
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Continuous-variable quantum Gaussian process regression
and quantum singular value decomposition of nonsparse

low-rank matrices
Siddhartha Das, George Siopsis, and Christian Weedbrook
Phys. Rev. A 97, 022315 — Published 12 February 2018

DOI: 10.1103/PhysRevA.97.022315

http://dx.doi.org/10.1103/PhysRevA.97.022315

Continuous-variable quantum Gaussian process regression and quantum singular value

decomposition of non-sparse low rank matrices

Siddhartha Das,1 George Siopsis,2 and Christian Weedbrook3

1Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, LA 70803, USA
2Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37966-1200, USA

3Xanadu, 372 Richmond St W, Toronto, M5V 2L7, Canada
(Dated: January 24, 2018)

With the significant advancement in quantum computation in the past couple of decades, the
exploration of machine-learning subroutines using quantum strategies has become increasingly pop-
ular. Gaussian process regression is a widely used technique in supervised classical machine learning.
Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum
systems that can be realized with technology based on photonic quantum computers under certain as-
sumptions regarding distribution of data and availability of efficient quantum access. Our algorithm
shows that by using a continuous-variable quantum computer a dramatic speed-up in computing
Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time
to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular
value decomposition method of non-sparse low rank matrices and forms an important subroutine in
our Gaussian process regression algorithm.

I. INTRODUCTION

One of the current technological needs in the area of
computer science is finding an efficient and faster way of
manipulating large data sets, and extracting worthwhile
inferences. In the last decade, machine-learning tech-
niques have been used to perform many tasks involving
big data. In 1959, Arthur Samuel defined machine learn-
ing as the “field of study that gives computers the ability
to learn without being explicitly programmed”[1]. Ma-
chine learning has not only helped us better understand
the human genome, but has also made self-driving cars,
practical speech recognition, effective web search, etc.,
possible [2, 3].

One of the two machine-learning methods involves su-
pervised learning (with the other task being unsupervised
learning) [4]. It is the problem of learning input-output
mappings from an empirical (training) data set. Depend-
ing on the nature of the output, the problem of supervised
learning can be categorized under two types: regression
and classification. Regression deals with the process in-
volving continuous output, whereas classification deals
with the process involving discrete (categorical) output.

Under supervised learning, one is given a data set D
containing n observations of input-output (xi, yi), where
xi ∈ R

d, yi ∈ R, ∀ i ∈ {0, 1, . . . , N−1}. This is a training
data set involving a process called regression as one deals
with continuous output. Given this training data set, the
machine is trained to predict new inputs which are not
listed in D. The goal of supervised learning is to induce
a function from observations on the training data set.

Gaussian processes form powerful models for regression
problems. They have found a wide range of applications:
robotics, data mining, geophysics, climate modeling, etc.
(see [4] and references therein). Any Gaussian distribu-
tion is fully characterized by its mean and covariance
function. The problem of learning in a Gaussian process

is precisely the problem of finding suitable properties of
the covariance function. In general, when only classical
systems and strategies are in use, the implementation of a
Gaussian process regression model with n training points
typically requires O(n3) basic operations [4].
The application of principles in quantum mechanics

has led to the realization of technologies in information
processing and computation that can never be achieved
within the realm of classical mechanics, such as tele-
portation and quantum key distribution [5–7]. Signifi-
cantly, quantum computers are expected to have advan-
tages over classical computers [5]. In theoretical com-
puter science, quantum algorithms have been developed
showing a significant advantage over their classical coun-
terparts in terms of, in the best case scenario, an expo-
nential speedup [8]. Importantly, quantum algorithms
can also have a significant impact on machine learning,
and this has led to the emergence of quantum machine
learning [9].
The HHL algorithm, introduced in [10], gives a quan-

tum algorithm for solving systems of linear equations.
Specifically, let the system of linear equations be Ax = b,
where A is a matrix, and b a vector, and the goal is to find
the vector x. In [10], the case was considered in which
one needs to know the expectation value of some opera-
tor associated with x, e.g., x†Mx for a given matrix M ,
instead of the solution x itself. Assuming A is a sparse
N × N matrix with condition number (ratio of largest
and smallest eigenvalue) κ, classical algorithms can find
x and estimate x†Mx in O(N

