t (~r)ĥ(~r)ψi(~r). (36)

However, since {ψi(~r)} in Eq. (11) is a frozen core orbital,
which is fixed at an initial bound state and exponentially
decays with the distance from the origin increasing, the
truncation in Eq. (36) gives almost no error. In order to
evaluate the matrix elements of F in the RHS of Eq. (12)
and to propagate CI coefficients using Eq. (6), we need
to evaluate the following Coulomb matrix elements,

W rp
sq =

∫
d~rd~r′

ψ∗r (~r)ψ∗p(~r′)ψq(~r
′)ψs(~r)

|~r − ~r′|
, (37)

which we approximate as, truncating the integral within
the unscaled region as well as Eq. (35),

W rp
sq ≈

∫
r<R0

d~rψ∗p(~r)Ŵ ′
r
s(~R(r))ψq(~r). (38)

The validity of these truncation procedures will be nu-
merically assessed below in Sec. V.

V. NUMERICAL RESULTS

In this section, we assess performance of the implemen-
tation of irECS to the TD-CASSCF method described in
the previous section, simulating many-electron atoms in
an intense near-infrared laser pulse. We assume a laser
field linearly polarized in the z direction of the following
form:

E(t) =
√
I0 sinωt sin2

(
π

t

NT

)
, (0 ≤ t ≤ NT ), (39)

where I0 is a peak intensity, T is a period at the central
frequency ω = 2π/T and N is the total number of optical
cycles. We gauge the performance of simulations with
irECS against nominally “exact” results converged with
respect to a simulation box size and obtained with the
mask function boundary. In the latter, orbital functions
are multiplied by a mask function,

M(~r) =

1 for |~r| < Rmask

cos
1
4

(
π

2

|~r| −Rmask

Rmax −Rmask

)
for |~r| ≥ Rmask,

(40)
after each time step, where Rmask and Rmax denote the
absorption boundary and the simulation box radius, re-
spectively.

A. Helium

We first simulate a helium atom subject to a laser field
of 8.0 × 1014 W/m2 peak intensity, λ = 800 nm wave-
length, and five-optical-cycle foot-to-foot pulse duration
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TABLE I. Absorbing boundaries tested for He. nua (na) de-
notes the number of grid points in the non-absorption (ab-
sorption) region, and La the radial thickness of the absorp-
tion region. The radius Rmax of the whole simulation region
is given by Rmask + La or R0 + La.

label absorber Rmask or R0 nua La na

A mask 320 1600 80 400
B irECS 64 320 ∞ 40
C mask 64 320 8 40
D mask 124 620 40 200

(N = 5). We use five active orbitals, each expanded with
47 spherical harmonics. For the radial direction, each fi-
nite element has 21 grid points and is 4 a.u. long, except
for the last irECS element, which extends to infinity. The
number of the grids in the irECS element is same as other
finite elements. We performed simulations with four dif-
ferent absorption-boundary conditions, as listed in Table.
I. The scaling angle η is fixed to 15◦.

Figures 2 and 3 show the electron radial distribution
function defined as,

ρ(r) = Nr2
∫
dσdΩd~x2d~x3 · · · ~xn |Ψ(~x, ~x2, · · · , ~xn)|2 ,

(41)
after the laser pulse, and Fig. 4 shows relative errors
|ρ(r)− ρA(r)|/ρA(r) compared to the radial distribution
ρA(r) for condition A. Whereas the results (C and D)
with the mask function deviate from the exact result (A,
black thick solid lines), irECS (B) delivers the result with
orders of magnitude smaller errors within the scaling ra-
dius R0. Figure 5 shows the temporal evolution of the
probability of finding both electrons within the 20 a.u. ra-
dius, which serves as a measure of survival probability.
The results with irECS (B) and the mask function with
the larger absorption radius (D) agrees very well with
the exact one (A), while that with the mask function (C)
whose absorption radius Rmask is equal to R0 deviates
from the exact one after three optical cycles. The de-
gree of ionization is less than 1.5 %, thus, the neglect of
the Coulomb interaction in and from the scaled region
(Sec. IV) leads to virtually no errors.

Figure 6 displays high-harmonic spectra, calculated as
the magnitude squared of the Fourier transform of dipole
acceleration. Again, the mask function with Rmask = 64
fails to reproduce, in particular, the sharp drop of the
spectral intensity after the cutoff because of unphysical
reflection, and Rmask = 128 is required for convergence.
On the other hand, the spectrum with irECS with R0 =
64 shows excellent agreement with the exact one.

B. Beryllium

We move on to Beryllium with its ionization poten-
tial (9.3 eV) significantly smaller than that of He (24.6
eV), thus, much easier to ionize. We use I0 = 3.0 ×
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FIG. 2. Electron radial distribution function ρ(r) after the
laser pulse for the case of He exposed to a laser pulse with
800 nm wavelength and 8.0× 1014 W/m2 peak intensity, cal-
culated with different absorbing boundaries listed in Table
I.
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FIG. 3. Enlarged view of Fig. 2.
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FIG. 4. Relative errors of the radial distribution functions
shown in Fig. 3 compared to the result A.

