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We report measurements of the scalar and tensor static polarizabilities of the 115In 7p1/2 and 7p3/2
excited states using two-step diode laser spectroscopy in an atomic beam. These scalar polarizabil-
ities are one to two orders of magnitude larger than for lower lying indium states due to the close
proximity of the 7p and 6d states. For the scalar polarizabilities, we find values (in atomic units) of
1.811(4)×105 a3

0 and 2.876(6)×105 a3
0 for the 7p1/2 and 7p3/2 states respectively. We determine the

tensor polarizability component of the 7p3/2 state to be −1.43(18) × 104 a3
0. These measurements

represent the first high-precision benchmarks of transition properties of such high excited states of
trivalent atomic systems. We also present new ab initio calculations of these quantities and other In
polarizabilities using two high-precision relativistic methods to make a global comparison of the ac-
curacies of the two approaches. The precision of the experiment is sufficient to differentiate between
the two theoretical methods as well as to allow precise determination of the indium 7p− 6d matrix
elements. The results obtained in this work are applicable to other heavier and more complicated
systems, and provide much needed guidance for the development of even more precise theoretical
approaches.

I. INTRODUCTION

Accurate knowledge of atomic properties has been crit-
ical for a number of applications, including the search
for physics beyond the Standard Model [1], time and
frequency metrology [2, 3], the suppression of decoher-
ence in quantum information processing [4, 5], degener-
ate quantum gases [6], and many others. Progress in the
development of high-precision theory [7–9] has yielded ac-
curate predictions of many needed properties while high-
precision measurements, such as [2, 10–14], have pro-
vided experimental benchmarks for the refinement and
improvement of theory. Further progress in atomic the-
ory is needed for the design and interpretation of exper-
iments, the development of concepts for next-generation
experiments and precision measurement techniques, and
the quantification and reduction of uncertainties and de-
coherence. For example, recent proposals for the devel-
opment of clocks and tests of fundamental physics with
highly charged ions [15, 16] have highlighted the urgent
need for new, more precise theoretical predictions in these
systems. Further development of theory requires associ-
ated improvement in precision measurements to serve as
accurate experimental benchmarks. Such measurements
in alkali and alkaline-earth metal atoms have been in-
dispensable for the development of current theoretical
approaches and the understanding of their uncertainties.
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Precise measurements in more complicated atomic sys-
tems are far scarcer, and urgently needed.

Trivalent atoms like indium and thallium have long
been considered promising experimental testbeds in the
search for discrete symmetry violations and other quanti-
ties of fundamental physical interest, such as permanent
electric dipole moments (EDMs) [17–20]. In- and Tl-like
ions are also excellent candidates for the development of
ultra-precision clocks and the search for the variation of
the fine-structure constant α. Despite very high ioniza-
tion energies, certain highly charged ions have transitions
that lie in the optical range and are very sensitive to α-
variation [21]. In-like and Tl-like ions are particularly
well-suited for the experimental search for such transi-
tions [16], with Tl-like Cf17+ appearing to be a particu-
larly attractive candidate [21]. While techniques for the
ab initio atomic theory work necessary to interpret such
experiments are well-developed for single-valence alkali
systems, theoretical methods for the treatment of triva-
lent systems have only more recently demonstrated sig-
nificant improvements in precision [8, 22–25]. The theory
used to interpret a 1995 measurement of parity noncon-
servation (PNC) in thallium [17, 26], for instance, lags
the experimental precision by a factor of three; similar
PNC work in cesium does not suffer from similar theoret-
ical limitations [7, 27]. While experimental data are not
available for most Tl-like and In-like ionic systems, we
can gain insight to these systems by carefully comparing
theory and experiment in neutral group IIIA systems.

Many of the applications listed above require precise
knowledge of excited-state atomic properties for which
very few experimental benchmarks (beyond frequency in-
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terval measurements) exist. The determination of tran-
sition matrix elements between excited states is a partic-
ularly difficult challenge for both theory and experiment.
Measurements of dynamic polarizabilities to provide such
benchmarks for divalent systems have recently been pro-
posed [28]. The present work supplies new benchmarks
for trivalent systems using indium as a test case.
Recently, a 2013 measurement of the polarizability of

the 6s1/2 state in indium [14] inspired a new series of cal-
culations using two different high-precision approaches
[22]. A subsequent measurement of the 6p1/2 scalar po-
larizability [29] in 2016 was sufficiently precise to not only
provide a test of theory, but to distinguish between the
two slightly different theoretical predictions. In the cur-
rent work, we present new precision measurements of the
indium 7p1/2 scalar and 7p3/2 scalar and tensor static po-
larizabilities alongside new ab initio calculations of these
quantities using two high-precision relativistic methods.
We then make a global comparison of the accuracies of
the two theoretical approaches using all available exper-
imental data. As will be discussed, the precision of the
experiments is sufficient to clearly differentiate between
the two theoretical methods. We note that, due to the
presence of very nearby 6d levels, the scalar polarizabili-
ties of these 7p states are 30 to 50 times larger than those
previously measured in our laboratory. As discussed be-
low, these measurements can serve as unambiguous de-
terminations of the 6d− 7p matrix elements themselves.