√
κ) time. However, in [10]

the authors presented a quantum algorithm that ran in
poly(logN, κ, 1/ǫ) time, with ǫ precision in the output
state (N.B., if one, in certain cases, avoids phase esti-
mation the precision can be poly(log(1/ǫ)) [11]). They
showed that when the sparseness parameter of the ma-
trix does not scale faster than polylogarithmically in N ,
an exponential speedup is possible with the quantum lin-
ear systems algorithm. Recently, this quantum algorithm

2

was applied to Gaussian process regression [12]. One
of the contexts in which sparsely constructed Gaussian
processes find applications is the problem involving infer-
ence in large data sets [13]. However, all applications so
far have been limited to qubit or discrete-variable (DV)
quantum systems.
Continuous-variable (CV) quantum systems are char-

acterized by having an infinite-dimensional Hilbert space,
and measurements involving observables with continuous
eigenspectra [14]. A CV generalization of any DV quan-
tum system assisted algorithm is essential in the context
of developing algorithms for quantum computers involv-
ing CV systems, e.g., optical quantum computing [14].
The usefulness of CV quantum machine learning [15]
goes beyond the processing of classical data sets that
involve a discrete number of data. The output by the
universal CV quantum computation is a CV state that
evolves under a designed Hamiltonian [16]. The DV ma-
chine learning subroutines are inefficient (incapable) of
processing full CV states by themselves. This deficit of
DV quantum systems assisted machine-learning subrou-
tines can be curbed using predominantly CV quantum
systems along with qubits when needed [16].
In this paper, we apply the techniques developed in [15]

to generalize the DV quantum-assisted Gaussian process
regression [12] to CV systems. For our task, we also de-
scribe an encoding method of a covariance matrix that
gives a technique for a CV quantum-assisted singular
value decomposition method of non-sparse low rank ma-
trices [17]. Furthermore, we consider the practical case
of finite squeezing analysis for our algorithm.
Our discussion is organized as follows. We first intro-

duce our notation and basic definitions in Section II. In
Section III, we introduce a CV method of quantum singu-
lar value decomposition of non-sparse low rank matrices.
In Section IV, we illustrate a CV quantum system as-
sisted algorithm for a Gaussian process regression model
by efficiently computing its mean in IVA and covariance
function in IVB. We base the algorithm on a scheme to
encode the covariance matrix in an oracular setting for an
efficient computation of the mean and covariance func-
tions using CV quantum systems. Finally, in Section V,
we give concluding remarks.

II. CLASSICAL GAUSSIAN PROCESS

REGRESSION

In this review section, we introduce our notation and
basic definitions that are needed for the discussion of
Gaussian process regression. Let N (x|m, σ2) denote the
Gaussian (normal) distribution of the variable x with
mean m = E[x] and variance V[x] = E[(x − m)2] =

σ2. Consider a training set D = {xi, yi}N−1
i=0 of N d-

dimensional inputs (input vectors) xi and scalar outputs
(or target values) yi (i ∈ {0, 1, . . .N − 1}). The outputs
yi are accumulated together to form entries of an output
N -dimensional vector y. Furthermore, we assume that

the outputs are noisy, i.e.,

yi = f(xi) + ε, (1)

where f(xi) is the latent function [4] and ε ∼ N (0, σ2)
denotes independent and identically distributed Gaussian
noise.
A Gaussian process is a collection of random variables,

any finite number of which have a joint Gaussian distri-
bution. A Gaussian process is completely specified by its
mean and covariance function (kernel) [4], which for a
real process f(x) is defined by

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (2)

where m(x) = E[f(x)] denotes the mean function of
f(x). Let us denote the real process as

f(x) ∼ GP(m(x), k(x,x′)). (3)

