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 This study suggests that the unavoidable spatial inhomogeneity of intense electromagnetic 

fields has a drastic effect on the electron-positron pair creation process from the vacuum.  We use 

the example of the Breit-Wheeler process, where the collision of two gamma-ray photons is 

predicted to create electron-positron pairs, to show that the multi-photon pair creation process 

cannot be modeled by solutions to the Dirac equation under time-periodic fields that are spatially 

homogeneous.  The neglect of the spatial inhomogeneity leads here to spurious energy spectra and 

misleading pair creation yields that can be incorrect by up to several orders in magnitude.  This 

finding is surprising as there are many widely cited works where the laser is modeled by a spatially 

homogeneous alternating electric field.  
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 Present high-power laser facilities have reached intensities I0 ∼1022 W/cm2 and upcoming 

10-PW facilities aim at I0 ∼1023 W/cm2 [1].  Such technological achievements render lasers a 

feasible tool for probing the nonlinear properties of the quantum electrodynamical vacuum state at 

field strengths effectively of the order of Ecr = 1.3×1016 V/cm [2].  In the presence of an external 

field Ecr, the vacuum becomes unstable and decays into particle-antiparticle pairs.  

 There are two intrinsically different mechanisms by which electron-positron pairs can be 

created from the vacuum.  The first scheme [3] requires the field (which can be static) to be 

extremely strong and can be visualized in terms of a tunneling process between energy shifted 

Dirac states, while the second scheme [4] requires a very large laser frequency that can trigger the 

transition between the positive and negative energy states.  Both regimes can be characterized by 

the ratio of the laser's frequency ω and its electric field amplitude Ef, given by Keldysh's 

adiabaticity parameter [5] γK  ≡ mωc/(qEf).  Pair creation has been thoroughly investigated by 

approximating the laser as an alternating electric field that is homogeneous in space [6].  Similarly, 

the omission of the spatial dependence in sin[ω(t-x/c)], leading to sin(ωt), was also motivated by 

"focusing on the anti-nodal region" [7] of two counter-propagating linearly polarized beams, e.g., 

replacing sin[ω(t-x/c)] + sin[ω(t+x/c)] = 2 sin(ωt) cos(ωx/c) by 2 sin(ωt).  From a theoretical point 

of view, this simplification is very advantageous, as the total canonical momentum of the system 

becomes conserved, which permits us to employ powerful theoretical techniques (quantum kinetic 

Vlasov equation, imaginary time or WKB methods, time-dependent perturbation theory, etc.) to 

study the pair-creation process.  We are not aware of any study in which the validity of this 

simplification has been examined quantitatively. 

 However, there have been various studies that have included the inhomogeneity of these fields 

by using methods other than the quantum kinetic approach.  These include, for instance, the 

worldline instanton technique [8], the Dirac-Heisenberg-Wigner formalism [9], nonperturbative 

techniques [10] and scalar and fermionic free field theories [11].  For example, the 

Dirac-Heisenberg-Wigner formalism [12,13] also allows us to investigate the production of 

electron-positron pairs from a transport/kinetic view point, but includes a full space-time 

dependence in the external laser fields.  An independent numerical approach was developed 

recently by Aleksandrov, Plunien, and Shabaev [14].  They have considered the electron-positron 

pair creation induced by factorized fields in space and time.  Complementing this work, our 

research here examines the Breit-Wheeler effect, even though our algorithm in principle can be 
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applied to arbitrary external field configurations. 

 It is the purpose of the present work to suggest that the omission of the laser's spatial 

inhomogeneity in the high-frequency regime (γK>>1) changes the entire pair-creation process and 

therefore leads to unreliable predictions.  For example, the energy spectra of the created particles 

are qualitatively incorrect and contain spurious unphysical peaks.  Also, the pair creation rates can 

differ by several orders in magnitude from the true rates.  Moreover, because of the significant 

quantitative differences between the spectra obtained for a spatially dependent laser beam and those 

generated by a homogeneous alternating field, the present results will also be useful for the design 

of upcoming intense laser facilities aiming at measuring these multi-photon processes [15-17]. 

