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We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying
extra orbital angular momentum along their direction of propagation. From the angular momen-
tum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to
their plane-wave analogues, independently of the details of the atomic wave functions. We analyzed
the photo-absorption cross sections of mixed-multipolarity E2−M1 transitions in ionized atoms and
found fundamental differences coming from the photon topology. Our theoretical analysis demon-
strates that it is possible to extract the relative transition rates of different multipolar contributions
by measuring the photo-excitation rate as a function of the atom’s position (or the impact parameter)
with respect to the optical vortex center. The proposed technique for separation of multipoles can
be implemented if the target’s atom position is resolved with sub-wavelength accuracy, for example,
with Paul traps. Numerical examples are presented for Boron-like highly-charged ions (HCI).

I. INTRODUCTION

Twisted photons, or topological states of light, carry-
ing extra orbital angular momentum (OAM) along their
propagation direction, have been one of the trends in
optics, photonics and related studies of light-matter in-
teraction for more than 20 years. The seminal paper
by Allen et al. [1] triggered major development in the
field of optical control and manipulation, microscopy,
telecommunication, information security, etc. In atomic
photoexcitation by twisted photons, the terms respon-
sible for vortex behavior often can be conveniently fac-
torized from the conventional plane-wave contribution
[2]. Modified atomic selection rules were worked out
for Bessel beams (BB) [2–4]. Later, the formalism was
extended to Laguerre-Gaussian (LG) beams [5]. The
fact that total angular momentum of the twisted pho-
tons can be passed to the internal degrees of freedom of
an atom was confirmed experimentally for quadrupole
transitions with trapped ions [6, 7], and agreed with the-
oretical predictions. Atomic photo-excitation by vor-
tex beams as a local probe of the beam’s topological
structure was discussed in Ref. [8]. A physics argu-
ment for varied strengths for different multipole transi-
tions across the twisted-light wavefront can be found in
Ref.[9]: While dipole transitions are driven by the elec-
tromagnetic field intensity, the quadrupole transitions
are caused by the field gradients. For a recent review
of interactions between the twisted photons and atoms,
see Ref. [10].

The novel phenomena for the trapped ions interact-
ing with twisted photons have potential applications in
quantum computing and quantum storage [11, 12] due
to extra photon-OAM degrees of freedom. Long life-
times of forbidden states and abundance of nearly de-
generate transitions are important benefits for optical
clock candidates [13]. Since even a moderate, 3-5%, in-
crease in lifetimes is important, twisted light can be used
as a tool for local high-precision control and tuning of

the transition rates. It would allow development of tem-
poral, as well as spatial, measurement techniques based
on the knowledge of transition rates with high multipo-
larity.

Dipole-forbidden transitions are important for mea-
surements of uncertainties in atomic structure and prob-
ing physics beyond the standard model [14] as well
as astrophysics [15], and many other related fields, see
Ref. [16] for review. Transitions forbidden by E1 selec-
tion rules recently received a lot of attention in precision
spectroscopy [17–20]. In this respect, we are particularly
interested in studying an interplay of topological prop-
erties of the incoming radiation and the atomic system.

The content of the transitions with mixed multipolar-
ity can be extracted from independent measurements
of the transition rates excited by the photons of oppo-
site helicity. Search and tabulation of atomic transitions
with mixed multipolarity goes back to 1920’s. The tech-
nique of using the Zeeman effect to separate different
multipolar contributions in such processes is laid out in
[21]. The particular transitions with M1-E2 multipolar-
ity in Bi I, Pb I and II were studied extensively in [22–24],
where separation of multipolar contributions was ana-
lyzed both theoretically and experimentally. The tech-
niques for numerical analysis with extraction of the hy-
perfine structure for the cases of both integer and half-
integer spin were discussed, for instance, in Ref. [25].

