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Owing to its ability to provide unique information on electron dynamics, time-resolved electron
momentum spectroscopy (ems) is used to study theoretically a laser-driven electronic motion in
atoms. Specifically, a chirped laser pulse is used to adiabatically transfer the populations of lithium
atoms from the ground state to the first excited state. During this process, impact ionization
near the Bethe ridge by time-delayed ultrashort, high-energy electron pulses are used to image the
instantaneous momentum density of this electronic population transfer. Simulations with 100-fs
and 1-fs pulse durations demonstrate the capability of ems to image the time-varying momentum
density, including its change of symmetry as the population transfer progresses. Moreover, the
spectra corresponding to different pulse durations reveal different kinds of electronic motion. We
discuss how to properly interpret these time-resolved ems spectra, which represent a generalization
of time-independent ems.

I. INTRODUCTION

Studies of time-resolved electron dynamics in various
atomic, molecular, and condensed matter reactions have
increased over the past two decades [1–7] owing to exper-
imental progress in generating ultrashort and/or intense
pulses of extreme ultraviolet light [8, 9], x rays [10, 11],
and electrons [12, 13]. These advances open the pos-
sibility of obtaining a deeper understanding of physical
and chemical reaction mechanisms. In particular, elec-
tronic motions during reactions have been monitored in
real time [14–16]. Moreover, various aspects of elec-
tronic motions can be retrieved using different probe
schemes. For example, attosecond transient absorption
spectroscopy tracks the frequencies, phases, and lifetimes
of excited oscillating dipoles [17, 18]; time-resolved x-
ray absorption and x-ray Raman spectroscopy provide
element-specific probes of evolving electronic motion and
chemical bonding [19, 20]; and x-ray and electron diffrac-
tion are able to directly image electronic spatial motions
with (sub-)̊angström resolution [21–23].
Electron momentum spectroscopy (ems) provides a

different probe scheme that images electronic states in
momentum space [24–28]. It thus provides a distinct
yet complementary perspective on electron dynamics.
In brief, ems utilizes the clean knock-out mechanism of
high-energy impact ionization near the Bethe ridge [29],
whereby the ionized electron receives nearly all of the
momentum transfer from the projectile electron (with
the target ion nuclei and electrons serving as specta-
tors whose only role is to define the binding energy of
the ionized electron). Hence, this impact ionization pro-
cess is essentially a binary collision between the projec-
tile electron and the target electron that is ionized. By
measuring the momenta of the two outgoing electrons,
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one can infer the momentum of the ionized electron and
its momentum distribution at the instant of collision us-
ing the conservation laws of energy and momentum and
the differential ionization cross section. The binary colli-
sion approximation is most valid for weakly-bound elec-
trons. Hence, ems is most useful for determining the mo-
mentum density of valence electrons, which usually play
dominant roles in chemical bonds and reactions. More-
over, ems measurements having sufficient energy reso-
lution enable state-selective determination of the target
electron(s) participating in a reaction. More importantly,
ems renders a straightforward interpretation of the ex-
perimental results, without further reference to simula-
tions and/or elaborate analyses. The main disadvantage
of ems is that it suffers from low data statistics due to
small cross sections [25].

Early research on the electron impact ionization pro-
cess, or (e, 2e), for the case of high-energy incident elec-
trons was focused on the ionization mechanism and the
validity of the momentum-density interpretation for tar-
get valence electronic states (see, e.g., Refs. [30–32]). The
ability of ems to map momentum densities was beauti-
fully demonstrated for hydrogen and helium electronic
orbitals [33, 34]. Over the past three decades ems ex-
perimental techniques have steadily improved the preci-
sion, accuracy, and detection efficiency of ems measure-
ments [25, 28]. As a result, ems measurements have been
employed as benchmarks for evaluating the accuracy of
theoretical calculations of molecular momentum distribu-
tions [35, 36]. Moreover, owing to the sensitivity of va-
lence electrons to the structure of a molecule, ems can de-
tect and study modifications of electron momentum den-
sities due to molecular conformation changes [37], molec-
ular pseudo-rotations [38], multicenter effects [39, 40], or
vibrations [41, 42]. Recently, (e, 2e) measurements have
been carried out for excited molecular states [43, 44].
Recent theoretical advances include analyses and simu-
lations of laser-assisted ems processes [45] as well as of
time-resolved ems for electronic motions in atoms and
molecules [46]. With regard to the latter, the time scale
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of typical electronic motions ranges from femtosecond (fs)
to sub-fs, which exceeds current temporal resolutions of
ems measurements.
In this paper we propose use of ems to image a laser-

controlled, picosecond (ps) electronic motion in atoms
as a means of exploring the capabilities and limitations
of ems for studying time-resolved electron dynamics.
Specifically, we consider a laser-driven population trans-
fer in lithium atoms from the ground state (2s) to the first
excited state (2p) [47]. This electronic motion comprises
two distinct time scales. The slow population transfer
motion is controlled by the driving laser, while the fast
motion stems from the quantum beating of the coher-
ent eigenstates involved in the population transfer. The
symmetric non-coplanar electron detection configuration
shown in Fig. 1 is chosen for ems measurements because
this setup selects impact ionization events that satisfy the
clean knock-out mechanism and because the differential
cross section directly reflects the momentum distribution
of the lithium valence electronic state.
We model the time-resolved ems spectra by general-

izing the time-independent theory of ems to take ac-
count of the effects of the driving laser field and the
finite duration of the incident electron pulses (Sec. II).
Simulations with two pulse durations (100 fs and 1 fs)
are performed (Sec. III). The simulations show that the
time-resolved spectra depend critically on the pulse du-
ration and that different kinds of information on the elec-
tronic motion can be retrieved from the different spectra
(Sec. IV). The results and analyses presented here thus
extend the conventional momentum-density interpreta-
tion of the ems spectra to the case of time-resolved ems,
which we demonstrate to be an effective tool for directly
investigating electron dynamics in atoms and molecules.
Finally, we note that x-ray Compton scattering pro-

vides a similar probe scheme for measuring the momen-
tum density of target electrons [48, 49]. However, as
discussed above, ems requires the clean knock-out mech-
anism involving large momentum transfers as well as a
coincidence measurement that resolves the momenta of
both the scattered particle (i.e., either the incident elec-
tron or the incident x-ray photon) and the ejected elec-
tron. These requirements can be challenging for x-ray
Compton experiments.