II. ATOMIC STRUCTURE DETAILS

Indium has atomic number Z = 49 and a ground-state
electron configuration given by [Kr]4d105s25p. This state
has electronic angular momentum J = 1/2, and we no-
tate it as the 5p1/2 state. In the present experiment we
consider three resonance lines. One, at 410 nm, excites
the 5p1/2 − 6s1/2 transition, and the other two, at 690
and 685 nm, respectively, are resonant with the excited
6s1/2 − 7p1/2,3/2 transitions. See Fig. 1 for the relevant
energy-level structure.
In all of our studies, we focus on the 115In isotope (96%

abundant). Small peaks from 113In are either unresolved
or spectroscopically separated. These small features can
be explicitly accounted for, but their presence does not
contribute in any significant way to our experimental un-
certainties. As discussed in Refs. [14, 29], 115In has nu-
clear spin I = 9/2, meaning that all J = 1/2 states
studied have hyperfine levels F = 4 and F = 5, while
the 7p3/2 state has F = 3, 4, 5, 6. In particular, the 5p1/2
and 6s1/2 states considered below have hyperfine split-
tings (HFS) of 11.4 and 8.4 GHz, respectively, while the
various hyperfine splittings for the 7p states range from
100 to 500 MHz.
For the case of our 7p1/2 Stark shift measurement,

since J = 1/2, there is only a common scalar Stark shift
for all hyperfine sublevels, leading to a scalar polarizabil-
ity, α0, and no tensor component. We expect to observe

FIG. 1. Level structure of 115In states relevant to the present
measurements. Our two-step spectroscopic scheme requires
that we overlap 410 nm and 690 (685) nm lasers through an
atom source to drive the ‘first-step’ 5p1/2 − 6s1/2 transition
and the ‘second-step’ 6s1/2 − 7p1/2(3/2) transitions.

an energy shift for each sublevel of ∆E = − 1
2α0E

2, where
E is the magnitude of the applied electric field, taken to
be along the z axis. As discussed in Ref. [29], if we keep
the first-step excitation laser tuned to the Stark-shifted

5p1/2 → 6s1/2 resonance, the observed frequency shift in
the second-step (6s1/2 → 7p1/2) transition will be exactly

given by ∆ν = − 1
2h

[

α0(7p1/2)− α0(6s1/2)
]

E2 ≡ k0E
2,

where k0 is the scalar Stark shift constant. Using our
previous measurement of the α0(6s1/2) − α0(5p1/2) po-
larizability difference [14] in conjunction with theoretical
predictions for the very small α0(5p1/2) [22], we can de-
termine a precise value for the 7p1/2 scalar polarizability,
with negligible introduction of additional uncertainties.
In contrast to this, the 7p3/2 state admits a tensor

polarizability in addition to the scalar component dis-
cussed above. The tensor component mixes F states; in
this case, the Hamiltonian in the presence of an electric
field is

H = VS + Vhf (1)

where the hyperfine Hamiltonian, Vhf, can be found in,
for instance, Ref. [30]. The Stark Hamiltonian, VS , is
given by

〈FmF |VS |F
′mF 〉 =−

1

2
α0E

2δFF ′

−
1

2
α2E

2〈FmF |Q|F ′mF 〉, (2)

where the hyperfine-basis Stark mixing operator Q is de-
rived in Ref. [31]. The Hamiltonian is block diagonal
in mF because we take the electric field along the quan-
tization axis. We also note that this result is not per-
turbative, as the Stark shift is of the same order as the
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FIG. 2. Energy eigenvalue structure under applied electric
field for all hyperfine sub-levels of the indium 7p3/2 state.
The mF designations of the sub-levels are indicated at the far
right of the figure. Here, for clarity, we have subtracted out
the large scalar shift, − 1

2
α0E

2, shared by all |F,mF 〉 levels.

hyperfine structure in this state. Fig. 2 shows the field-
dependent results of a numerical diagonalization of the
full Hamiltonian for a range of electric fields attainable in
the laboratory. In this figure we have omitted the large,
common shift of all levels due to the scalar polarizability
for clarity.
In analogy to the Stark shift constant used in the ex-

traction of the 7p1/2 scalar polarizability above, we can
introduce an ‘effective’ Stark shift constant for each par-
ticular sub-level of the 7p3/2 state,

keff = k0 + c(F,mF )k2 (3)

that combines the effects of the tensor and scalar polar-
izabilities so that the observed shift of a level |FmF 〉 be-
tween fields E1 and E2 is given by ∆ν = keff(E

2
2 − E2

1 ).
Here k0 = − 1

2h [α0(7p3/2) − α0(6s1/2)] as above, and

k2 = − 1
2hα2(7p3/2) analogously. Given this parameteri-

zation, we note that both keff and k0 have negative val-
ues, whereas k2 itself turns out to be positive (though
much smaller in magnitude). The coefficients c(F,mF )
are level-dependent factors of order unity that reflect the
relative shift of distinct hyperfine states and can be cal-
culated numerically by diagonalizing the Hamiltonian in
Eq. 1. The sign of these coefficients is positive for the
group of upward-trending states in Fig. 2 and negative
for the lower frequency, downward-trending states.
Such a formulation is only approximate, as the shift ef-

fected by the tensor polarizability is not purely quadratic
in the electric field. Equivalently, one can view the co-
efficient c(F,mF ) as having a slight electric-field depen-
dence. Nonetheless, for the limited range of large electric

fields used to extract the tensor polarizability, the un-
certainty in a measurement of α2 due to imprecision in
this simple field-independent model for c(F,mF ) is at the
level of 0.5% or below, and can be neglected when com-
pared to other experimental errors, as discussed below.
The final fractional experimental uncertainty in the ten-
sor polarizability of the 7p3/2 state is quite large in com-
parison to our scalar polarizability measurements, due
both to its size relative to the scalar component, as well
as to the complications of composite spectral peaks as-
sociated with multiple unresolved, but non-degenerate
magnetic sublevels. We note that our final ∼ 12% exper-
imental uncertainty in this quantity is in agreement with,
and of comparable precision to, the theoretical prediction
presented below.

III. EXPERIMENTAL DETAILS

A. Atom beam source and electric field production

We perform polarizability measurements in a colli-
mated beam of indium atoms to which precisely cali-
brated DC electric fields are applied in order to effect a
static Stark shift. The portion of the apparatus used for
atom and electric field production is practically identical
to that described in Refs. [14, 29]. In brief, the atomic
beam is contained in a home-built vacuum chamber held
at approximately 10−7 Torr through the use of two diffu-
sion pumps. A sample of indium metal is first heated in
a molybdenum crucible to roughly 1100◦C. Several colli-
mating stages are then applied along a ∼ 0.5-meter beam
path between the source oven and the interaction region.
Due to this geometrical collimation, when we direct the
410 nm first-step laser transversely to the atomic beam,
we see a residual Doppler width of roughly 100 MHz.