Theoretical description of the photon-atom interac-
tion in a TAM basis is the main focus of this paper. The
convenient separation of the total angular momentum
(TAM) into orbital and spin parts violates gauge invari-
ance [26], which motivates us to work in the TAM basis
instead of the conventional linear momentum represen-
tation. In the Sec. II we briefly review the quantum me-
chanical formalism of photo-absorption of the BB and
Bessel-Gauss (BG) light beams by atoms. Sec. III is ded-
icated to revisiting the QED description of the photon
vector potential in TAM basis. In Sec. IV we use this
formalism to derive the photo-absorption amplitude in
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terms of spherical multipoles for the case of twisted light
and discuss the distinct features in the photo-absorption
cross section of ions caused by the topology of the in-
coming beam and OAM transfer to the atomic degrees
of freedom. In Sec. V the results are summarized.

II. ABSORPTION OF TWISTED PHOTONS BY ATOMS

In this section we will consider two modes of twisted-
light beams: BB and BG. Even though all of them repre-
sent optical beam-like fields, they belong to fundamen-
tally different families. BB is an example of non-paraxial
mode, structurally stable under propagation. BG is the
Helmholtz-type beam which satisfies the paraxial wave
equation and is characterized by BB-like behavior close
to the beam axis and gaussian-like decay on the periph-
ery.

The fundamental difference between the non-paraxial
BB, and paraxial BG modes is that the former one satis-
fies Maxwell’s equations, while the latter ones, strictly
speaking, do not. However, one can still apply conven-
tional QED methods to BG modes for the case of not-
tightly focused paraxial beams.

Photo-excitation by BB is the convenient place to start
due to the elegance of mathematical representation and
the property of Bessel functions to form a complete or-
thonormal basis. These allow us to simply expand the
other beam-like solutions in terms of Bessel modes with
further application of the developed formalism.

Bessel mode

As is well-known, e.g. [27], when solving the scalar
Helmholtz equation in cylindrical coordinates (ρ, φ, z),
one obtains Bessel mode

u(BB)(ρ, φ, z; t) = AJmγ(κρ)ei(mγφ−kzz)eiωt + c.c. (1)

where mγ is the projection twisted photon’s TAM on the
direction of propagation; Jmγ(x) is the Bessel function of
the first kind, and kz and κ are respectively longitudinal
and transverse components of the photon’s wave vector
with respect to the propagation direction z. The normal-
ization constant A =

√
κ/2π. Following the conven-

tional quantization procedure requires the plane wave
expansion of the mode. We use the angular spectrum
representation, e.g. [28], so that the vector solution can
be written as

ÂkzκmγΛ(rrr, t) = A

√
2π

ω ∑
k

∑
Λ=−1,1

∫ d2k⊥
(2π)2 aκmγ×

×
{

âkΛeeekkkΛei(kkk·rrr−ωt) + â†
kΛeee†

kkkΛe−i(kkk·rrr−ωt)
}

(2)

Here aκmγ is the component of the 2D Fourier transform
[2, 29]; Λ = ±1 is (spin) helicity of the plane-wave

photons forming the Bessel mode and eeekkkΛ is the basis
state of the twisted-photon polarization, which relates
to the plane photon polarization vectors by SO(3) ro-
tation group transformation R̂z(−φk)R̂y(−θk)R̂z(φk) to
the linear polarization basis [30, 31]:

eeekkkΛ = e−iΛφk cos2 θk
2

η
µ
Λ + eiΛφk sin2 θk

2
η

µ
−Λ +

Λ√
2

sin θkη
µ
0 .

(3)
where θk is commonly called a pitch angle and φk is the
azimuthal angle [2]. Note that Λ = 1(−1) corresponds
to right- (left-) circular polarization, RCP and LCP. The
corresponding local (e.g., at atom’s center location) pho-
ton flux is

f (bbb) = cos(θk)(|E|2 + |B|2)/4 =

cos(θk)
A2ω2

2

{
cos4 θk

2
J2
mγ−Λ(κb) + sin4 θk

2
J2
mγ+Λ(κb)

+
sin2 θk

2
J2
mγ

(κb)
}
(4)

where bbb is an impact parameter, or atom’s transverse loca-
tion with respect to the optical vortex axis. It should be
noted that the use of impact-parameter representation
for the absorption of twisted light by atoms was demon-
strated to be especially practical in Ref.[32].