II. THEORY

In this section we present the theory upon which we
base our simulations of time-dependent ems of a laser-
driven adiabatic 2s→ 2p population transfer in Li atoms.
In section II A we recapitulate the conventional theory of
time-independent ems, using lithium as an example and
with an emphasis on how and under what conditions the
momentum densities of target stationary states relate to
(e, 2e) measurements. In section II B we then compare
the conventional theory with the time-dependent the-
ory, with a focus on the additional conditions required

FIG. 1. Schematic setup for time-resolved electron momen-
tum spectroscopy (ems) for a laser-driven population transfer
in lithium atoms. A chirped laser pulse drives the population
of the lithium atoms adiabatically from their ground state
(2s) to their first excited state (2p). During this transition,
changes in the population and symmetry of the valence elec-
tron’s momentum density are imaged by time-delayed, high-
energy electron pulses through the mechanism of electron im-
pact ionization, i.e., (e, 2e). In the symmetric non-coplanar
configuration, the scattered and ejected electrons share the
same kinetic energy, scattering angle θ, and azimuthal detec-
tion angle ϕ (relative to the positive and negative x -axis).
By varying the azimuthal angle ϕ of both detectors, the mo-
mentum distribution of the orbital from which the electron is
ionized can be mapped from the ems spectrum. The scatter-
ing angle θ is chosen such that the momentum density along
the z axis is imaged. For future reference, the coordinate
system used in this paper is defined here.

when making time-resolved measurements. Finally, in
section II C we briefly discuss the adiabatic passage the-
ory as applied to frequency-swept population transfer in
a two-state, lithium atom system. Unless specified oth-
erwise, atomic units (a.u.), e = ~ = me = 1, are used
throughout this paper.

A. Electron momentum spectroscopy

Consider an impact ionization process in which an en-
ergetic electron collides with a lithium atom,

e−(k0) + Li(k1) → e−(ka) + e−(kb) + Li+(kc) , (1)

where k0 and k1 are the respective momenta of the inci-
dent electron and the lithium atom, and ka, kb, and kc

are the momenta of the scattered electron, the ejected
electron, and the residual ion, respectively. We assume
that the momenta of the incident electron and the lithium
atom target are well defined (i.e., that they can be char-
acterized by a single value). If the momenta of the pro-
jectile electron and the lithium atom have finite distribu-
tions, these are treated as probability distributions rather
than as coherent (wave packet) distributions.

The collision ionizes the lithium atom from an initial
eigenstate φn to an ionic eigenstate φ−1

m , and the corre-
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sponding transition amplitude is [25, 26, 50, 51]

Tmn =
(

χ(−)
a χ

(−)
b χ(−)

c φ−1
m , V ψ(+)

n

)

, (2)

where the χ
(−)
j , j ∈ {a, b, c}, are eigenstates of the parti-

cles on the right-hand side of Eq. (1), V is the Coulomb
interaction between the incident electron and the ionized
electron, and ψ

(+)
n is the scattering state corresponding

to the left-hand side of Eq. (1). Here n and m denote the
collections of quantum numbers specifying the neutral
and ionic states of the lithium atom, respectively. The

superscripts (+) and (−) for the entrance state ψ
(+)
n and

the exit states χ
(−)
j indicate respectively outgoing- and

incoming-wave boundary conditions. Note that a δ func-
tion for the conservation of energy has been factored out
from Eq. (2).
In general, the evaluation of the transition amplitude

Tmn is challenging because the scattering state ψ
(+)
n can

involve complicated electron correlations during the pro-
cess of ionization [52]. However, under the so-called ems

conditions [25, 26, 28], as discussed below, the ionization
mechanism simplifies dramatically, and, as a result, the
calculation becomes much simpler. Moreover, the final
expression yields a clear physical interpretation. First,
for energetic collisions the distortion of the wave func-
tions of the incident electron and of the lithium atom
target can be neglected, so that the first-order Born ap-
proximation can be employed for the projectile-target in-

teraction. Hence, ψ
(+)
n can be approximated by the prod-

uct of the initial states,

ψ(+)
n ≃ χ0 χ1 φn , (3)

where χ0 and χ1 φn are respectively the states of the
incident electron and the lithium atom target. Since we
assume the incident electron is characterized by a single
momentum, χ0 is a plane wave with momentum k0,

χ0 = (2π)−3/2 eik0·x0 , (4)

where x0 is the coordinate of the incident electron. Like-
wise, χ1 has a similar plane-wave expression with mo-
mentum k1. Second, since ems measurements select ion-
ization events with large momentum transfer, both the
ejected electron and the scattered electron have large ki-
netic energy. Therefore, the distortion of the exit states
after the collision is also small, and the exit states can
also be approximated by plane waves,

χ
(−)
j ≃ (2π)−3/2 eikj ·xj , (5)

where xj is the coordinate of the jth particle, j ∈
{a, b, c}. While Eq. (5) may seem to be a crude approxi-
mation for particles having Coulomb interactions, simu-
lations have shown that calculations using the plane-wave
approximation agree with those using the distorted-wave
approximation provided that large momenta are trans-
ferred and that the initial momentum of the ionized elec-
tron at the instant of collision is . 1.5 a.u. (i.e., near

the Bethe ridge) [28, 53]. The validity of this plane-
wave approximation can also be verified experimentally
by comparing (e, 2e) measurements for different energies
of the incident electrons (see, e.g., Refs. [28, 35, 37, 38]).
Since we are interested in the motion of valence elec-
trons, whose momentum distributions are typically con-
centrated within the range of 0.0 – 2.0 a.u., this approx-
imation is adequate for our purposes. Third, owing to
the heaviness of the Li nucleus, the electron-to-nucleus
mass ratio is assumed to be negligible. Under the above
considerations, the ionization amplitude Tmn factorizes
into a product of kinetic and structural factors [25, 26]:

Tmn ≃ δ(Pf − Pi)
1

2π2

1

s2
ψmn(q) . (6)

Here Pf ≡ ka + kb + kc and Pi ≡ k0 + k1 are the re-
spective linear momenta of the products and reactants,
s ≡ k0−ka is the momentum transfer, q ≡ ka + kb − k0,
and ψmn(q) is the structure amplitude [26], given by

ψmn(q) =
1

(2π)3/2

∫

dxb e
−iq·xb

(

φ−1
m , φn

)

. (7)