In the measurement region, the atomic beam passes
between two circular, 10-cm-diameter stainless steel ca-
pacitor plates, the separation of which was measured to
be 1.0038(5) cm. We apply voltages of up to 20 kV using
a commercial high-voltage (HV) supply [32] and measure
them using a high-precision voltage divider and a cali-
brated 6 1

2 digit voltmeter [33] in parallel with the field
plates. We direct the second-step red laser in counter-
propagating fashion to the blue beam and the lasers in-
teract with the indium atoms over a 2-cm-wide region in
the center of the field plates. Three orthogonal sets of
magnetic field coils cancel the Earth’s field to roughly 1
µT in the measurement region.

B. Optical setup

Our experiment makes use of a two-step laser spec-
troscopy technique similar to that described in Refs.
[29, 34]. We use two external cavity diode lasers
(ECDLs) in the Littrow configuration. The first
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FIG. 3. Simplified diagram of the full optical setup used in
indium polarizability measurements. Here PD refers to a pho-
todetector, EOM to an electro-optic modulator, and ECDL
to an external cavity diode laser. Two acousto-optic modula-
tors (AOMs) are inserted in the path of the blue laser beam
component which is incident on the atomic beam apparatus
in order to maintain resonance for the first-step transition as
the electric field is changed in the interaction region (see text).
The blue laser is locked to the first-step transition using the
same indium vapor cell (beam and electronics not shown).

ECDL (Toptica DL 100) is frequency-modulated us-
ing a 100-MHz electro-optic modulator (EOM), gener-
ating a dispersively-shaped resonance signal from one
of the Doppler-broadened 410 nm 5p1/2(F = 4, 5) →
6s1/2(F

′ = 4, 5) first-step hyperfine transitions when
passed through a supplementary, field-free, heated vapor
cell. This beam is sent to a standard PID servo circuit
(not shown, see Ref. [29] for further details on this pro-
cedure). This technique allows us to achieve frequency
stabilization of better than 1 MHz RMS over timescales
of several hours. We note that the same heated vapor
cell is used, as described below, to drive two-step excita-
tion by overlapping the red laser beam with an additional
blue beam component. A setup consisting of two acousto-
optic modulators (AOMs) is used to shift the frequency
of the 410 nm light directed to the atomic beam to re-
main resonant with the Stark-shifted first-step transition
there. The precise frequency shift required for a given
electric field is well-known from our previous measure-
ment [14].

A second, home-built ECDL is directed in a spatially
overlapping, counter-propagating geometry through the
atomic beam, and is scanned over the hyperfine levels of
the relevant 690 (685) nm 6s1/2 → 7p1/2(3/2) second-step
transition. To observe the very weak red laser absorption
signal, we modulate the 410 nm light directed through
the atomic beam with an optical chopping wheel at ∼ 1
kHz. We then detect the red absorption with a 10 MHz-
bandwidth photodiode and demodulate at the first-step
chopping frequency using a lock-in amplifier. This serves
to eliminate background and greatly improve the signal-
to-noise ratio for this second-step signal. Because the

locked 410 nm laser only interacts with a limited range
of atomic velocities, this technique produces a virtually
Doppler-free second-step spectrum. Despite low optical
depths in the atomic beam (∼ 10−3 for the 410 nm tran-
sition) and relatively small line strengths associated with
the indium 6s−7p transitions (1 to 2 orders of magnitude
weaker than in the case of our recent 6s− 6p polarizabil-
ity work), the lock-in detection scheme is sufficiently sen-
sitive to yield second-step hyperfine spectra with peaks
resolvable at the 1-2 MHz level for a typical 10-s scan.
Using the same detection scheme as in the atom beam,

we separately monitor the second-step hyperfine spectra
in the same heated, field-free vapor cell used for locking
the first-step transition. The resulting high-resolution
spectra (see, for example, the lower plot in Figs. 4
and 5) serve as stable frequency references from which
to measure Stark shifts in the atomic beam. Addition-
ally, the red light directed to the cell is modulated at
ωm = 2π × 1000 MHz using an EOM – by doing so, we
introduce first-order sidebands at ±ωm into the vapor
cell spectra, which are used to calibrate the frequency
axes of our scans. Finally, a small portion of red laser
light is directed into a Fabry-Pérot cavity (free spectral
range ≈ 363 MHz) to aid in frequency axis linearization
during analysis. Fig. 3 shows a simplified diagram of the
complete optical setup.

C. Data acquisition procedure

We use a LabVIEW program to control and mea-
sure the applied electric field in the atomic beam unit,
apply the proper AOM frequency to maintain 410 nm
resonance with the Stark-shifted transition, and collect
Fabry-Pérot, vapor cell, and atomic beam data for suc-
cessive laser scans. These are separated into upscans and
downscans corresponding, respectively, to increasing and
decreasing laser frequency with time.
For 7p1/2 scalar polarizability measurements, we col-

lect data at electric fields between 1 and 6 kV/cm, al-
ternating between scans with the electric field on and
the electric field off. Given the large polarizability of
this excited state, this produces readily measurable Stark
shifts of order several hundred MHz. We follow a similar
procedure for 7p3/2 scalar polarizability measurements,
though here we only collect data for fields up to 3 kV/cm,
since for larger fields, the tensor component of the polar-
izability begins to noticeably complicate the lineshape as
can be seen in Fig. 2 (potential systematic errors intro-
duced by the tensor polarizability are discussed below).
As a means of testing for systematics related to long-term
drifts in the electric field, we successively alternate the
order in which field-on and field-off scans are collected.
Pairs of scans taken in ‘off → on’ order are then com-
pared with those taken in the ‘on → off’ sequence, as
discussed in [29].
To measure the 7p3/2 tensor polarizability, we instead

collect data at higher fields near 15 kV/cm. This requires
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a detuning of the 685 nm laser by roughly 8 GHz from the
field-free resonance, meaning that we cannot reference to
a (field-free) vapor cell signal. Rather than alternate with
field-free data in this configuration, we instead measure
the relative Stark shift between different high-field scans,
so that the observed frequency shift ∆ν between fields
E1 and E2 is given by ∆ν = keff(E