Proceeding with this approach, the convenient factor-
ization property of the twisted photo-absorption ampli-
tude was obtained, [2–4]:

|M(BB)
m f ,mi (b)| =

A
2π
|Jm f−mi−mγ(κb)×

× ∑
m′f m′i

d
j f
m f ,m′f

(θk)d
ji
mi ,m′i

(θk)M(pw)
m′f m′i

(θk = 0)|, (5)

where ji( f ) and mi( f ) are TAM of initial (and final) atomic
levels and their projections, respectively. The two terms
responsible for the modification of the selection rules are
Wigner d-functions and Bessel function of the first kind
Jm f−mi−mγ(κb), which in the limiting case of a small im-
pact parameter b → 0 result into the constraint specific
for the twisted light: mγ = m f − mi. It implies that
at the center of the optical vortex, the TAM projection
mγ of the incoming photon precisely matches the differ-
ence in magnetic quantum numbers of initial and final
Zeeman levels, while other transitions are forced to zero
by angular momentum conservation. This behavior of
twisted-light absorption was demonstrated experimen-
tally with 40Ca+ ions in a Paul trap [6, 7].

Bessel-Gauss mode

The BG mode, first discussed in Ref. [33], is known to
be a reliable mathematical representation of real photon
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laser modes both on the periphery and at the central re-
gion. It satisfies the paraxial equation [34] and carries a
well-defined TAM:

u(BG)(ρ, φρ, z; t) = AJmγ(κρ)e−ρ2/w2
0 eimγφρ e−i(kzz−ωt)+ c.c.

(6)
Making use of the angular spectrum representation, the
corresponding photo-excitation amplitude can be ex-
pressed as

|M(BG)
m f ,mi (b)| = e−b2/ω2

0
A

2π
|Jm f−mi−mγ(κb)×

× ∑
m′f m′i

d
j f
m f ,m′f

(θk)d
ji
mi ,m′i

(θk)M(pw)
m′f m′i

(θk = 0)|, (7)

For the details of these derivations we refer to the recent
paper by Afanasev et al. [7].

III. EXPANSION IN SPHERICAL HARMONICS

As was argued in Ref. [35], quantum states of non-
paraxial beams, such as BB, are not well-defined in the
linear momentum basis. Instead the photon’s TAM (j)
basis is used, with minimum 6 ≤ 2(2j + 1) possible
states. Vector-potential in terms of spherical multipoles
can be defined as

AAAM
jm(k, rrr) = jj(kr)YYY jjm(Ω); (8)

AAAE
jm(k, rrr) =

(√
j + 1

2j + 1
jj−1(kr)YYY j,j−1,m(Ω)−

−
√

j
2j + 1

jj+1(kr)YYY j,j+1,m(Ω)

)
; (9)

where M and E stand for vector-fields of the magnetic
and electric type correspondingly; jm(x) is the spherical
Bessel function; and YYY j,`,m(Ω) are vector spherical har-
monics, e.g. [36].

In the Coulomb gauge, the non-relativistic quantum
mechanical photo-absorption matrix element can be
written as

S f i = −i
∫

dt 〈n f j f m f |Hint|ni jimi; kΛ〉; (10)

where the Hamiltonian operator Hint includes both
charge- and spin-dependent parts. For the incoming
plane-wave state with well-defined (LCP or RCP) helic-
ity the corresponding matrix element is

M(pw)
m f mi (rrr) =

∫
drrr 〈n f j f m f |( p̂ · eeekkkΛ)e

ikkk·rrr|ni jimi; kΛ〉
(11)