The inner product in the integrand of Eq. (7) involves
an integration over all coordinates of the target elec-
trons except for the coordinate xb of the ejected electron.
The structure amplitude ψmn(q) in Eq. (7) is the Fourier
transform of the overlap between the ionic and neutral
states of the lithium atom, which is a single-electron func-
tion called the Dyson orbital.
The structure amplitude can be further related to the

momentum wave function of the orbital from which the
valence electron is ejected by making some additional ap-
proximations. Specifically, if a single Slater determinant
is used to construct each of the eigenstates φn and φ−1

m ,
then the Dyson orbital is the ejected electron’s momen-
tum space wave function multiplied by a spectroscopic
factor, i.e., the overlap of the core electrons’ initial and
final orbitals. If one further assumes that the collision
does not excite the core electrons and that the core or-
bitals do not relax during the ejection of the valence elec-
tron, then the frozen-core approximation can be used. In
this case, the spectroscopic factor is unity. Consequently,
the Dyson orbital is simply the momentum space wave

function of the valence (ejected) electron. The above as-
sumptions can be satisfied by selecting collision events
near the Bethe ridge having large momentum transfer.
For given initial and final states, φn and φ−1

m , of the
lithium atom and ion, ems simulations usually calculate

the triply differential cross section, d3σ/dEa dk̂a dk̂b, cor-
responding to the scattering of the incident electron with

energy Ea along the angle k̂a and the ionized electron es-

caping along the angle k̂b. The triply differential cross
section is proportional to the absolute square of the tran-
sition amplitude Tmn:

d3σ

dEa dk̂a dk̂b

∝
|ka| |kb|

|k0/m0 − k1/m1|

1

s4

∣

∣ψmn(q)
∣

∣

2
, (8)
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where m0 and m1 are the masses of the projectile elec-
tron and the lithium atom, respectively. The first fac-
tor on the right-hand side takes account of the incoming
and outgoing fluxes of the impact ionization. Because of
the indistinguishability between the scattered and ejected
electrons, antisymmetrization of the electronic wave func-
tion leads to an exchange of the roles of ka and kb and a
modification of the kinetic factor 1/s4 of Eq. (8), which
is given in Ref. [26]. Finally, since the spins of the in-
cident and target electrons are usually unpolarized and
the spins of the scattered and ejected electrons are not
measured, the triply differential cross section must be
averaged over initial spins and summed over final spins.
For high-energy collisions, these spin-exchange effects on
the dynamics of the ionization process are minimal; only
the kinematic factors are altered.
As shown in Eq. (8), under the above approximations

the triply differential cross section is proportional to the
momentum density, |ψmn(q)|

2, of the orbital from which
the electron is ejected. By selecting ka and kb, and hence
q, one is able to map the momentum distribution of the
valence orbital from the triply differential cross section.
The symmetric non-coplanar configuration (Fig. 1) pro-
vides a convenient scheme for ems because the momen-
tum transfer s is independent of the azimuthal scatter-
ing angle ϕ; moreover the kinetic factors [i.e., the first
and the second factors in Eq. (8)], remain insensitive to
small changes of ϕ near zero degrees even after antisym-
metrization (see Fig. 3 of Ref. [28]). Therefore, the triply
differential cross section as a function of ϕ can be directly
interpreted as the momentum distribution of the ejected
electron without further manipulation of the experimen-
tal data. The scattering angle θ can be chosen such that
qy = 0; thus, the momentum density along the z axis,
|ψmn(qz)|

2, can be imaged by rotating the azimuthal an-
gles ϕ of both detectors. The z component of the mo-
mentum of the ejected electron at the instant of collision
is determined by

qz = 2 kf sin θ sinϕ , (9)

where kf is the momentum of each of the two outgoing
electrons.

B. Time-resolved electron momentum spectroscopy

If target electronic states are non-stationary states, the
above theory needs to be generalized to take account of
the electronic motion. Time-dependent ems theory has
been developed for non-stationary states that can be rep-
resented as coherent superpositions of the eigenstates of
the target [46]. However, in the case of laser-driven pop-
ulation transfer in lithium atoms, the scattering system
is influenced by the external laser electromagnetic field,
and hence the lithium target electronic state cannot be
described simply as a coherent superposition state. In
our previous works [47, 54], we have developed a time-
dependent distorted-wave approximation to simulate the

diffraction of ultrafast electrons from laser-driven scat-
tering target systems. This approximation fully accounts
for the interaction between the laser and the scattering
target system (in the electric dipole approximation) such
that the dressing of the wave function of the incident elec-
tron and the population transfer in the lithium atoms can
be accurately described, while the target-projectile inter-
action is modeled as a perturbation. This same idea is
applicable to the current study. Since we have presented
a detailed theoretical derivation and analysis in Ref. [54],
we emphasize here the changes and additional approxi-
mations that are necessary to generalize the conventional
ems theory to the time-dependent case.
The first needed modification is to generalize the tran-

sition amplitude Tmn for the case of a system having
a time-dependent Hamiltonian [54–56]. Since the Born
approximation remains valid, the effects of the projectile-
target interaction on the entrance wave function can be
neglected. Then one can show, using the time-dependent
distorted-wave approximation, that the transition ampli-
tude from an initial state ψi(t) to a final state ψf (t) can
be approximated by [cf. Eq. (2)]

Tfi ≃

∫

dt
(

ψ
(−)
f (t), V ψ

(+)
i (t)

)

, (10)

where ψ
(+)
i (t) is the exact wave function of the entrance

channel in the laser field satisfying the initial condition:

ψ
(+)
i (t) → ψi(t) as t→ −∞ . (11)

Similarly, ψ
(−)
f (t) is the wave function of the exit channel

satisfying the asymptotic condition:

ψ
(−)
f (t) → ψf (t) as t→ ∞ . (12)

Thus, ψ
(+)
i (t) and ψ

(−)
f (t) are the time-dependent coun-

terparts (in the presence of the laser field) of the entrance
and exit states appearing in Eq. (2), and Eq. (10) is the
Born approximation counterpart of Eq. (2).

Before formulating expressions for ψ
(+)
i (t) and ψ

(−)
f (t)

and evaluating the transition amplitude (10) for the pop-
ulation transfer, let us estimate the effects of the laser
pulse on these wave functions. In laser-assisted impact
ionization, if the projectile electron and/or the ejected
electron absorb or emit photons, then the transition am-
plitude (10) comprises a sum of terms with each propor-
tional to Jl(q·α), where Jl is the lth order Bessel function
of the first kind, l indicates the number of absorbed or
emitted photons, and α is the displacement amplitude of
an electron in the laser field [45, 56, 57]. In our simula-
tions |α| . 0.005 a.u. since the laser field used to drive
the population transfer in the lithium atom is assumed
to have low intensity; see Sec. III for the laser parameters
used in our simulations. Also, our interest is in valence
electron momenta |q| . 1.5 a.u. Thus, the magnitudes of
the arguments of the Bessel functions are much smaller
than unity, so the probability that the electrons absorb
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or emit photons is negligible. In other words, the dress-
ing of the incident and ejected electrons can be neglected,
and the only effect of the laser pulse is to drive the elec-
tronic motion in the lithium atom. Accordingly, instead
of a Volkov wave, a plane wave is used to represent the

incident high-energy electron in ψ
(+)
i (t).