 We illustrate our findings for the Breit-Wheeler (BW) process, which describes the creation of a 

real electron-positron pair as the result of the collision of two highly energetic photons with a center 

of mass energy exceeding 2mc2 = 1.02 MeV.  This process is among the most fascinating textbook 

examples of quantum electrodynamics, as it provides the most direct way to convert 

electromagnetic energy into mass.  It also requires us to give up the concept of linear superposition 

for the Maxwell equations and points to the nonlinear character of electromagnetism.  While this 

process has not been verified experimentally yet, its generalized version such as the matter-assisted 

electron-positron creation (scattering of ultra-relativistic electron beams with laser beams [18], 

intense laser-plasma interactions [19] and laser-driven solid target scattering [20]) have been 

observed.  Historically, the BW process has been modeled by the Dirac equation, in which the two 

colliding photons are approximated by two classical electromagnetic plane wave fields with 

frequency ω each and wave number k=ω/c.   

 Let us first briefly summarize our approach [21] based on computational quantum field theory.  

The interaction of the electromagnetic field with the electron-positron quantum field operator is 

described by the usual Dirac Hamiltonian H = c α [p – qA(r,t)/c]+mc2 β, where α ≡ (α1, α2, α3) and 

β denote the set of the four 4×4 Dirac matrices, m and q are the electron's mass and charge and c is 

the speed of light.  If the electronic and positronic spins are aligned along the direction of the 

corresponding magnetic field ∇×A(r,t), they are conserved, which simplifies the computational 

analysis.  The initial vacuum state is represented by the set of occupied eigenstates |d;p〉 of the 

(field-free) Dirac operator H0 with negative energy that satisfy H0|d;p〉 = -[m2c4+c2p2]1/2 |d;p〉.  The 

corresponding positive-energy states with momentum p are denoted by |u;p〉.  In computational 

quantum field theory the required space-time evolution of the electron-positron quantum field 
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operator can be obtained equivalently from the quantum mechanical evolution of the complete set 

of all states |d;p〉 and the resulting matrix elements Upn(t) ≡ 〈u;p|U(t)|d;p〉, where U(t) is the 

time-ordered evolution operator associated with H.  These solutions of the space-time dependent 

Dirac equation with the vector potential A(r,t) can be obtained on a space-time lattice using 

efficient fast-Fourier transformation based split-operator techniques.  The number of created 

electron-positron pairs after the interaction of duration T is then obtained from all time-evolved 

Hilbert-space states as N(T) ≡ Σpn |Upn(T)|2 and the energy distribution of the created electrons is 

given by ρ(E,T) ≡ Σn |Upn(T)|2.  We note that this approach is different from [22], where the vacuum 

was approximated by a single negative-energy Gaussian wave packet at rest.  This pioneering work 

pointed out that two counter-propagating beams can lead to Autler-Townes-split resonance peaks. 

 In general, external electromagnetic fields have a dual impact on the dynamics.  They can lead 

to a reversible dressing as well as to permanent quantum transitions.  It is well known that a 

monochromatic linearly polarized beam of photons with energy ћω, e.g., described by the potential 

A(r,t) = A0 sin[ω(t-x/c)] ey, solely dresses electronic eigenstates (Volkov states) and therefore 

cannot induce any irreversible transitions between different states once the field is turned off.  In 

other words, a beam of identical photons cannot create any electron-positrons pairs, similar to the 

fact that a free electron cannot absorb a photon in the absence of any other forces.  On the other 

hand, a "mathematical" vector potential A(t) = A0 sin(ωt) ey (where the spatial dependence was 

artificially removed) can trigger numerous irreversible transitions from the negative to the positive 

energy manifold, therefore it predicts (incorrectly) the creation of electron-positron pairs.  In order 

to avoid any confusion, we remark that in a non-relativistic treatment (governed by the usual 

Schrödinger equation) the potential A(t) does permit analytical Volkov-like solutions.  This means 

that here the potential A(t) solely dresses the state and therefore cannot induce any quantum 

transitions, which is in direct contrast to its effect within the relativistic framework of the Dirac 

equation that we will examine below. 