To express the plane-wave photo-absorption amplitude
in terms of (8) and (9) we use the known expansion:

eeekkkΛeikkk·rrr =
√

4π
∞

∑
j=1

j+1

∑
`=j−1

i`
√

2`+ 1j`(kr)CjΛ
`01ΛYYY j,`,Λ(Ω)

(12)

After writing out the sum over the projections ` of TAM
of the system, and using the following Clebsch-Gordan
coefficients

Cj,Λ
j−1,0,1,Λ =

√
j + 1

2(2j− 1)
; Cj,Λ

j+1,0,1,Λ =

√
j

2(2j + 3)
;

Cj,Λ
j,0,1,Λ = − Λ√

2
;

one arrives at

eeekkkΛeikkk·rrr =−
√

4π
∞

∑
j=1

√
(2j + 1)

2
ij×

×
{

iAAAE
jm(k, rrr) + ΛAAAM

jm(k, rrr)
}

; (13)

This expansion now can be used in (11)

M(pw)
m f mi (0) = −

√
4π

∞

∑
j=1

ij+µ

√
(2j+1)
(2j f +1)Λµ+1C

j f ,m f
ji ,mi ,j,Λ

Mjµ

(14)
such that µ = 1 stands for electric, and µ = 0 for mag-
netic multipolarity. Here Mjµ stands for the spherical
amplitudes of multipolarity µ and order j. Substituting
this transition amplitude into the factorization formulas
(5), and (7), we express the photo-absorption amplitude
in terms of electric and magnetic multipoles.

IV. PHOTO-EXCITATIONS IN HIGHLY CHARGED
IONS

According to recent theoretical and experimental
studies, Boron-like and Sn-like HCI’s are among the best
candidates for the next generation of atomic clocks. At
the same time, spectral lines of HCI are commonly char-
acterized by mixed multipolarity. In this section we use
HCIs to demonstrate distinctive features arising from
the OAM transfer from the photon and analyze a pos-
sibility of separation of multipoles with OAM light.

The photoexcitation rate Γ and cross section σ can be
obtained from the above formulae for the transition ma-
trix elements c. f . [2, 37] as

Γ(tw)
Mjµ

(b) = 2πδ(E f − Ei −ω) ∑
m f mi

|M(tw)
m f mi |

2,

σ
(tw)
Mjµ

(b) = Γ(tw)
Mjµ

(b)/ f (bbb).
(15)

where f (bbb) is the local (b-dependent) flux, as in Eq. (4)
for Bessel mode.

Analyzing eqn. (5) or (7), one can see that the cross
section in the case of arbitrary transition driven by BB is

σ
(tw)
Mjµ

(bbb) = 2πδ(E f − Ei −ω)
A2

f (bbb)
×

× ∑
m f mi

∑
m′f m′i j

|Jm f−mγ−mi (κb)d
j f
m f m′f

dji
mim′i
Cjj f ji Mjµ|2

(16)
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where Cjj f ji is the coefficient in (14):

Cjj f ji = −
√

4π ij+µ

√
(2j+1)
(2j f +1)Λµ+1C

j f ,m f
ji ,mi ,j,Λ

(17)

We will start from the low-level transitions with def-
inite multipolarity and initial atomic TAM ji = 0. One
can verify that a distinctive feature of the twisted light
photo-absorption is that it relaxes the plane wave selec-
tion rules: instead of having only one allowed ampli-
tude for ∆m = m f − miΛ, we get 2∆j + 1 amplitudes
possible per process, where δj = j f − ji. The photo-
absorption cross section for BB (16) takes the form (c. f .
Refs.[3, 4] that neglected electron’s spin):

σ
(tw)
Mjµ

(bbb) = 2πδ(E f − Ei −ω)
A2

f (bbb)
×

×∑
m f

|Cj f m f
00j f Λ Jm f−mγ(κb)d

j f
m f Λ(θk)Mj f µ|2 (18)

which, for the case of j f = 1, can be shown to be pro-

portional to incoming photon flux σm f (bbb) ∝ |M(pw)
10 |2.