Time-dependent ems theory requires a second mod-

ification of the representation of ψ
(+)
i (t). In time-

independent ems theory (Sec. II A), the entrance state of
the projectile electron and that of the lithium atom are
assumed to be represented by single momentum states
(or by an incoherent sum of momentum states), with
each represented by a plane wave. However, in order
to properly describe time-dependent scattering, localiza-
tion of the incident electron and the lithium atom in both
space and time is necessary in order to define the time of
collision. This localization of the incident electron and
the target can be accomplished using wave-packet inte-
grals [22, 46, 58] that superpose plane-wave states χ0 and
χ1 [cf. Eq. (3)]:

ψ
(+)
i (t) ≃

∫

dk0 dk1 a0(k0) a1(k1)χ0(t)χ1(t)ψ1(t) .

(13)

Here a0(k0) and a1(k1) are the respective momentum
amplitudes of the projectile electron and the lithium
atom, and ψ1(t) is the electronic wave function of the
lithium atom. Note that these entrance states are gen-
eralized from the time-independent ones in Eq. (3) to
time-dependent ones in accord with the first modifica-
tion above. As shown later, the longitudinal extent (or
longitudinal coherence) of the entrance states introduced
by the wave-packet integrals is related to the temporal
resolution of time-resolved ems.
The electronic wave function ψ1(t) of the lithium atom

target can be expanded in its field-free eigenstates φn.
Since the lithium atom undergoes the laser-driven pop-
ulation transfer, ψ1(t) is different at each pump-probe
delay time. In order to model this dependence on delay
time, we assume that the population transfer is initiated
prior to the collision by a time td, and, thus, ψ1(t) is
displaced in time accordingly. Hence, the wave packet of
the projectile electron is the same for all delay times, but
ψ1(t) at a given delay time td is

ψ1(t) =
∑

n

Cn(t+ td)φn e
−iωn(t+td) , (14)

where ωn is the energy of the eigenstate φn and Cn(t)
is the amplitude at td = 0. The magnitude of Cn(t)
indicates the time-varying population of the φn state.
Similar considerations may be adduced for the exit-

channel wave function, ψ
(−)
f (t). Specifically, laser dress-

ing of the states of the scattered electron, the ionized elec-
tron, and the lithium ion remains negligible, as are the
distortions of the wave functions for these three particles.
In other words, the validity of the plane-wave approxi-
mation for the final states is unaffected by generalizing

the time-independent ems theory to the time-dependent
case. Therefore, the outgoing waves are approximated by

ψ
(−)
f (t) ≃ χa(t)χb(t)χc(t)φ

−1
m (t) , (15)

where χj(t) is the plane wave for the jth particle, j ∈
{a, b, c} [see Eq. (1)].
Substituting Eqs. (13), (14), and (15) into Eq. (10), one

obtains the following expression for the transition ampli-
tude:

Tfi ≃

∫

dk0 dk1 a0(k0) a1(k1)

∫

dt ei(εf−εi)t

×
∑

n

Cn(t+ td)Tmn e
−iωntd . (16)

Here εf and εi are respectively the total kinetic ener-
gies of the products and reactants, and Tmn is evalu-
ated using the plane-wave approximation [see Eq. (6)].
As shown in Eq. (16), the transition amplitude Tfi is a
coherent superposition of the transitions Tmn weighted
by the amplitudes of the wave packets and phases at the
delay time td. If one further assumes the frozen-core
approximation for Tmn [see Eq. (7) and the text below
it], then the second line of Eq. (16) is proportional to
∑

n Cn(t)ψmn(q) e
−iωnt at the delay time td, which is

the time-dependent, momentum-space wave function of
the ejected electron.
The probability of the (e, 2e) process is defined by

P =

∫

dka dkb dkc |Tfi|
2 , (17)

where the ranges of the final-momentum integrals de-
pend on the experimental configuration. In typical ems
measurements, the momenta of the scattered and ejected
electrons are measured, but the recoil momentum of the
residual ion is not. Thus the ranges of ka and kb in-
tegrals are set by the energy and angular windows of
the detectors, and the momentum kc is integrated over.
As in conventional ems theory [26], one must antisym-
metrize the electronic wave function, and, if the electrons
are unpolarized, sum over the final spin states and aver-
age over the initial spin states. Furthermore, since the
impact parameter b is rarely controlled with atomic pre-
cision in gas-phase collisions, an average of P over the
relative positions between the projectile electrons and the
lithium atoms in a gas ensemble is necessary. Therefore,
the measured ensemble-averaged ems probability is:

〈P〉 =
1

4

∑

sa,sb

∫

db ρ(b)P(sa, sb) , (18)

where ρ(b) is the projected area density (along the prop-
agation direction of the incident electrons) of the lithium
atom gas, sa and sb denote the respective spins of the
scattered and ejected electrons, and P(sa, sb) includes
all possible spin configurations of the entrance channels.
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FIG. 2. Diabatic and adiabatic energy levels for the one-
photon dressed 2s and 2p states of lithium atoms as a func-
tion of the laser frequency. The diabatic energies for the one-
photon dressed 2s and 2p states are represented by the di-
agonal and horizontal dashed lines, respectively. The solid
(red) and dash-dotted (green) lines are the adiabatic energies
that connect the dressed 2s and 2p states. The amplitude of
the laser electric field is 3.00× 10−5 a.u., corresponding to an
intensity of 3.16 × 107 W/cm2. The frequency of the laser is
given in units of eV.