Given a new input (test point) x∗, our goal is to predict
the distribution of

f∗ = f(x∗). (4)

One can consider an array of test points, however, for
simplicity we consider only a single test point. The pro-
cedure described for a single test point can be simply
generalized to multiple test point instances.
To this end, we note that the joint distribution of the

observed target values and the function value at the test
location are, respectively,

[
y

f∗

]
∼ N (0,K) , K =

[
K k∗
kT
∗ k∗∗

]
, (5)

where K is the N ×N matrix with entries

Kij = k(xi,xj) + σ2δij , (6)

and the entries of the vector k∗ ≡ [k∗i] are the covariance
functions k(xi,x∗), and k∗∗ = k(x∗,x∗). Without loss
of generality, we set the mean of the distribution to zero.
Using

K
−1 =

[
K−1 + k̃−1

∗∗ k̃∗k̃T
∗ −k̃−1

∗∗ k̃∗
−k̃−1

∗∗ k̃
T
∗ k̃−1

∗∗

]
, (7)

where

k̃∗ = K−1k∗ , k̃∗∗ = k∗∗ − k∗ · k̃∗, (8)

we deduce the conditional probability to be

P (f∗|y) ∼ N (y · k̃∗, k̃∗∗). (9)

The task at hand boils down to the efficient computation
of the mean y · k̃∗ and variance k̃∗∗.

3

III. QUANTUM SINGULAR VALUE

DECOMPOSITION METHOD OF NON-SPARSE

LOW RANK MATRICES

In this section, we introduce a CV version of the
quantum-assisted singular value decomposition method
of non-sparse low rank matrices which was first intro-
duced for qubits in Ref. [17]. These results will form a
subroutine in the next section for the quantum Gaussian
process regression algorithm.
We begin by assuming for simplicity that N = 2n and

the matrix K can be encoded as

K̂ =

[
K

I

]
(10)

in an ensemble of n + 1 qubits and accessed via oracle
calls. For the oracle calls, we make use of the method for
non-sparse matrices in an oracular setting which requires
only one-sparse simulation techniques [17].

To record and access the matrix K̂, we first create the
one-sparse Hermitian matrix [17]

H =
2N−1∑

x,y=0

〈x|K̂ |y〉|x〉〈y| ⊗ |y〉〈x| (11)

whose entries are real numbers. This enlarges the Hilbert
space quadratically, but because the matrix H has a sin-
gle non-vanishing element in each row, its dynamics that
can be efficiently approximated. Indeed, we approximate

each non-vanishing element of H by 2ζ
[
〈x|K̂|y〉

2ζ

]
, where

[l] denotes the integer part of l. The resulting approxi-
mate matrix

H̃ = 2

2N−1∑

x,y=0

[
〈x|K̂|y〉

2ζ

]
|x〉〈y| ⊗ |y〉〈x| (12)

has entries which are even integers, and H ≈ ζH̃ , i.e.,

‖H − ζH̃‖ . ζ [18]. It can be easily decomposed into a
sum of matrices each of which has eigenvalues ±1,

H̃ =

jmax∑

j=1

Hj , (13)

encoding efficiently a good approximation to all the in-
formation in the matrix K̂. The sum in (13) contains

at most O(‖H̃‖) ∼ O(λmax/ζ) terms, where λmax is the
largest eigenvalue of K. If λmax is independent of the
number of qubits, then the complexity of our quantum
calculation is independent of N . This is not always the
case [19], and depends on data distribution. We will dis-
cuss the complexity of the algorithm for a given error
and the restrictions on the matrix K imposed by requir-
ing exponential speed up further in Section IV.
We form the oracle calls to access H ,

Q = i

jmax∑

j=1

|j〉〈j| ⊗ e−iπ2 Hj . (14)

Notice that Q is Hermitian as well as unitary, therefore
Q2 = I.
Next we consider how to prepare states containing

encodings of |y〉 and |k∗〉. We normally encode a N -
dimensional unit vector v by forming the n-qubit state
|v〉 =