 Before the quantitative results are presented, let us discuss some important qualitative 

differences between the two dynamics induced by the fields A(t) = A0 sin(ωt) ey and A(r,t) = A0 

sin(ωt) cos(kx) ey with ћω > 2mc2.  In the left panel of Figure 1 we sketch the possible transitions 

from the negative to the positive energy manifold triggered by the alternating field A(t).  Due to the 

assumption of spatial homogeneity, there are two unphysical transitions resulting in peaks in the 

energy spectrum of the created electrons.  The lowest energetic peak occurs at E = ћω/2 and is 
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associated with an unphysical "one-photon" coupling from the initially populated negative energy 

state |d;p〉 with energy –ћω/2 (<-mc2) directly to the positive energy state with energy ћω/2.   

Similarly, a second unphysical peak at 3ћω/2 is associated with the additional transition within the 

positive energy manifold.  

 
Figure 1   Left panel: The (mathematically) predicted transitions from the Dirac sea to positive energy 
states if the laser field is modelled by the spatially homogeneous potential A(t) = A0 sin(ωt) ey with 
frequency ω = 3mc2/ћ.  Right panel: For comparison, the true transitions associated with two 
counter-propagating laser beams given by the potential A(r,t)= A0 sin(ωt) cos(kx) ey. 
 

 

 For comparison, on the right panel we have sketched the (physically permitted) transitions 

associated with two counter-propagating laser beams of the same frequency, i.e, A(r,t) = A0 sin(ωt) 

cos(xω/c) ey.  Here the lowest peak energies of created electrons occur at E = ћω 

and 2ћω, corresponding to the permitted Breit-Wheeler processes 2γ→ e–+e+ and 4γ→ e–+e+.  We 

see that there are no peaks at all at energies E = ћω/2 and 3ћω/2.  While the peak locations E = ћω 

and 2ћω were predicted correctly by the field A(t), we show below that A(t) fails completely to 

predict the associated amplitudes. 

 In Figure 2 we show the non-trivial growth of the number of created electron-positron pairs N(t) 

as two counter-propagating laser pulses with frequency ω = 1.25mc2/ћ collide with each other.  

While the detailed properties of the created particle pairs depend on the specific features of the laser 

fields, in order to capture the qualitative features of two counter-propagating plane wave laser fields 

with same frequency, we have modeled the laser by A(r,t) = A0 [FR(x,t) sin(ωt-kx) + FL(x,t) 

sin(ωt+kx)] ey, with FR(x,t)=(Tanh[(x–xR+d/2-ct)/w] – Tanh[(x–xR-d/2-ct)/w])/2 and 

sin t sin t coskx

+mc2

- mc2
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FL(x,t)=(Tanh[(x–xL+d/2+ct)/w] – Tanh[(x–xL–d/2+ct)/w])/2. Here xL and xR represent the initial 

center position of the beams, d is the extension of the beams and w is the spatial turn-on and off 

width.  Note that we choose this smooth shape in order to eliminate any high-frequency effects 

associated with a too abrupt spatial turn-on.  The temporal duration of the finite beams corresponds 

to 15 laser periods, out of which 2 periods are associated with the temporal turn-on and -off, based 

on a sin2-like profile.  We also show the two spatially localized incoming fields before the collision.   

 

 
Figure 2   The temporal growth of the numbers of created electron-positron pairs during the interaction 
of two counter-propagating laser fields with linear polarization.  The potential is given by A(r,t) = A0 
[sin(ωt-kx) FR(x,t) + sin(ωt+kx) FL(x,t)] ey, where the amplitude is such that qA0 =0.1 mc2 and the 
photon energy ћω = 1.25 mc2.  For comparison, the dashed curve shows N(t) for a single propagating 
beam, A(r,t) = A0 sin(ωt-kx) FR(x,t) ey.  We also display the spatial profile of both configurations at 
the initial time t=0.  