C. Frequency-swept adiabatic passage

The frequency-swept adiabatic passage technique [59,
60] is chosen to perform the population transfer in
lithium atoms owing to its simplicity and controllability.
This scheme can be understood within a dressed-state
picture. Figure 2 shows the photon-dressed energy dia-
gram of the lowest two electronic states of the lithium
atom as a function of laser frequency. The diagonal and
the horizontal dashed lines are the diabatic energies of
the one-photon dressed 2s and the 2p states, respectively.
(Since the population transfer is essentially a one-electron
process, the eigenstates φn of the valence electron are la-
beled by their orbitals.) The energy of the dressed 2s
state increases linearly with laser frequency, and the two
diabatic energies cross at the 2s-2p resonance frequency.
On the other hand, the adiabatic energies (indicated by
the solid and dash-dotted lines) have an avoided crossing
near the resonant frequency that connects the dressed
2s and 2p states. Therefore, if the population transfer
starts from a negative detuning and the instantaneous
frequency of the laser pulse is swept upward adiabat-
ically, then the population of the lithium atoms follows
the lower adiabatic level and is transferred to the 2p state.

III. SIMULATION DETAILS

As many details of our simulations have been discussed
in the context of ultrafast electron diffraction [47, 54],
we focus on those aspects that are unique to the (e, 2e)
process and only summarize briefly our numerical proce-

dures. Since the lithium electronic state ψ1(t) is written
in terms of its eigenstates [see Eq. (14)], the first step is to
calculate φn. An independent particle representation is
employed, so that φn is constructed from a Slater deter-
minant of single particle orbitals. These orbitals are cal-
culated using the Herman-Skillman potential [61], which
is obtained by solving the Hartree-Fock equation within a
central-field approximation in which the electron-electron
interaction is replaced by the Hartree-Fock-Slater poten-
tial. We neglect fine structure effects. While the Herman-
Skillman potential is unable to provide spectroscopic ac-
curacy, it serves well for our current purpose of demon-
strating the capability of ems to image electronic motions
and it allows us to identify the features of those electronic
motions that are reflected in the time-resolved spectra.

After obtaining the eigenstates, the second step is
to simulate the laser-driven population transfer pro-
cess in the lithium atom targets. The time-dependent
Schrödinger equation is solved numerically, from which
the amplitude Cn(t) of each eigenstate [see Eq. (14)] can
be obtained. We use a linearly-polarized laser electric
field pulse having a Gaussian envelope and a full-width-
at-half-maximum (fwhm) duration of 2.0 ps. The peak
intensity of the pulse is 1.93× 107 W/cm2. The chirp is
1.5×10−3 eV/ps, and the instantaneous frequency equals
the 2s-2p resonant frequency (1.946 eV) at the peak of
the laser pulse. These laser parameters are chosen such
that the time scale of the population transfer is controlled
to be of the order of a few ps, which is longer than the fs
electron pulses but shorter than the lifetime of the excited
2p state. The valence electron in the initial state of the
lithium atom is in the 2s state. We neglect multiphoton
ionization during the population transfer.

The time-resolved ems spectra are calculated accord-
ing to Eq. (18). The incident electron pulses have a cen-
tral kinetic energy of 5.0 keV, so the first-order Born
approximation should be adequate to describe impact
ionization near the Bethe ridge [62]. The momentum
density |a0(k0)|

2 is described by a Gaussian distribution
whose width along the longitudinal direction is set by
the incident electron pulse duration. Two pulse dura-
tions are considered in our simulations: 100 fs and 1
fs (fwhm). We also assume the pulses are transform-
limited (i.e., chirpless), so that the corresponding band-
widths are 0.018 and 1.8 eV (fwhm). The width of
a0(k0) in the transverse direction is set by the angu-
lar divergence of the incident electron beam. However,
since the polar angles of the scattered and ejected elec-
trons are θ ≈ 45◦ in the symmetric non-planar configu-
ration, as long as the angular divergence does not affect
the momentum resolution, the small angular divergence
of a well-collimated pulse is not significant. Therefore,
the transverse spread of a0(k0) is neglected.

The calculation of Tmn requires the momentum wave
functions of the lithium atom [see Eqs. (6) and (7)], which
are computed by calculating the Fourier transforms of
the Hartree-Slater 2s and 2p eigenstates for the valence
electron. Since the central-field approximation is used
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to calculate the orbitals of the lithium atom, the orbital
wave functions factorize into radial and angular parts.
Accordingly, the Fourier transform factors into two parts:
the radial part is calculated numerically and the angular
part is simply a spherical harmonic.
We assume the ensemble of lithium atoms has a ho-

mogeneous transverse distribution whose dimension is
much larger than the cross section of the incident elec-
tron pulses. The longitudinal width of the ensemble is as-
sumed to be 50 µm in order to reduce the effect of group
velocity mismatch between the laser pump and electron
probe pulses. The density of the lithium atom ensemble is
assumed to be 1010 cm−3 [63], so that the projected area
density of the lithium atom gas is ρ(b) = 5.0×107 cm−2.
The energy and angular windows of the detectors are

assumed to be rectangle functions centered at the corre-
sponding nominal values. The width of the energy win-
dow is 0.6 eV, and the widths ∆θ and ∆ϕ of the angular
windows for different simulations are specified when pre-
senting the results in Sec. IV. The final-momentum in-
tegrals are performed using Gaussian quadrature. As in
time-independent ems theory, the scattering angle θ can
be chosen such that qy = 0 (where q ≡ ka + kb − k0); it
must be varied according to the energies of the two outgo-
ing electrons. Then, the momentum density along the z
axis, |ψmn(qz)|

2 [see Eq. (7)], can be obtained by varying
the azimuthal angles ϕ of both detectors [see Eq. (9)].

IV. RESULTS AND DISCUSSION

In this section we briefly summarize our results for
the laser-driven 2s → 2p population transfer process in
the target Li atoms and then present our ems results for
incident electron pulses having durations of 100 fs and
1 fs.
Before beginning the presentation of our results, how-

ever, we remark upon the terminology used in this work.
Since non-stationary states superpose eigenstates with
different energies [see Eq. (14)] and since multiple mo-
mentum components are included in the incident elec-
tron wave packet [see Eq. (13)], in general one may not
use the conservation of energy in the time-dependent ems
case to identify the ionization transitions from ems mea-
surements. In other words, the ensemble-averaged prob-
abilities 〈P〉 (18), unlike the differential cross sections
in conventional ems [see Eq. (8)], are not necessarily as-
sociated with the momentum density of a single orbital,
even with perfect detector resolution. In particular, as
we will show, 〈P〉 can depend on the properties of inci-
dent electron pulses (e.g., their bandwidth). Therefore,
in this work we define the ems spectrum as the ensemble-
averaged probability 〈P〉, which is a function of (i) the
energy difference between the incident electron energy
and the energies of the two outgoing electrons, and (ii)
the azimuthal angle ϕ of the detectors. Also, the ems

spectra at fixed energies are calledmomentum profiles (or
simply profiles if there is no ambiguity) in order to dis-
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FIG. 3. Populations of the 2s, 2p, and 3d states of the lithium
atom undergoing a laser-driven population transfer as a func-
tion of time. The shaded area indicates the envelope of the
electric field of the pump laser.

tinguish them from the momentum density of the probed
state, which is an intrinsic property independent of how
the experimental measurements are carried out.