∑
i vi|i〉. However, the vectors we are interested

in are not unit vectors, and we are also interested in the
signs of inner products, not just their absolute values. To
encode this additional information, e.g., for y, we shall
use n+ 1 qubits and form the unit vector corresponding
to the 2N -dimensional vector [yi/c(y),

√
1− y2i /c

2(y)],
where c(y) > yi, for all i ∈ {0, 1, . . . , N − 1}, and en-
code it on the (n+ 1)–qubit state

|y〉 = 1√
N

N−1∑

i=0

(
yi
c(y)

|i〉+
√

1− y2i
c2(y)

|N + i〉
)
. (15)

One way to prepare such a state is to form a unitary
(sequence of rotations) Uy such that Uy|0 . . . 0〉 = |y〉.
This can be done efficiently, as long as the components
of y are relatively uniform [19]. In a similar way, we can
encode k∗ in the (n+ 1)-qubit state

|k∗〉 =
1√
N

N−1∑

i=0

(
k∗i
c(k∗)

|i〉+
√

1− k2∗i
c2(k∗)

|N + i〉
)
.

(16)

IV. QUANTUM GAUSSIAN PROCESS

REGRESSION

In this section, we illustrate our quantum algorithm
using quantum CV systems to implement the task of ef-
ficiently computing the mean y ·k̃∗ and variance k̃∗∗ for a
Gaussian process regression model. We do so by includ-
ing our previous results of the quantum singular value
decomposition as a subroutine.

A. Efficient computation of mean

Given the N -dimensional vectors y and k∗ de-
fined above, we form the 4N -dimensional vector
[yi/c(y),

√
1− y2i /c

2(y), k∗i/c(k∗),
√
1− k2∗i/c

2(k∗)], and
encode it in the (n + 2)-qubit state |y,k∗〉, as outlined
above. This can be done efficiently with a string of uni-
tary operations, provided the components are relatively
uniform [19], or they have been encoded and stored in a
qRAM [20, 21] by a third party.
Evidently, our input state can be written in terms of

the states (15) and (16) defined above as

|y,k∗〉 ≡
1√
2
(|y〉|0〉+ |k∗〉|1〉) , (17)

To this state we append two CV resource modes in the
squeezed state

|ΦR(ξ)〉 =
1√
πξ

∫
dqRdq̃Re

− 1
2ξ2

[q2R+q̃2R]|qR〉|q̃R〉 , (18)

4

written in terms of the q quadratures, qR and q̃R, respec-
tively, of the resource modes. It is advantageous to make
the squeezing parameter ξ as small as technologically fea-
sible, thus forming the state

|χ(y,k∗,ΦR(ξ))〉 ≡ |y,k∗〉|ΦR(ξ)〉. (19)

Next we apply the unitary

U = eiγ
K̂
4N N̂pRp̃R , (20)

where N̂ = I−Z
2 is a projection acting on the last qubit of

our state (17), pR, p̃R are p quadrature operators acting
on the resource modes, and γ is a parameter that can be
adjusted at will. To implement it, instead of applying an
evolution involving K̂, we use the quadratically enlarged
matrixH (eq. (12)) which contains the same information,
but leads to simpler dynamics. We will then use the
resulting unitary as a generalized exponential swap to
apply the desired matrix K̂.

To implement the approximation to H , H̃ (eqs. (12)

and (13)), we need a ‘fractional’ query, QδpRp̃RN̂ , where
δ is an arbitrary real number. Notice that

QδpRp̃RN̂ =
1

2
(I+Q)⊗eiπδ

2 pRp̃RN̂+
1

2
(I−Q)⊗e−iπδ

2 pR p̃RN̂ ,

(21)
acting on, say, |ψ〉|φ〉. We append an ancilla qubit in the
state |+〉A, and then perform a control-Q on |ψ〉 with the
ancilla as control. We obtain

1√
2
(|ψ〉|φ〉|0〉A +Q|ψ〉|φ〉|1〉A) . (22)