1014 W/m2, λ = 800nm (the quiver radius is 28.5 a.u.),
N = 5, and (na, ndc, nfc) = (4, 0, 1). As in the case of
He, each orbital function is expanded with 47 spherical
harmonics and discretized with radial finite elements 4
a.u. long except for the last irECS element. Each finite
element, including the irECS element, has 21 grid points.
The scaling angle η is set to be 15◦. Five different condi-
tions used for absorption boundaries are listed on Table
II.

Figure 7 compares the electron radial distribution func-
tions after the pulse, calculated with different absorp-
tion boundaries. The irECS delivers much better results
(B and C) than the mask function (D). Nevertheless the
irECS results slightly deviate from the exact solution (A)
even if the scaling radius is almost twice the quiver ra-
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FIG. 5. Time evolution of the survival probability, i.e., the
probability of finding both electrons in He within 20 a.u. ra-
dius, calculated with different absorbing boundaries listed in
Table I.
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FIG. 6. High harmonic spectra from He exposed to a laser
pulse with 800 nm wavelength and 8.0 × 1014 W/m2 peak
intensity, calculated with different absorbing boundaries listed
in Table I.

dius. In the present case, the Be atom is nearly totally
ionized, and double ionization amounts to 50 % (Fig. 8).
Hence, the deviation may be attributed to the neglect of
the Coulomb interaction in and from the scaled region
and/or the loss of information on the wave function in
the scaled region.

In order to reveal the effect of the latter, we have per-
formed a simulation with a sufficiently large domain with
the mask function (Rmask = 320 a.u. and Rmax = 400
a.u.) but with the integrals truncated at r = 28 a.u.,
as described in Sec. IV. We compare the result with
the exact one and that from irECS with R0 = 28 a.u.
in Fig. 9 . The “truncated” and irECS results overlap
each other and slightly deviate from the exact solution,
which indicates that the slight deviations in Figs. 7 and 9
stem from the neglect of the Coulomb interaction in and

TABLE II. Absorbing boundaries tested for Be.

absorber Rmask or R0 nua La na

A mask 320 1600 80 400
B irECS 40 200 ∞ 40
C irECS 52 260 ∞ 40
D mask 52 260 8 40
E mask 88 440 56 280
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FIG. 7. Electron radial distribution function ρ(r) after the
laser pulse for the case of Be exposed to a laser pulse with
800 nm wavelength and 3.0× 1014 W/m2 peak intensity, cal-
culated with different absorbing boundaries listed in Table
II.
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FIG. 8. Time evolution of single, double, and total ionization
probabilities of Be exposed to a laser pulse with 800 nm wave-
length and 3.0× 1014 W/m2 peak intensity. For convenience,
we define single (double) ionization probability as that of find-
ing one (two) electron(s) outside the 20 a.u. radius. The total
ionization probability is calculated as their sum.

from the scaled region. One may be surprised that the
loss of information on orbital functions at the absorp-
tion boundary hardly affects simulation results within
the absorption radius. This may be because the TD-
CASSCF (and MCTHDF) equations of motion assume
the orthonormality of the true (, i.e., unscaled) orbital
functions {|ψp〉}, even though their numerically propa-

gated portions {ÛηR0
|ψp〉} are not orthonormal in gen-

eral. Consequently, information on the absorbed part,
though its explicit form is unknown, is partially retained,
which enables accurate simulations. It should also be
noticed that, since we construct the total wave function
based on single-electron orbitals, even if one or more elec-
trons are absorbed, we can continue to follow the asso-
ciated dynamics of the other unabsorbed electrons. This
is in great contrast to the time-dependent close-coupling
simulations [1, 24–26], where, if one electron reaches the
absorption boundary, the corresponding part of the total
wave function is completely lost.

In spite of the small discrepancy in Fig. 7, irECS gives
the time evolution of single/double ionization (Fig. 8)
and the high-harmominic spectrum (Fig. 10) in excellent
agreement with the exact results. It is remarkable that



8

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 5  10  15  20  25  30  35  40

pr
ob

ab
ilit

y 
de

ns
ity

radial coordinate (a.u.)

A : Rmask = 320
trucated at 28 a.u.
irECS : R0 = 28

FIG. 9. Electron radial distribution function ρ(r) after the
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without (thick solid) and with (thin dashed) the integral trun-
cations at 28 a.u., as described in Sec. IV, and the result using
the irECS with R0 = 28 a.u. (dotted).
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FIG. 10. High harmonic spectra from Be exposed to a laser
pulse with 800 nm wavelength and 3.0 × 1014 W/m2 peak
intensity, calculated with different absorbing boundaries A-D
listed in Table II.

the neglect of the Coulomb interaction in and from the
scaled region is a good approximation and that irECS
works excellently even under such massive double ion-
ization. We have reduced computational costs by 66%
compared with the best case of the mask function (E) to
obtain a converged high harmonic spectrum (B).