A. Li 2s → 2p population transfer

Although the results of the 2s→ 2p population trans-
fer in the Li atoms have been reported in Refs. [47, 54],
for the purpose of completeness we reproduce the main
features of those results here. Figure 3 presents the popu-
lations of the electronic states of the Li atom as a function
of time. Different lines correspond to different electronic
states labeled according to the legends, and the shaded
area indicates the profile of the driving laser electric field.
One sees that the time scale of the population transfer is
about 3 ps, that the 2s population (solid line) decreases
monotonically, and that the 2p population (dash-dotted
line) grows monotonically. At the end of the process al-
most all the initial 2s population is transferred to the
2p,ml = 0 state; moreover, other excited states have
negligible populations throughout the entire process.

B. EMS for 100-fs incident electron pulses

Time-resolved ems spectra of the Li 2s → 2p popu-
lation transfer imaged by 5.0 keV 100-fs incident elec-
tron pulses at four different pump-probe delay times are
shown in Fig. 4. The abscissa is the binding energy of
the ejected electrons, defined as the energy difference be-
tween the central energy of the incident electron and the
central energy of the pair of outgoing electrons, and the
ordinate is the azimuthal angle ϕ of the detectors (see
Fig. 1). A positive angle ϕ corresponds to a positive z-
component of q [see Eq. (9)]. The delay time is defined
with respect to the onset of population transfer (i.e., the
time zero of Fig. 3), not the peak-to-peak time difference
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FIG. 4. Time-resolved ems spectra of an electronic population
transfer in target Li atoms imaged by 5.0 keV 100-fs (fwhm)
incident electron pulses at four pump-probe delay times, td =
1.0, 3.0, 4.0, and 5.0 ps. The adiabatic 2s → 2p population
transfer in the Li atoms is driven by a chirped laser pulse (see
Fig. 3). The delay times are measured from the time zero of
the population transfer. The energy window of the detectors
is 0.6 eV, and the angular window is ∆θ ×∆ϕ = 0.5◦ × 0.5◦.

between the pump and probe pulses. The energy window
of the detectors is 0.6 eV, and the angular windows are
∆θ×∆ϕ = 0.5◦×0.5◦. While the energy resolution of the
spectrum results from the convolution of the bandwidth
of the incident electron pulse, the energy distribution of
the target electronic motion, and the energy resolution of
the detector, for the 100-fs case the widths of the peaks
in the spectrum stem mainly from the energy resolution
of the detector.
The spectra in Fig. 4 exhibit two separate distributions

centered at binding energies of 3.6 and 5.5 eV, and their
intensities vary with the time delay td. The distributions
at higher and lower binding energies correspond to ioniza-
tion from the 2s and 2p orbitals, respectively. Although
both distributions are symmetric with respect to ϕ = 0◦,
they show distinct momentum profiles since the electron
is ionized from orbitals having different symmetries. The
2s distribution peaks at ϕ = 0◦, but the 2p one has a
minimum at ϕ = 0◦, which is consistent with the zero-
momentum node of the 2p orbital. In addition to distinct
momentum profiles, the two distributions show opposite
temporal behaviors. Since the majority of the population
remains in the 2s state at td = 1.0 ps (see Fig. 3), only the
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FIG. 5. Sensitivity of momentum profiles for the 2s (a) and
the 2p (b) states to the angular resolution of the detector. The
2s and 2p profiles are presented from the results in Fig. 4 at
their corresponding binding energies (5.5 and 3.6 eV) for time
delays td = 1.0 ps and 6.0 ps respectively and for an energy
window 0.6 eV. The red solid lines represent the momentum
densities of the corresponding states, and the profiles for three
different angular windows of the detector are indicated in the
legends of panel (b). See Fig. 1 for the definition of the angular
window. For ease of comparison, the momentum profiles and
densities are scaled such that their maxima are normalized to
unity. Results are presented on a logarithmic scale.

2s distribution can been seen in the td = 1 ps spectrum.
Then as td increases, the 2s profile gradually disappears
while the 2p profile emerges, thus reflecting the 2s→ 2p
population transfer. Because of the spectroscopic mea-
surements, the time-resolved spectra reflect the changes
in the energy composition of the electronic motion during
the population transfer. In short, these results demon-
strate the capability of time-dependent ems to differen-
tiate and image the time-varying momentum density of
the valence electron during the population transfer.

In order to compare quantitatively the measured mo-
mentum profiles with the momentum densities of the va-
lence orbitals of the Li atom, we present in Fig. 5 the
profiles of the 2s and 2p distributions from Fig. 4 and
the momentum densities of the 2s and 2p orbitals. (Note
that the results in Fig. 5 are presented on a logarithmic
scale, whereas those in Fig. 4 are presented on a linear
scale.) The energies of the momentum profiles of the 2s
and 2p states are chosen at their corresponding binding
energies (i.e., 5.5 and 3.6 eV respectively); also, results
are presented for ϕ ≥ 0. Since the momentum resolu-
tion is highly dependent on the angular resolution of the
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FIG. 6. Comparison of two-dimensional momentum profiles
at time delays (a) td = 1.0 ps and (c) 5.0 ps (top row) with the
corresponding momentum densities of (b) the 2s and (d) the
2p orbitals in the x-z plane (bottom row). Two-dimensional
profiles are obtained by rotating the polarization of the pump
laser. However, the profiles are presented in the coordinate
frame of the Li atom in which the z axis is along the direction
of the laser polarization. The energy window of the detector
is 0.6 eV, and the angular windows are ∆θ×∆ϕ = 0.5◦×0.5◦.
The momentum profiles are presented in term of nominal mo-
mentum q calculated from the central momentum values of
ka, kb, and k0 [see Eq. (9)].

detectors for the 100-fs case, in Fig. 5 we also compare
the sensitivity of the momentum profiles to the angular
resolution of the detectors by varying the angular win-
dows ∆θ and ∆ϕ for three different cases, as indicated by
the legends in Fig. 5(b). In order to compare the shapes
of the profiles for different detection windows, the pro-
files are rescaled such that the maxima of the profiles are
normalized to unity.