 

 The graph illustrates nicely the above mentioned dual dynamical impact of electromagnetic 

fields.  First, it dresses the vacuum, which leads to the momentary increase of N(t) to about N(t) = 

0.1878.  This dressing manifests itself also in the superimposed rapid oscillations with frequency 

ω/2, whose amplitude (N(t) = 0.3339) is maximal around t=170 ћ/(mc2), when the spatial overlap 

between the two counter-propagating pulses is largest.  As N(t) was calculated here based on 

force-free states, we do not associate any physical meaning to the oscillations in N(t) as they are 

related to the usual interpretational difficulties with the identifying particles during the interaction 

[23].  To further illustrate the significance of this dressing, we have indicated by the dashed line for 

comparison the corresponding yield obtained just from a single propagating pulse, given by A(r,t) = 
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A0 sin(ωt-kx) FR(x,t) ey.  As expected, here the amount of (reversible) dressing is precisely half of 

the one for the two pulses.   

 The true nature of the permanent and irreversible quantum transitions from the Dirac sea to the 

positive energy states becomes apparent after the two pulses have passed through each other. While 

the yield N(T) for the single beam reduces basically to zero (5.4×10-8), the final yield N(T) 

(3.2×10-2) for the two-photon BW process is six orders of magnitude larger. 

 The sketch of Figure 1 illustrates that both fields A(r,t) as well as A(t) can trigger for ω = 

2.5mc2/ћ the occurence of peaks in the energy spectra at E = ћω and 2ћω.  In order to compare also 

the corresponding peak intensities, we have computed the spectra ρ(E,T) for both configurations.  

The two spectra after the interaction (displayed in Figure 3 on a logarithmic scale) are entirely 

different.  As expected, the two unphysical peaks at 1.25 mc2 and 3.75 mc2 associated with A(t) are 

absent in the correct data for A(r,t).  More interestingly, the intensity of the unphysical peak at 1.25 

mc2 [associated with A(t)] is by about eight order of magnitudes larger than predicted by A(r,t), 

while the physical peak at 2.5 mc2 [for A(r,t)] is about eight orders of magnitude larger than the one 

obtained for A(t). 

 We have also monitored the scaling of the peak intensities with the field amplitude A0.  While 

the dominant (unphysical) peak at E = 1.25ћω grows quadratically in A0, the true peak at E = ћω 

grows ~A0
4, which is consistent with two-photon nature of the BW-process.  The peak associated 

with 4γ→ e– + e+ grows ~A0
16 and is therefore more difficult to observe experimentally. 

 
 

Figure 3   The energy spectrum of the emitted electron-positron pair after the interaction of two 
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colliding photon beams, modelled A(r,t)= A0 sin(ωt) cos(kx) ey,where the amplitude is  
qA0 =0.1 mc2 and the photon energy ћω=2.5mc2.  For comparison, the dashed line displays the 
corresponding spectrum for the potential A(t) = A0 sin(ωt) ey, where the crucial spatial dependence 
has been omitted. 
 
 

 In summary, we have seen that the omission of the crucial spatial dependence of the 

electromagnetic field leads to entirely different physical results if the laser frequency is as large as 

required for the BW process.  This finding is not so unexpected as the spatial scale characteristic of 

the spatial inhomogeneity cos(kx) is of the order of πc/ω, which for a typical BW γ-ray photon 

(ћω=2.5mc2) amounts to about (π/2.5) λC.  In other words, the spatial scale is comparable to the 

electron's Compton wavelength λC (= ћ/mc).  As this minute scale is identical to the scale at which 

the pair creation process is expected to happen, it is of no surprise that the omission of the spatial 

inhomogeneity leads to entirely inaccurate predictions.  We could therefore expect that for smaller 

energies ћω, the omission of the spatial inhomogeneity might become less serious.   

 In order to examine this important question more quantitatively, we have computed the 

pair-creation rate Γ as a function of the photon energy ћω and compared it in the left panel of Figure 

4 with the corresponding rates associated with the spatially homogeneous field A(t), which we 

denote by ΓH.  To examine an unambiguous pair creation rate Γ, we have delocalized the two 

counter-propagating fields by choosing FR,L(x,t) =1, such that the observed yield grows linearly as 

a function of the total duration T of the interaction, N(T) = Γ T. 