2
2 − E2

1 ) as described
in Sec. II. A typical collection run acquires scans in the
following order: 14 kV/cm → 15 kV/cm → 16 kV/cm →
16 kV/cm → 15 kV/cm → 14 kV/cm. This allows for
the comparison of consecutive scans with increasing vs.
decreasing electric fields, a useful check on systematics
relating to long-term drifts in the apparatus.

IV. EXPERIMENTAL ANALYSIS AND
RESULTS

Over the course of several months, several thousand
individual field-off / field-on pairs of red laser scans were
collected for each of the 6s − 7p transitions. Over the
course of these measurements, in addition to the electric
field value, we varied experimental parameters such as
the choice of intermediate (6s) state hyperfine level, rel-
ative optical power and laser polarization, atomic beam
source temperature, as well as laser sweep speed and fre-
quency range. Fig. 4 shows typical atomic beam field-
off/field red laser spectra for the 7p1/2 state (top), with
the accompanying vapor cell reference/calibration scan
below. Fig. 5 shows a similar set of scans for one set of
three 7p3/2 hyperfine sublevels. In both cases, the fre-
quency axes have been linearized and calibrated as noted
below and as outlined in detail in Refs. [14, 29]. We
extract Stark shifts for each pair of scans of consecutive
field-on / field-off scans; however, for display purposes,
in the figures included here, we have averaged the data
from 30 consecutive scan pairs taken under identical con-
ditions over the course of roughly 20 minutes.

A. Data analysis procedure

We extract polarizabilities from collected data follow-
ing a procedure similar to that described in Ref. [29].
We first linearize the frequency axes for every scan using
the positions of the red Fabry-Pérot transmission peaks.
We then fit field-free vapor cell data to sums of six (nine)
Lorentzian peaks, corresponding to two (three) hyperfine
peaks and four (six) first-order EOM sidebands at ±1000
MHz for the 7p1/2 (7p3/2) state. The frequency axis is
calibrated by extracting the observed splittings between
hyperfine peaks and their corresponding first-order EOM
sidebands – the axis is then scaled to bring these split-
tings to their known value of 1000 MHz. We then de-
termine the change in the relative position of the atomic
beam spectrum and a reference peak from the calibrated
vapor cell spectrum upon application of the electric field
to determine the Stark shift. For 7p3/2 tensor polariz-
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FIG. 4. Atomic beam spectra for the case of the (F ′ = 4) →
(F ′′ = 4, 5) transitions of the 690 nm 6s1/2 − 7p1/2 line. The
field-off spectrum (red dashed line) and the spectrum with
a 3 kV/cm electric field applied (blue solid line) are shown.
Displayed below is the corresponding (field-free) vapor cell
spectrum, including 1000 MHz FM sidebands, used for fre-
quency referencing and calibration. The small spectral fea-
tures on the shoulders of the large vapor cell peaks are due
to the 113In isotope (4% abundance) which we account for in
our line shape analysis. As noted in the text, the data shown
here represent the average of thirty consecutive field off/field
on scan pairs.

ability scans, which contain no vapor cell signal, we use
the frequency calibration from vapor cell data separately
taken both immediately before and after these runs.

For 7p1/2 and 7p3/2 scalar polarizability data, Stark
shifts are extracted from atomic beam spectra using
two complementary methods. The first (the ‘Lorentzian
method’) requires that we fit atomic beam data to sums
of two (three) Lorentzians, corresponding to the relevant
hyperfine peaks. We then compare resonance locations
for field-on and field-off scans. The second (the ‘over-
lap method’) assumes no functional form and instead
computes the sum of squared differences between field-
on and field-off scans for a variety of shifts (frequency-
axis translations) of the field-on scan. When this value
is minimized, the peaks are optimally ‘overlapped,’ and
the Stark shift can be determined. The potential line
shape systematic errors to which these two methods are
susceptible are quite different, so that agreement in the
respective results (as we observe) is a good indication of
the absence of significant systematics of this type.

For 7p3/2 tensor polarizability data, taken at higher
fields near 15 kV/cm, we observe a spectrum consist-
ing of two well-defined, though composite, peaks (each
consisting of several nondegenerate mF levels) and an
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FIG. 5. Atomic beam spectra for the case of the (F ′ = 4) →
(F ′′ = 3, 4, 5) transitions of the 685 nm 6s1/2 − 7p3/2 line.
The field off spectrum (red dashed line) as well as the spec-
trum with a 1.5 kV/cm electric field applied (blue solid line)
are shown. Displayed below is the corresponding (field-free)
vapor cell spectrum, including 1000 MHz FM sidebands, used
for frequency referencing and calibration. As in the previous
figure, the data shown here represent the average of thirty
consecutive field off / field on scan pairs.

unresolved ‘plateau’-like feature at higher frequency (re-
fer to the high-field region of Fig. 2). By measuring
the shift of the lower two peaks between pairs of volt-
ages near 15 kV/cm – using either of the Lorentzian or
overlap methods with a chosen Fabry-Pérot peak as a
stable frequency reference – we can extract a value for
keff in Eq. 3 above. When combined with the value of k0
derived from low-field measurements, this yields a value
for k2 and therefore α2. Independently, we confirmed
that the transmission peaks of our passively-stabilized
Fabry-Pérot, with its low-expansion-material construc-
tion, drift by no more than a few MHz over time scales
of one hour. Given the Stark shift differences that we
measure at these fields (roughly 500 MHz), any drift-
related errors are negligible compared to our final tensor
polarizability experimental uncertainty.