As shown in Fig. 5(a), the node of the 2s orbital is well
reproduced by the angular windows having ∆ϕ = 0.5◦

(dotted and dashed lines), whereas the momentum profile
for the angular window having ∆ϕ = 2.0◦ (dash-dot-dot
line) lacks a clear nodal structure and spans a wider range
of ϕ than the 2s momentum density. For the 2p case, the
profile for the angular window having ∆ϕ = 2.0◦ also
fails to reproduce the zero-momentum node. The pro-
files in both cases are more sensitive to ∆ϕ than to ∆θ
because: (i) for high-energy incident electron pulses the
momentum profiles are confined to a small range of ϕ
around zero degrees; and (ii) at small ϕ, the uncertainty
in ∆qz is dominated by ∆ϕ [see Eq. (9)]. Thus, if the
width of the angular window ∆ϕ approaches that of the
range of ϕ over the momentum profile of the target state,
then one quickly loses sufficient momentum resolution.
For both the 2s and 2p orbitals the agreement between
the momentum profiles for the case of the angular win-
dow ∆θ ×∆ϕ = 2.0◦ × 0.5◦ (dashed line) and the corre-

sponding momentum densities decreases as ϕ increases,
whereas for the case of the angular window 0.5◦ × 0.5◦

(dotted line) the comparisons are quite good for all values
of ϕ. This may be attributed to the asymmetric detec-
tion windows and the bigger effect of averaging over qz
for the uncertainty ∆θ at larger values of ϕ.
In addition to the time dependence of the momentum

profiles, a distinctive feature of time-resolved ems for
the case of photoinduced target reactions is the ability
to image the anisotropy of the resulting electronic mo-
tions. Conventional ems commonly measures unoriented
targets, so only one-dimensional (spherically-averaged)
momentum profiles can be retrieved from the measure-
ments. On the other hand, two- or three-dimensional
momentum profiles can be obtained from polarized elec-
tronic motions, which provides information on the elec-
trons’ geometric motions (or on molecular steric transi-
tions). Hence, if one varies the polarization axis of the
laser pulse with respect the z axis of the spectrometer one
obtains the momentum profiles of the 2s and 2p orbitals
in the x-z plane [see Figs. 6(a) and (c)], which are com-
pared with the corresponding momentum densities. The
angular distributions and symmetries of the momentum
profiles agree well with the two-dimensional momentum
densities [see Figs. 6(b) and (d)]. However, since we ne-
glect the dressing of the laser field on the incident and
outgoing electrons in our model, in practice small p and
s characters may be observed in the respective 2s and 2p
profiles if the amplitudes for photon emission or absorp-
tion are appreciable.

C. EMS for 1-fs incident electron pulses

The ems results for 100-fs incident electron pulses suc-
cessfully differentiate the momentum densities of the Li
2s and 2p orbitals, and the time-resolved spectra exhibit
two separated distributions whose intensities reflect their
populations at the moment of collision (Fig. 4). The con-
ventional momentum-density interpretation (Sec. II A)
thus seems extendable to time-resolved ems. However,
since there is only a single valence electron involved in
the population transfer, the two disconnected distribu-
tions in the spectrum suggest that the valence electron
of each Li atom jumps discontinuously between the two
states. On the other hand, as shown in Figs. 2 and 3,
the population transfer is a continuous process in which
the wave function of the Li valence electron progressively
evolves from the 2s state to the 2p state. The discontinu-
ity suggests some information on the electronic motion is
missing from the 100-fs momentum profiles. By inspect-
ing Eq. (14) one observes that, in addition to the slow
laser-driven population transfer, the Li valence state os-
cillates rapidly owing to the quantum beat originating
from the energy difference between the 2s and 2p states.
Moreover, since the 2s and 2p states have opposite par-
ities, the electron density wiggles from one side of the
core to the other with a beat period of T ≈ 2.13 fs.
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FIG. 7. Time-resolved ems spectra of the time-varying elec-
tronic motion in Li atoms for 1-fs (fwhm) incident electron
pulses at delays td = 1.0, 3.7-T/2, 3.7, 3.7+T/2, and 6.0 ps.
The 2s-2p beat period is T ≈ 2.13 fs. The energy window is
0.6 eV, and the angular windows are ∆θ ×∆ϕ = 0.5◦ × 0.5◦.

To resolve such electronic motion during the population
transfer, we study here the use of 1-fs incident electron
pulses to measure the momentum density.

The ems results for 1-fs incident electron pulses are
presented as a function of pump-probe delay time in
Fig. 7. The middle three panels are for delay times that
differ by half the beat period T (with the central one at
3.7 ps) in order to image the wiggling of the electronic
motion. In contrast to the 100-fs case, the energy res-
olution is now dominated by the energy spread of the
incident electron pulses.

Contrary to the 100-fs spectra (Fig. 4), the 1-fs spec-
tra show a single distribution that evolves continuously
from the 2s to 2p profiles as the delay time increases.
At td = 1.0 and 6.0 ps, the spectra exhibit the respec-
tive 2s and 2p characters as observed in the 100-fs case
(except that the distributions are wider in energy due to
the larger bandwidth of the 1-fs electron pulses). How-

ever, as the population transfer progresses, one sees in
the middle three panels only a single distribution span-
ning continuously across the energy region of the 2s and
2p binding energies. Moreover, these spectra are not sim-
ply a superposition of the 2s and 2p profiles weighted by
their populations as observed in the 100-fs case, but they
show an energy- and ϕ-dependent structure. The high-
and low-energy sides of each distribution exhibit respec-
tively the 2s- and 2p-like profiles, while in the middle
energy region (≈ 4.0 eV) one sees an asymmetric distri-
bution with respect to ϕ = 0◦. The spectrum also shows
rapid oscillation as the delay time changes, and the simi-
larity between the second and forth panels indicates that
the period of the oscillation conforms with the 2s-2p beat
period. These new features are a reflection of the details
of the electronic motion during the population transfer.

Although a deeper layer of information on the elec-
tronic motion is revealed by the 1-fs incident electron
pulses, the intuitive interpretation of ems spectra can-
not be directly applied to the 1-fs spectra. For the 100-fs
case, the momentum profile of an orbital can be deter-
mined by its binding energy, provided one has adequate
energy resolution and no degeneracy. For the 1-fs case,
the momentum profiles at the valence orbital binding en-
ergies do not indicate the momentum density of the va-
lence electron. Since only the pulse duration is changed in
the two simulations, the energy-dependent structure re-
sults from the interplay between the energy distributions
of the incident electron and the Li atom’s valence elec-
tron. One may ask whether the 1-fs spectrum still pos-
sesses a momentum-density interpretation even though
the energy resolution is reduced by the pulse bandwidth.