Then we rotate the ancilla so that |0〉A → |+〉A, |1〉A →
|−〉A, which yields

1

2
((I+Q)|ψ〉|φ〉|0〉A + (I−Q)|ψ〉|φ〉|1〉A) . (23)

Next we apply the unitary ei
πδ
2 pRp̃RN̂ZA , where ZA is

the Pauli matrix Z acting on the ancilla. It can be im-
plemented with a non-Gaussian gate [15, 22], if |0〉, |1〉
represent logical qubits realized by a pair of qumodes

|01〉 = b̂†|00〉, |10〉 = â†|00〉, so that ZA = b̂†b̂ − â†â. We
obtain

I+Q

2
ei

πδ
2 pRp̃RN̂ |ψ〉|φ〉|0〉A+

I−Q

2
e−iπδ

2 pRp̃RN̂ |ψ〉|φ〉|1〉A .
(24)

Finally, we perform a projective measurement on the an-
cilla projecting it onto |+〉A, resulting in the desired state

QδpRp̃RN̂ |ψ〉|φ〉. This projection is successful 50% of the
time, as is easily verified.
We can now implement

e−iγHpR p̃RN̂ ≈ e−iγǫH̃pRp̃RN̂ ≈



∏

j

e−i γǫ
M

HjpRp̃RN̂




M

(25)

using QδpRp̃RN̂ , where δ = 2γǫ
πM . Let |ψ〉 = |1〉|χ〉, ini-

tially. Let P be any permutation matrix, so that by
repeatedly acting with P on |1〉, we span all states |j〉,
j = 1, . . . , jmax. Then
(
QδpRp̃RN̂ P ⊗ I

)jmax

|ψ〉 = I⊗
∏

j

e−i γǫ
M

HjpRp̃RN̂ |ψ〉 .

(26)
Having constructed the unitary (26), we may implement
the unitary (25) by repeating the above processM times.
We will use this construction to implement the unitary
(20) following [17]. Let ρ = |χ〉〈χ| (eq. (19)) be the state
on which (20) will act. We introduce the symmetric state

|s〉 = 1

2
√
N

2N−1∑

x=0

|x〉. (27)

We then act on the state |s〉〈s|⊗ρ with the unitary (26),
and trace over the degrees of freedom of the register in
which |s〉 resides. We obtain

tr
[
e−i γ

M
HpR p̃RN̂ |s〉〈s| ⊗ ρ ei

γ
M

HpR p̃RN̂
]
≈ UM ρ U†

M ,

(28)

where UM = e−i γ
4MN

K̂N̂pRp̃R . Thus, the above procedure
yielded an evolution involving the desired matrix K̂ from
the quadratically enlarged, but dynamically simpler, ma-
trix H containing all the entries of K̂ (eq. (12)).

The error in (28) is ǫM . γ2

M2ξ4 ‖K̂‖2, where ‖K̂‖ is

the magnitude of the largest matrix element of K̂, and
we used |λ| ≤ 4N‖K̂‖, where λ is any eigenvalue of K̂.
By repeating this process M times, we arrive at the

desired result (20) (since U ≈ (UM)M). The cumulative

error is ǫ = MǫM . γ2

Mξ4 ‖K̂‖2. For a large number of

steps, only large enough eigenvalues contribute, specifi-
cally, γ|λ|/N & ξ2. Let us choose a small enough squeez-
ing parameter ξ (restricted by current technology) and a
large enough adjustable parameter γ, so that the error
introduced by restricting to relatively large eigenvalues
is ǫ, i.e.,

γ ∼ ξ2

ǫ
(29)

It should be noted that the smallest eigenvalue of K̂ can
also be controlled to a certain extent by increasing the
variance noise σ2