B. Error analysis and final results

Our general approach to investigation of systematic er-
rors, which we follow in this work, is thoroughly discussed
in Refs. [14, 29]. Our results for the 115In 7p1/2 and 7p3/2
Stark shift constants k0 and k2, along with relevant sta-
tistical and systematic error budgets, are presented in
Table I. We determine statistical uncertainties by both
assembling histograms of all data, and also considering

the weighted average of runs at a given high voltage value
taken over a number of different runs and days. Our fi-
nal statistical error reflects this observed scatter in these
sets of data runs taken at all electric field values. We
also create and analyze histograms of subsets of data,
such as shown in Fig. 6a, for the the 6s− 7p1/2 690 nm
transition, where the Stark shift constant for all ∼ 400
field-off/field-on scan pairs for E = 3 kV/cm are plotted.
Our various statistical approaches produce final average
values for data subsets that are in very good agreement.

1. Scalar polarizabilities

We first bisect the data in various ways based on
laser sweep direction, intermediate hyperfine level, or-
der of field-off / field-on sequencing, spectral peak analy-
sis method, etc., and look for statistically significant dif-
ferences. Occasionally, among some data subsets, these
comparisons yield small resolved differences, at the level
of 1.5 to 2 (combined) standard deviations, in which case
we include associated contributions to the total error
budget in Table I.
We also consider potential systematic errors by search-

ing for correlations of measured polarizabilities with, for
example, electric field value and laser power. An exam-
ple of this is shown in Fig. 6b, where all of our 6s−7p1/2
Stark shift constant results have been plotted vs. electric
field. While, as expected, the precision of the polarizabil-
ity determination is much greater at larger field (where
the much larger Stark shift can be measured with much
greater fractional accuracy), we see no resolved trend in
the central values as the field is varied. Also considered
are error contributions from imprecision in the measure-
ment and calibration of the applied electric field, due to
uncertainty in the field plate separation as well as the
applied voltage. Errors due to the calibration and lin-
earization of the frequency axis are also quantified by
fitting Fabry-Pérot and vapor cell spectra using a variety
of different methods.
In the case of the 7p3/2 state, we can only access three

of the four hyperfine levels in a given two-step excita-
tion path, due to selection rules. We have collected data
for both the 3-4-5 hyperfine spectra and the 4-5-6 spec-
tra. It is particularly important to study potential field-
dependent systematics here, since we know that the ten-
sor component of the polarizability will eventually cause
broadening of hyperfine peaks and differential Stark shift
rates as the electric field increases and tensor contribu-
tions to the polarizability become significant. Fig. 7a
shows the polarizability determinations averaged over hy-
perfine levels in all of our 4-5-6 spectra for fields between
1 and 3 kV/cm, a range over which we expect the ten-
sor contributions to be negligible. Fig. 7b shows the 3
kV/cm subset of the data for the 7p3/2 scalar polariz-
ability measurement, where we have plotted the Stark
shift constant for each hyperfine level individually, now
including all four of the hyperfine levels. At this largest
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FIG. 6. (a) For the 690 nm 6s− 7p1/2 transition, we plot the
Stark shift constant derived from roughly 400 field-off / field-
on scan pairs taken with E = 3 kV/cm. A Gaussian curve is
laid over the data for display purposes. Central values and
standard errors from such analyses complement a weighted
average analysis approach to arrive at final statistical averages
and uncertainties. (b) All 7p1/2 Stark shift data, with Stark
shift constant plotted versus electric field to explore potential
field-dependent systematic errors. An analysis of these data
shows the absence of a statistically resolved correlation.

field value, we would expect any possible systematic er-
ror introduced by tensor polarizability-induced hyperfine
line broadening and potential line shape asymmetry to
be most noticeable. Similar analyses at all field values,
while in some cases revealing variation across hyperfine
levels that is slightly in excess of the intrinsic statisti-
cal uncertainties (for which we include an additional ‘hy-
perfine level dependence’ systematic error), show no evi-
dence of the type of tensor polarizability trends predicted
for higher fields in Fig. 2. Furthermore, as can be seen
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FIG. 7. (a) For the case of all data collected for the tran-
sition path 6s1/2(F

′ = 5) to 7p3/2(F
′′ = 4, 5, 6), we average

the results of the Stark shift constant for each upper-level hy-
perfine state, and the resulting average Stark shift constants
at each electric field value are plotted. Given that the tensor
polarizability is expected to contribute at higher fields, it is
notable that over the 1 to 3 kV/cm range shown here we see
no statistically significant variation in the measured polariz-
ability. (b) At the highest field used, where we expect some
hyperfine peak broadening and possible peak asymmetry, we
investigate the dependence of the measured Stark shift con-
stant on hyperfine level, now including data taken for each of
the four 7p3/2-state sub levels.

in that figure, averaging all hyperfine Stark shifts at low
fields should make us even more immune to any residual
tensor effects.
In all cases, contributions from systematic errors re-

main below the 0.5% level. Varying laser polarizations
will also potentially affect spectra peak determination
due to changing rates of excitation for nondegenerate,
unresolved mF levels contained in each observed peak,
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and we have been careful to explore a variety of polar-
izations for both lasers in our data sets. In Table I we
have included small contributions from this and all other
systematic errors that we have considered.