In order to investigate this, in Fig. 8 we compare the
momentum density with the two-dimensional momentum
profiles from the ems spectra of the 1-fs pulses as a func-
tion of the time delay td for three binding energies: those
of the 2s and 2p states as well as one between them
(4.4 eV). We have chosen five time delays beginning at
tref = 3.6992 ps and increasing by intervals of T/8, so
that the results in Fig. 8 extend over half the beat pe-
riod. The momentum density in the right-hand column
of Fig. 8 shows asymmetric distributions: the wiggling
motion begins with a negatively-skewed momentum dis-
tribution (i.e., kz < 0) along the z axis (corresponding
to downward spatial motion) that reverses its direction
of motion at the end of the time delay series (corespond-
ing to upward spatial motion). Of the three momentum
profiles (first three columns in Fig. 8), the profile for the
energy 4.4 eV agrees best with the momentum density.

One can understand this agreement by analyzing the
time-dependent transition amplitude (16). According to
the ems conditions discussed in Sec. II A, each ionization
transition from an initial state φn to an ionic state φ−1

m is
associated with a peak in the ems spectrum, whose posi-
tion depends on the energy exchanged between the pro-
jectile electron and the (ionized) valence electron. The
spectral line shape results from the convolution of the
line shape of the valence electron state and the energy
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FIG. 8. Sequence of two-dimensional momentum profiles and
densities of the wiggling valence electron motion in Li at delay
times spanning half of the 2s-2p beat period in the x-z plane.
The pump-probe delay times are given in the panels of the first
column. The left three columns show the momentum profiles
at three binding energies (3.4, 4.4, and 5.4 eV) labeled at
the top, and the rightmost column shows the corresponding
momentum densities.

distribution of the incident electron. (To simplify the
discussion, no effects of the energy resolution of the de-
tectors are considered here.) If the valence electron state
is a non-stationary state, the transition amplitude Tfi

is a superposition of the constituent transitions Tmn,
each of which corresponds to a different energy exchange.
Thus, the scattered wave comprises different energy com-
ponents. If the bandwidth of the incident electron pulse
is narrower than the energy differences of the 2s and 2p
valence electron states, the various components of the
scattered wave are well separated in energy and multi-
ple peaks appear in the spectrum, as seen in the 100-fs
case (Fig. 4). On the other hand, as the duration of the
incident electron pulse decreases, adjacent peaks in the
spectrum begin to overlap. Moreover, each component of
the scattered wave carries phase information of the target
electronic motion at the moment of collision (as well as
phase information on the incident electron). Therefore,
the overlap of the various scattered wave components re-
sults in an interference in the spectrum that is observed
at energies between two adjacent transitions. This is the
reason we observe a single, continuous distribution in the
1-fs spectra (Fig. 7), and the momentum profile midway
between the two valence states (i.e., at 4.4 eV) gives the
most accurate momentum profile (Fig. 8).

D. Discussion of the 100-fs and 1-fs results

Our results for incident electron pulses having 100-fs
and 1-fs durations illustrate how the pulse duration con-
trols the kinds of information one can extract from time-
dependent ems spectra. If the pulse duration is short
enough (i.e., has adequate coherent bandwidth) and still
has good monochromaticity (i.e., the central energy is
much larger than the bandwidth), then the ensemble-
averaged probability is insensitive to details of the elec-
tron pulse and is proportional to the momentum density
of the ejected electron at the time td [22, 46, 58]:

〈P〉 ∝
∣

∣

∣

∑

n

Cn(td)ψmn(q) e
−iωntd

∣

∣

∣

2

. (19)

On the other hand, if duration of the incident electron
pulse is much longer than the 2s-2p beat period (but still
short enough to resolve the population transfer), then
the valence electron oscillates many times during the col-
lision. Therefore, the phase information is lost, and the
probability is proportional to the momentum density of
the orbital weighted by its population at the correspond-
ing binding energy:

〈P〉 ∝
∑

n

∣

∣Cn(td)
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∣

2 ∣
∣ψmn(q)

∣

∣

2
. (20)

V. SUMMARY AND CONCLUSION

To summarize, we have presented a time-dependent
theory for ems of the Li valence electronic state that
undergoes a laser-driven population transfer. This elec-
tronic motion consists of a slow 2s → 2p population
transfer on a ps time scale and a rapid wiggling of the
electron density on a fs time scale. Simulations of the
100-fs and 1-fs electron pulses demonstrate the capabil-
ity of ems to resolve and differentiate the time-varying
momentum density and the associated change of symme-
try of the electronic motion.
The information about the electronic motion and the

interpretation of the time-resolved ems spectra depend
on the pulse duration relative to the time scale of the
electronic motion. For the 100-fs case, the ems spectra
can be understood using the conventional momentum-
density interpretation. The spectra show the momen-
tum profiles of the orbitals participating in the popula-
tion transfer, and the intensities of the profiles reflect
the time-dependent populations of the corresponding or-
bitals. For the 1-fs case, the ems can differentiate the
relative phases between the eigenstates participating the
population transfer, so a complete picture of the elec-
tronic motion can be observed in the spectra. The mo-
mentum profiles show asymmetric distributions with re-
spect to the x-y plane, reflecting the wiggling motion of
the valence electron as a result of quantum beating. The
momentum-density interpretation can still be directly ap-



12

plied to the 1-fs case by properly selecting the momentum
profiles from the ems spectra.
Although the ems spectra of an atomic system lack

some features observed for molecular targets, it never-
theless provides a simple, controllable, and comprehen-
sible system for advancing time-resolved ems measure-
ments and provides a basis for understanding the electron
dynamics involved in molecular reactions. Unlike tradi-
tional spectroscopic measurements, the interpretation of
the ems spectra is straightforward and unequivocal, and
the retrieved information of the target electronic motions
is unique. Moreover, as shown in the present simulations,
the ems spectra for a laser-driven target electronic mo-
tion exhibit features that are sensitive to the incident
electron pulse duration. Therefore, such a system can
serve as a prototype for investigating time-resolved mea-

surements of ems and for examining the assumptions of
the present theoretical model. Although ems suffers from
low statistics and presents many experimental challenges,
owing to its advantages, it seems worthwhile to pursue
time-resolved ems further.
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