Clebsch-Gordan coefficients are coming from coupling
of the EM-field topological charge and helicity to the in-
ternal degrees of freedom of the HCI. The multipolarity
is determined by the TAM exchange ∆j and the parity of
the final state. This leads to the conclusion that E1 and
M1 transition rates with the twisted photons are factor-
izable and proportional to the intensity of the incoming
radiation. For the case of multipoles of higher ∆j, the
characteristic factorization is also present, but the excita-
tion rates acquire extra terms, proportional to J2

mγ±c(κb),
where 1 < c ≤ ∆j.

As an example, let us consider transitions from the
ground level in Sn-like Pr9+: 1) 351 nm M1 transition
3P0 → 3P1; 2) 426 nm E2 transition 3P0 → 3F2. Cor-
responding amplitudes for the twisted photons for both
M1 and E2 transitions are shown in Fig.1 for BB pro-
file. The use of BG profile suppresses the amplitudes at
beam periphery depending on the choice of waist pa-
rameter. The rate of M1 transition Γ(tw)

M1 = f · σ(tw)
M1 (bbb)

appears to be proportional to the electromagnetic flux at
the given impact parameter b, making the cross section
independent on atom’s position. However, the electric
quadrupole cross section shows the characteristic peri-
odic pattern of peaks, dependent on the impact param-
eter of the system and the pitch angle θk. Formally, the
cross section for E2 transition becomes singular in the
optical vortex center, a phenomenon that can be related
to ”excitation in the dark” demonstrated experimentally
in Refs.[6], see also Ref.[4] for theory discussion. The
photoexcitation cross section for E2-transition as a func-
tion of impact parameter b is illustrated in Fig.2.
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FIG. 1: Dependence of photo-absorption amplitudes of
M1(λ=351 nm) for mγ = 1 (a), and E2(λ=426 nm) for mγ = 2
(b) transitions in Pr9+ HCI of OAM photons with Bessel pro-
file for ∆m = 2 - dashed-blue, ∆m = 1 - black-solid, ∆m = 0
- dotted-green, ∆m = −1 - dot-dashed-red, ∆m = −2 - long-
dashed-purple. Λ = 1 (RCP) in both plots.
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FIG. 2: Photo-absorption cross section for E2 in Pr9+ HCI by
twisted photons with Bessel profile for pitch angle θk = 0.2,
Λ = 1 (RCP) and different TAM projections mγ. The black
solid line is the plane-wave cross section normalized to one,
see [13] for actual lifetimes.

Next, we considered transitions with mixed multi-
polarity, such as 2P1/2 → 2D3/2 (142nm) in Boron-
like atoms, where the overall local transition amplitude
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comes from both E2 and M1-type contributions, while
E1 transitions are parity-forbidden. It was calculated by
Rynkun et al. [38] that the magnetic dipole contribu-
tion is slightly larger than that of the electric quadrupole
in these transitions, M1/E2 ≈ 1.1. This makes it espe-
cially convenient for studying the effects coming from
photon topology in mixed-multipolarity states. For the
plane-wave case we get two allowed transitions, where
relative normalization of the multipoles follows from
Eq.(16):

M(pw)
3/2,1/2(0) = i

√
π(E2−

√
3M1)

M(pw)
1/2,−1/2(0) = −i

√
π(
√

3E2 + M1).
(19)

For the twisted photons, one can check that the plane
wave amplitudes do not factorize out in this case. How-
ever, the whole expression for the OAM cross section
remains free of the interference terms. This allows

total

M1

E2

0.2 0.4 0.6 0.8 1.

0.005

0.01

0.025

0.05
0.075
0.1

0.25

b/λ

Γ M
jμ

tw
,(a
.u
.)

(a)

total

M1

E2

0.2 0.4 0.6 0.8 1.

0.01

0.025

0.05

0.075
0.1

0.25

0.5

b/λ

Γ M
jμ

tw
,(a
.u
.)