2. 7p3/2 tensor polarizability

Having extracted a reliable value for the 7p3/2 scalar
polarizability from the low-field data, we are able to ana-
lyze the high-field data to infer a value for the tensor com-
ponent. As laid out in Sec. II, we first extract keff from
a pair of two different high field scans, focusing in partic-
ular on the shift in the two lower-frequency (composite)
spectral peaks, such as can be seen in Fig. 8. Numerical
modeling allows us to estimate a range of c(F,mF ) coef-
ficient values for the set of magnetic sub levels contained
within each composite peak. Since we cannot predict the
exact weightings of the components within the composite
peak, we assign a systematic composite line shape error
as part of the analysis. By considering all pairs of 14-15-
16 kV/cm data scans and subtracting the known scalar
Stark shift coefficient, we can obtain a final extracted
value for k2, and hence α2.
Varying relative laser polarization significantly affects

these high-field spectra, since the excitation probabili-
ties among the various 7p3/2(F,mF ) sub levels is highly
sensitive to the polarization selection rules. We have col-
lected high-field spectra for several choices of polariza-
tion. Within the final experimental uncertainty which
we quote, we see consistent results across various choices
of polarization values. The tensor component for the po-
larizability for this indium state has the opposite sign
from the scalar component, and is more than an order of
magnitude smaller. Both because of its relative size and
the line shape complications alluded to here, our estimate
for α2 has a final fractional uncertainty of roughly 12%.
Though this precision is far poorer than all of our re-
cent scalar polarizability measurements, our experimen-
tal uncertainty is comparable to the estimated theory
uncertainty for the tensor component, and, given these
respective uncertainties, is in good agreement with that
prediction (see Table IV).

V. THEORY

Indium can be treated as a system with one valence
electron and [1s22s22p63s23p63d104s24p64d105s2] core or
as a trivalent system with a 5s2 open shell. In the first
case, one can use the method developed to treat alkali-
metal atoms where single, double, and partial triple exci-
tations (LCCSDpT) of the Dirac-Fock wave function are
included to all orders [35]. We refer to this method as
CC for brevity in the text and tables below. The advan-
tage of this approach is a more complete inclusion of the
correction to the dipole operator, described, for example,
in a review [35]. The disadvantage is the inability to ex-
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FIG. 8. For the 685 nm 6s − 7p3/2 transition, spectra are
shown for the case of E = 15 kV/cm and 16 kV/cm, showing
a roughly 1 GHz overall Stark shift. For each electric field
value, we have averaged a series of scans taken consecutively
over a period of 10 minutes for display purposes. Referring to
Fig. 2, one can see experimental evidence supporting our nu-
merical model, where two relatively sharp experimental peaks
are accompanied by a broad composite feature at the higher
frequency end of both of the scans shown.

plicitly treat three particle states, such as 5s5p2, which
appear very low in the In spectrum and lie near the 5s27s
level.

To remedy this problem, we also use a hybrid ap-
proach that combines configuration interaction (CI) and
all-order linearized coupled-cluster methods [8], and treat
In as a trivalent system. This method allows us to con-
sider the 5s5p2 configuration on the same footing with
5s2nl configurations and permits mixing of such lev-
els. The main challenge in the theoretical treatment of
systems with two or more valence electrons is the ac-
curate treatment of both core-valence correlations and
strong valence-valence correlations. In the CI+all-order
method, the core-valence (and core-core) correlations are
treated by the coupled-cluster all-order method, which is
used to construct the effective Hamiltonian. The effective
Hamiltonian is subsequently used in the configuration-
interaction part of the method that treats the valence-
valence correlations. The wave functions and the low-
lying energy levels are determined by solving the multi-
particle relativistic equationHeff|Ψ〉 = E|Ψ〉. As a result,
all of the correlation corrections to the wave functions are
treated at the all-order level. To improve the accuracy of
the basis set for the orbitals of interest, we use an exact
solution of the Dirac-Fock equations to obtain the 5p, 5d,
6s, 6p, 6d, 7s, 7p, and 4f valence orbitals. The remaining
orbitals are constructed using B-splines, with subsequent
diagonalization of the combined basis.

The valence part of the polarizability is determined
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k0(7p1/2 − 6s1/2) k0(7p3/2 − 6s1/2) k2(7p3/2)

Result [MHz (kV/cm)−2] -22.402 -35.646 +1.78

Statistical Error 0.021 0.036 0.09

Systematic Error Sources

Laser scan direction 0.011 0.010 0.05

Frequency calibration 0.004 0.005 0.04

Scan linearization 0.002 0.003 0.003

Electric field calibration 0.022 0.036 0.08

Laser power and polarization 0.005 0.006 0.07

First-step hyperfine transition 0.033 — —

Fitting method 0.018 0.011 —

Hyperfine level dependence — 0.050 0.14

Unresolved sub-levels, composite peaks — — 0.08

Combined Error Total 0.050 0.076 0.23

TABLE I. Final experimental results, with statistical and systematic error contributions, for the Stark shift constants k0 and
k2 of the 6s1/2 − 7p1/2,3/2 transitions in 115In.

by solving the inhomogeneous equation of perturbation
theory in the valence space, which is approximated as

(Ev −Heff)|Ψ(v,M ′)〉 = Deff,q|Ψ0(v, J,M)〉 (4)

for a state v with the total angular momentum J and
projection M [36]. While Heff includes the all-order
corrections as described above, the effective dipole op-
erator Deff only includes random phase approximation
(RPA) corrections at the present time. The CI+all-
order method is generally used to extract properties of
the low-lying states via Davidson’s method which does
not required full diagonalization of the matrix to solve
the Schrodinger equation. While this allows for precise
determination of the 7p energies, numerical issues arise
when calculating 7p polarizabilities. We find that the it-
erative solutions of Eq. 4 do not converge in this case,
requiring full diagonalization of the matrix. Since it is
exceptionally time-consuming to diagonalize very large
matrixes used in the wave function calculation, we use a
full calculation to sort the configurations in order of their
importance. This allows us to reduce the matrix size for
the direct solution of Eq. 4. We correct for small numer-
ical inaccuracy associated with the matrix truncation by
recalculating dominant contributions to the polarizabili-
ties using the matrix elements obtained with the full set
of the configurations and experimental energies as de-
scribed below. We note that these problems do not arise
in the calculations of the low-lying state polarizabilities,
such as 5p, 6s, and 6p.