C. Neon

Finally, as a typical target atom used for attosecond-
pulse generation, we simulate HHG from a Neon atom
subject to a laser pulse with I0 = 8.0 × 1014 W/m2,
λ = 800 nm, and N = 3. We use 8 active orbitals and
1 dynamical core, i.e., (na, ndc, nfc) = (8, 1, 0). Each or-
bital function is expanded with 47 spherical harmonics
and discretized with radial finite elements 4 a.u. long ex-
cept for the last irECS element. Each finite element,
including the irECS element, has 21 grid points. The
scaling angle η is fixed to 15◦. Three different conditions
used for absorption boundaries are listed in Table III.

If we use the same radius R0, Rmask = 60 a.u. of the
non-absorbing region and number na = 60 of grid points

TABLE III. Absorbing boundaries tested for Be.

absorber Rmask or R0 nua La na

A mask 256 1280 64 320
B irECS 60 300 ∞ 60
C mask 60 300 12 60
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FIG. 11. High harmonic spectra from Ne exposed to a laser
pulse with 800 nm wavelength and 8.0 × 1014 W/m2 peak
intensity, calculated with different absorbing boundaries listed
in Table III.

in the absorption region, the irECS result (B) perfectly
overlaps with the “exact” result (C) obtained with a
large simulation box (Rmask = 256 a.u.), while the mask
boundary (C) fails (Fig. 11). As in the case of He, the
ionization probability (about 4 %) is relatively small due
to the large ionization potential (21.6 eV) of Ne, so that
the truncation of integrals introduced to apply ECS to
the TD-CASSCF method leads to almost no error. The
computational cost of the irECS simulation B is reduced
by 80% compared with case A.

VI. SUMMARY

We have presented a successful numerical implementa-
tion of irECS as an efficient absorbing boundary to the
TD-CASSCF method for multielectron atoms in intense
laser fields. It minimally neglects only the Coulomb force
between electrons in the unscaled region and that acting
from electrons in the scaled region on those in the un-
scaled region. For discretization of the scaled region,
we have introduced Gauss-Laguerre-Radau quadrature
points to construct exponentially dumped infinite-range
FEDVR basis functions that are, conveniently, orthonor-
mal and finite only at a grid point associated to each
basis function.

We have applied the present method to He, Be, and Ne
atoms, and calculated ionization probabilities and HHG
spectra for intense near-infrared laser pulses. We have
obtained the results that perfectly agree with the con-
verged results using much larger absorbing radii, even
when atoms are massively ionized. The demonstrated
high accuracy indicates that the above-mentioned neglect
of the Coulomb interaction, i.e., the truncation of inte-
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grals Eqs. (33), (35), (36), and (38) is a good approxi-
mation, not significantly modifying simulated processes.
Decreasing the size of the simulation box thanks to irECS
has led to significant reduction of computational costs; by
66% for Be and 80% for Ne in the present case.

The present implementation for atoms uses the polar
coordinate system with the spherical harmonics expan-
sion, thus, its computational cost linearly scales with
the radius of the simulation region. If irECS is ap-
plied to our previously presented simulation code with
three-dimensional Cartesian coordinates [7], even more
efficiency gain is expected, which enables simulations of
larger molecules and longer term simulations.
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Appendix A: Scaled interelectronic Coulomb
interaction

This Appendix briefly describes how to numerically

evaluate Ŵ ′
r
s(~R(r)) [Eq. (33)]. By using the multipole

expansion of 1/|~r − ~r′|,

1

|~r − ~r′|
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

Y ∗lm(θ′, φ′)Ylm(θ, φ),

(A1)
where r>(r<) is the greater (smaller) of r and r′, the

truncated mean field operator Ŵ ′
r
s (~r) can be expanded

as,

Ŵ ′
r
s (~r) =

∞∑
l=0

l∑
m=−l

V rslm(r)Ylm(θ, φ), (A2)

where V rslm(r) is given by,

V rslm(r) =
4π

2l + 1

∫ R0

0

dr′
rl<
rl+1
>

ρrslm(r′), (A3)

with,

ρrslm(r′) =

∫
dΩ′Y ∗lm(θ′, φ′)r′2ψ∗r (~r′)ψs(~r′). (A4)

In the unscaled region (r < R0), we obtain V rslm(r) by
solving Poisson’s equation [20],(

d2

dr2
− l(l + 1)

r2

)
(rV rslm(r)) = −4π

ρrslm(r)

r
. (A5)

In the scaled region (r > R0), on the other hand, V rslm(r)
is simplified into,

V rslm(r) =
4π

2l + 1

1

rl+1

∫ R0

0

dr′r′lρrslm(r′), (A6)

which can be evaluated by numerical integration. Hence

Ŵ ′
r
s(~R(r)) is expressed as,

Ŵ ′
r
s(~R(r)) =

∞∑
l=0

l∑
m=−l

4π

2l + 1

1

R(r)l+1
Ylm(θ, φ)

×
∫ R0

0

dr′r′lρrslm(r′). (A7)
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