(b)

FIG. 3: Log-plots of photo-absorption rates in Boron-like HCI
for pitch angles (a) - θk = 0.1 and (b) - 0.2. The transitions are
excited by twisted photons with Bessel profile, mγ = 2, and
right-handed helicity (Λ = 1).

us to use the following equation for the local photo-

absorption cross section:

σ
(tw)
Mjµ

(bbb) = 2πδ(E f − Ei −ω)
A2

f (bbb)
×

× ∑
m f mi

∑
m′f m′i j

|Jm f−mγ−mi (κb)d3/2
m f m′f

d1/2
mim′i
Cj3/2 1/2|2|Mjµ|2

(20)

where Mjµ are the multipoles from Eq. (19).
Treating the θk as a small parameter θk → 0, one can

expand the expression (16) with local flux f (bbb), eqn.(4)
and get the leading terms of the expansion as

σ
(tw)
mγ=1 → 4π(E22 + M12) + O(θ2

k ); (21)

σ
(tw)
mγ=2 →

(
4π(E22 + M12) +

4E22

(b/λ)2π

)
+ O(θ2

k ); (22)

σ
(tw)
mγ=3 →

(
4π(E22 + M12) +

16E22

(b/λ)2π

)
+ O(θ2

k ); (23)

σ(pw) = 4π(E22 + M12). (24)

where the leading multipole contribution 4π(E22 +

M12) corresponds to the plane wave cross section σ(pw).
Due to the factorization property of BG amplitudes, the
derived expression for cross sections apply both for BB
and BG modes.

In Fig. 3 the photoexcitation rates for these transi-
tions is plotted as a function of the impact parame-
ter b, where the individual contributions from E2- and
M1-transitions, and their total are shown for BB profile.
Comparing results for two different values of the pitch
angle θk we find that the rate is smaller for smaller θk,
which can be understood as the effect of Wigner func-
tions in Eqs.(16, 20). The use of BG profile suppresses
the rate on beam periphery, but does not affect relative
contributions of M1 and E2 multipoles. One can see the
strong domination of the electric quadrupole over the
magnetic dipole in the center of the beam. The effect be-
comes noticeable for the distances b ≤ λ/3, which for
the considered case of λ = 142nm is about 50nm. It im-
poses position-resolution requirements on the possible
experimental observation of the predicted effect.

V. SUMMARY AND OUTLOOK

In this paper we presented a theoretical description of
the multipolar structure of the twisted light based on the
fundamental representation of the photon in its TAM ba-
sis. The atomic photo-excitation amplitude is obtained
in the form of the multipole expansion.

We analyzed the photo-absorption cross sections of
mixed E2−M1 transitions in ionized atoms interacting
with OAM-photons, which revealed fundamental dif-
ferences coming from the photon topology. Two dis-
tinct and novel features of the twisted-photon photoex-
citation are observed: (a) The magnetic levels popula-
tion is strongly affected by the topological charge of the
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photons and (b) The relative contributions of the M1-,
E2-amplitudes into the mixed-multipole transitions de-
pend on the atom’s location with respect to the optical
vortex axis. According to our theoretical analysis, it is
possible to extract the relative transition rates of differ-
ent multipolar contributions by measuring the photo-
excitation rate as a function of the atom’s position (or
the impact parameter) with respect to the optical vor-
tex center. In this case, only the E2 transition survives
at the vortex center for the incoming photons carrying
two units of angular momentum along the propagation
direction. On the other hand, the rates at the beam’s
periphery are driven by the same relative contribution
of multipoles as in the plane-wave case. The proposed
method of multipole separation with twisted light re-
quires high position resolution of the target atom’s posi-
tion that can be provided, for example, by Paul traps, as
in the recent experiments with 40Ca+ ions [6, 7].

In addition, experimental implementation of the pro-

posed technique for HCI would require a source of the
twisted light in UV range. Presently, generation of the
twisted light up to XUV range (with 99 eV photons) was
demonstrated at the synchrotron light source BESSY II
[39], and it is feasible with new-generation light sources.
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