In the CC method, the polarizabilities are calculated
using a sum-over-states approach. The valence contribu-
tion to scalar α0 and tensor α2 polarizabilities is evalu-
ated as the sum over intermediate k states allowed by the

electric-dipole selection rules [37]

αv
0 =

2

3(2jv + 1)

∑

k

〈k ‖D‖ v〉
2

Ek − Ev
, and

αv
2(ω) = −4C

∑

k

(−1)jv+jk+1

{

jv 1 jk
1 jv 2

}

×
〈k ‖D‖ v〉

2

Ek − Ev
, (5)

where C is given by

C =

(

5jv(2jv − 1)

6(jv + 1)(2jv + 1)(2jv + 3)

)1/2

.

The contributions to the 7p1/2 and 7p3/2 polarizabili-

ties in indium (in units of a30) are given in Tables II and
III. The ∆E = Ek − Ev energy difference calculated
using the experimental values [38] and the absolute val-
ues of the reduced matrix elements obtained using both
CC and CI+all-order methods are also listed. The un-
certainty of the CC matrix elements is estimated using
the method described in Ref. [22]. Briefly, four different
CC calculations are carried out, including two ab ini-

tio calculations with and without the inclusion of partial
triple contributions and two corresponding calculations
where higher excitations are estimated using a scaling
procedure. The maximum differences of the final val-
ues and the other results provide the uncertainty esti-
mates. To estimate the uncertainty in the CI+all-order
matrix elements, we carry out a calculation that com-
bines configuration interaction and second-order many-
body perturbation theory (CI+MBPT) [39]. In this
method, the effective Hamiltonian is constructed using
second-order MBPT rather than the all-order coupled-
cluster approach, omitting all higher-order core-valence
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TABLE II. Contributions to 7p1/2 scalar polarizabilities of indium in a3
0 calculated using the CC and CI+all-order approaches.

Energy differences (in cm−1) and absolute values of reduced matrix elements (in a.u.) are listed. Uncertainties are given in
parentheses.

Contr. ∆Eexpt Matrix elements α0 α0

CC CI+all CC CI+all

6s -14488.5 0.683(63) 0.649(18) -2(0) -2(0)

7s -2559.6 12.215(57) 12.21(20) -4264(40) -4258(130)

8s 1775.6 12.301(51) 12.335(42) 6235(52) 6269(43)

9s 3857.6 2.252(22) 96(2)

5d3/2 -5969.2 2.179(30) 1.941(90) -58(1) -46(4)

6d3/2 187.1 21.50(27) 21.24(20) 180679(4500) 176471(3300)

7d3/2 2975.0 10.8(1.2) 2885(660)

8d3/2 4474.5 4.670(45) 356(68)

5s5p2 -5 -5

Other 309(62) 3821(80)

Core 30 3

Total 186259(4600) 182253(3300)

TABLE III. Contributions to 7p3/2 scalar and tensor polarizabilities of indium in a3
0 calculated using the CC and CI+all-order

approaches. Energy differences (in cm−1) and absolute values of reduced matrix elements (in a.u.) are listed. Uncertainties
are given in parentheses.

Contr. ∆Eexpt Matrix elements α0 α0 α2 α2

CC CI+all CC CI+all CC CI+all

6s1/2 -14599.9 1.131(87) 1.086 -3(0) -3.0 3(0) 3.0

7s1/2 -2671.0 16.933(91) 16.922 -3927(42) -3921 3927(42) 3921

8s1/2 1664.1 18.280(87) 18.319 7345(71) 7377 -7345(71) -7377

9s1/2 3746.1 3.081(33) 93(2) -93(2)

5d3/2 -6080.7 0.769(47) 0.755 -4(0) -3.4 -3(0) -3

6d3/2 75.6 9.60(12) 9.473 44566(1100) 43403 35652(910) 34722

7d3/2 2863.5 5.27(57) 355(76) 284(61)

8d3/2 4363.0 2.20(21) 41(8) 33(6)

5d5/2 -6057.4 2.346(94) 2.308 -33(3) -32 7(1) 6

6d5/2 125.5 29.07(80) 28.46 246375(13600) 236142 -49275(2700) -47229

7d5/2 2889.1 15.4(2.5) 2986(970) -597(200)

8d5/2 4382.2 6.48(82) 350(88) -70(18)

5s5p2 -280 -280 56 56

Other 323(64) 4650 -66(13) -333

Core 29.6 3 0 0

Total 298215(13600) 287332 -17488(2870) -16233

TABLE IV. Comparison of experimental and theoretical results for In polarizabilities. ∆α0 in the third column of results refers
to the 6s− 5p1/2 polarizability difference. CC 6s, 5p1/2, and 6p values are from [22]. (a) Ref. [14]. (b) Ref. [29].

Method α0(6s) α0(5p1/2) ∆α0 α0(6p1/2) α0(6p3/2) α2(6p3/2) α0(7p1/2) α0(7p3/2) α2(7p3/2)

CC 1056(27) 61.5(5.6) 995(28) 7817(155) 10506(180) -1432(42) 1.863(46)×105 2.98(14)×105 -1.75(29)×104

CI+all 1055(7) 62.5(2.0) 992(7) 7630(120) 10259(230) -1407(40) 1.823(33)×105 2.87(6)×105 -1.62(16)×104