 

    
 

Figure 4  
Left panel:   The pair-creation rate Γ (graphed in units of mc2/ћ) computed from the laser field A(r,t) = 
A0 sin(ωt) cos(kx) ey, and the rate ΓH computed from the spatially homogeneous field A(t) = A0 sin(ωt) 
ey, as a function of the frequency ω.  The amplitudes A0 are chosen such that the electric field strength 
fulfills qEf = 0.1 m2c3/ћ. 
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Right panel:   The relative error Err(ω) = |Γ- ΓH|/Γ for the pair-creation rate due to the omission of the 
spatial inhomogeneity of the external field.  The dashed line is the error for half the field strength used 
in the left panel.  

 

While for smaller laser frequencies (ћω<0.1MeV) the two rates have about the same order of 

magnitude, in the regime (0.5MeV < ћω < 1MeV) the rate Γ from the two-pulse configuration is 

significantly above the creation rate ΓΗ for the homogeneous field.  For even larger frequencies, ΓΗ 

completely overestimates the true rate.  This means that here the omission of the magnetic field 

component of the laser strongly enhances the pair creation.  The data therefore suggest that impact 

of the laser's magnetic field can either increase as well as decrease the total observed particle yield 

depending on the laser's frequency.  This conclusion is in contrast to claims in the literature that the 

presence of the laser's magnetic field component always reduces the yield [5,22].  

 In the right panel of Figure 4 we have graphed the relative error of the pair-creation rate, 

 defined as Err(ω) ≡ |Γ– ΓΗ|/Γ, as a function of the laser frequency ω.  We see that the error in the 

yield for the parameters presented in Figure 3 (ћω = 2.5mc2 = 1.275 MeV) is about 5654%.  Once 

the frequency decreases below ω=2mc2/ћ, the unphysical one-photon transition triggered by the 

A(t) is no longer possible, the error reduces to around 100%. 

 In conclusion, while prior (and widely cited) works were aware of the "slightly unrealistic 

character" [6] of the assumption of spatial homogeneity, we believe that the present study provides 

a quantitative indication of the potential seriousness of such an approximation.  It suggests that this 

simplification does not retain any of the main features of the dynamics in the multiphoton regime.  

For example, estimates of the pair creation rates that are based on the powerful and frequently used 

quantum Vlasov equation may become entirely unrealistic, as this particular approach requires the 

external field to be spatially homogeneous.  By investigating the BW-process, we have seen that the 

tight spatial dependence of the laser significantly affects the electron spectra and it thus has to be 

taken into account for the design of upcoming strong laser facilities that plan to examine various 

strong-field QED processes.   

 A very recent work by Aleksandrov, Plunien and Shabaev [10] has also compared the effect of 

the dipole and the standing wave approximations.  While their numerical approach (based on the 

quantization of the Furry picture) is different from our approach, its main conclusions about the 

significant alternations due to the magnetic field are fully consistent with our overall findings.  The 

present work is therefore complementary to Ref. [10] that has a focus on the effects of the 
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approximations (and also of the carrier-envelope phase and other details of the pulse shape) on the 

final momentum spectra of the created particles.  In this work, we have shown that despite a 

nontrivial time-dependent dynamics during the interaction, it is possible to describe some aspects of 

the process by a single rate, and identify specifically those laser-induced transitions that are 

physical and unphysical.  We examined the total pair-creation rate after the interaction for a wide 

range of frequencies and suggest that depending on the frequency, the omission of the magnetic 

component can lead to both an enhancement as well as a reduction in the total rate. 

 This situation is likely more complicated if the laser field does not just act as the sole facilitator 

of the pair-creation process (as discussed in this work), but it is used to accompany a second 

(possibly static) supercritical external force field, as required for the dynamically assisted 

Schwinger process.  Here the relevance of the laser's spatial inhomogeneities might require further 

studies.  From some preliminary results, we can see that a spatially homogeneous field A(t) will 

lead to much narrower energy distributions for the created electrons compared to a realistic laser 

field A(r,t).  More systematical studies of this problem will be reported in future work.  

 We acknowledge helpful discussions with H. Bauke, M. Chen, N. Christensen, A. Di Piazza 

and C.H. Keitel.  QZL and SD would like to thank ILP for the nice hospitality during their visits to 

Illinois State.  This work has been supported by the Alexander von Humboldt Foundation, the NSF, 

the NSFC (#11529402) and by Research Corporation. 
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