Expt. 1050(6) 988.0(2.7)a 7590(37)b 1.811(04)×105 2.876(06)×105 -1.43(18)×104
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and core-core corrections. For the CI+all-order method,
the dominant uncertainty comes from omitted higher-
order core-valence correlations as the completeness of va-
lence CI has been established. The CI+MBPT method
only includes second-order core-valence correlation, while
the CI+all-order method includes dominant core-valence
higher-order corrections. Therefore, the differences of the
CI+all-order and CI+MBPT results provide a rough es-
timate of uncertainties as the omitted higher-order cor-
rections are smaller than the included ones. We could not
use this approach for the 7p3/2 − 6d5/2 matrix element

since the CI+MBPT method places the 5s5p2 configura-
tion very close to the 6d5/2 level, resulting in incorrect
level mixing; therefore we do not quote uncertainties for
the 7p3/2 polarizability. We estimate the uncertainty of
the CI+all-order 7p3/2 scalar polarizability value to be
2% based on the 7p1/2 uncertainty. Finally, we esti-
mate the uncertainty of the 7p3/2 tensor polarizability
to be 10% by considering the uncertainties in the analo-
gous calculation for the 6p3/2 state, while also recogniz-
ing that, for the 7p case, there is significantly more severe
cancellation of terms in the relevant sum. This work pro-
vides an excellent test of these methods to evaluate theo-
retical uncertainties in CC and CI+all-order frameworks,
which is crucial for many other applications where exper-
imental data are not available but uncertainty estimates
are required. The relative uncertainty in the polarizabil-
ity contribution is twice the relative uncertainty of the
matrix element. The remaining valence contributions,
not explicitly listed in the tables are grouped together in
the rows labelled “Other”. The contribution of the ionic
core calculated in the RPA approximation as described
in [22] is listed in the row labeled “Core”. It is negligible
for the 7p states.

While the calculation of the CI+all-order polarizabili-
ties does not involve the sum-over-states expressions (Eq.
5), it is instructive to extract several low-lying contribu-
tions using the above expression. As noted below, we
replace these with the more accurate experimental en-
ergies and CI+all-order matrix elements obtained in the
full-scale computation. The differences are well below
the expected accuracy of the calculations with the ex-
ception of the 7p − 6d contribution, which has a very
small energy difference. While the CI+all-order method
reproduces the energy levels with about 0.5% precision,
even a 50 cm−1 error in the 7p − 6d theoretical energy
difference very strongly affects polarizabilities, and the
experimental interval must be used. As expected, the
7p − 6d contribution is strongly dominant, giving 97%
for both 7p scalar polarizabilities. We have also calcu-
lated the 6s, 5p, and 6p polarizabilities and estimated
their uncertainties using an improved basis set, added
the Breit interaction and improved constriction of the
configuration space in comparison with the 2013 work
[22].

VI. DISCUSSION AND COMPARISON OF
RESULTS

All new and updated theoretical results are summa-
rized alongside corresponding experimental values in Ta-
ble IV. As noted earlier, while measured Stark shift con-
stants reflect the differential shift between the 6s and 7p
states, the 6s Stark shift is nearly two orders of magni-
tude smaller, and has been measured with high accuracy
previously in our group [14]. Therefore, it is straight-
forward, without loss of accuracy, to convert our results
to polarizabilities of the 7p states themselves. Table IV
summarizes these results, in atomic units, and also in-
cludes older experimental measurements from 2013 and
2016. We note that for the case of these older results, a
small error was discovered in the numerical factor used to
convert the measured Stark shift constants to polarizabil-
ity in atomic units. The corrected polarizability numbers
for the 6s and 6p1/2 states in atomic units are included in
Table IV along with our new results in the final row of the
table. Revised CI+all-order values for the 6s and 6p po-
larizabilities are in better agreement with the CC values,
resolving a previous discrepancy. Considering all excited
state experimental and theory information now available,
we find that the central values obtained with the CI+all-
order method are in significantly better agreement with
the experiment for the 6p and 7p polarizabilities, which is
likely due to direct inclusion of the three-particle config-
urations beyond 5s2nl. We find that such configurations
contribute a few percent via level mixing to 5s2nl wave
functions. In every comparison, the experimental values
agree to within 0.5% with the quoted CI+all-order theo-
retical predictions.

Because of the large matrix elements and very small en-
ergy differences associated with the 7p− 6d terms within
the infinite sums that make up the polarizabilities, we can
make a straightforward determination of these particular
matrix elements using our experimental values and the
known energy splittings. By subtracting from our experi-
mental polarizability value the residual terms of the theo-
retical sum (which in total represent only a few percent of
the net polarizability), we can isolate the dominant term
in the sum, and then compute a recommended value for
the particular matrix element of interest. This proce-
dure does not lead to any additional uncertainties, as the
error in the residual terms of the infinite sum are very
small compared to the experimental uncertainty. A sim-
ilar procedure was undertaken for the case of the 6p− 5d
matrix element in [29]. In the present work, we infer the
following values for two indium reduced matrix elements
(in atomic units):

〈6d3/2||D||7p1/2〉 = 21.17(04)

〈6d5/2||D||7p3/2〉 = 28.49(11).

When we compare these values to the relevant theoreti-
cal entries in Tables II and III we see particularly good
agreement with the corresponding CI+all entries there.
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VII. CONCLUSION

We have completed new high-precision measurements
of polarizabilities in the highly excited 7p states of 115In,
and in parallel developed ab initio theoretical calcula-
tions of those same quantities. The measurements are
the first of their kind in highly excited states of triva-
lent group IIIA atoms. Similarly, this work represents
the first calculation of polarizabilities of such high ex-
cited states with the CI+all-order method, which was
initially designed to provide values for low-lying states.
A number of difficulties were overcome to adapt the theo-
retical approach for this task. By combining the present
polarizability measurements with recent ones in lower-
lying states of indium, we have directly demonstrated the
value of such experimental benchmarks in guiding theo-
retical work forward via their ability to discern between
competing models. The experimental values for the 6p
and 7p states are clearly in better agreement with the

CI+all-order calculations that treat In as a three-electron
system, demonstrating the importance of configuration
mixing. The comparison also validates the procedures
for the evaluation of theoretical uncertainties in both ap-
proaches. Such work is essential to allow the continued
development of theory necessary for robust tests of funda-
mental physics in these trivalent systems. Future exper-
imental work will extend these two-step measurements
of excited state polarizabilities to the thallium system,
where a similarly detailed comparison of experiment and
theory should be possible in this heavier trivalent system.
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