I, so that ‖K̂‖ & σ2, which may relax
the constraint (29) on γ.
It follows that the number of oracle calls required for

the algorithm isM . γ2

ǫξ4 ‖K̂‖2 ∼ ‖K̂‖2/ǫ3. If K is a low-

rank matrix which is dense with relatively small matrix
elements, then ‖K̂‖ ∼ O(poly logN) [17]. Moreover, if
we are interested in errors 1/ǫ ∼ O(poly logN), then also
the number of oracle calls M ∼ O(poly logN).
The above considerations constrain the parameters ξ

and γ to be in a range that facilitates an accurate calcu-
lation of the mean. Indeed, we obtain

U|χ〉 = 1√
2

(
|y〉|0〉+ eiγ

K̂
4N pRp̃R |k∗〉|1〉

)
|ΦR(ξ)〉 . (30)

5

Next, we measure the q quadrature, qR and q̃R, respec-
tively, of the resource modes. If the outcome is (qR, q̃R)
with |qR|, |q̃R| . ξ, then the state is projected onto
ΠξU|χ〉, where

Πξ =

∫ ξ

−ξ

dqR

∫ ξ

−ξ

dq̃R|qR, q̃R〉〈qR, q̃R| . (31)

As shown below, this results in a state which is indepen-
dent of the resource measurement outcomes to a good
approximation. Therefore, the probability that the re-
source measurement successfully implements Πξ is

(
1√
πξ

∫ ξ

−ξ

dqe−q2/ξ2

)2

= erf2(1) (32)

or numerically 71%.
After a straightforward calculation, we obtain

〈qR, q̃R|eiγ
K̂
4N N̂pRp̃R |ΦR(ξ)〉 ∝

e
− ξ2(q2

R
+q̃2

R
)+2iγqRq̃R

K̂
4N

N̂

2(ξ4+γ2 K̂2

16N2 N̂2)

√
ξ4 + γ2 K̂2

16N2 N̂2

.

(33)

where the remaining operators K̂ and N̂ act on the
Hilbert space of the state of our system (17), with N̂

acting on its last qubit and K̂ on the rest of the qubits.
Choosing ξ to be small enough and γ to be large enough,
as outlined above, we may approximate

〈qR, q̃R|eiγK̂pRp̃R |ΦR(ξ)〉
〈qR, q̃R|ΦR(ξ)〉

≈ ξ2

γ

(
K̂

4N

)−1

. (34)

The resource modes decouple, and the remaining pro-
jected state |χ̂(y,k∗, s)〉 is approximately

|χ̂〉 ≈ |y〉|0〉+ ξ2

γ
K̂−1|k∗〉|1〉 . (35)

Next, we measure Z on the first qubit of the n+ 1 qubit
system and X on the appended (last) qubit. The expec-
tation value of I+Z

2 ⊗X for the state |χ̂〉 is
〈
χ̂

∣∣∣∣
I+ Z

2
⊗X

∣∣∣∣ χ̂
〉

=
2ξ2

Nc(y)c(k∗)γ
yTK−1k∗

=
2ξ2y · k̃∗

Nc(y)c(k∗)γ
, (36)

from which we easily deduce the mean y · k̃∗:

y · k̃∗ =
Nγ

2ξ2
c(y)c(k∗)

〈
χ̂

∣∣∣∣
I+ Z

2
⊗X

∣∣∣∣ χ̂
〉
. (37)

B. Efficient computation of variance

To calculate the variance, we need to be able to effi-
ciently compute k∗ · k̃∗ = kTK−1k∗ (8) as k∗∗ is given.

The calculation of k∗ · k̃∗ follows the same lines of the
calculation of the mean with y replaced by k∗ in (17)
and (19). Because of this replacement, we need to con-
sider the (n+1)-qubit state |k∗〉 corresponding to a 2N -
dimensional vector.
To this system, we append a qubit in the state 1√

2
(|0〉+

|1〉) as well as two resource modes in the squeezed state
(18), thus forming the state

|χ(k∗,k∗,Φ(ξ))〉 =
1√
2
|k∗〉(|0〉+ |1〉)|ΦR(ξ)〉 . (38)

Following the same steps as that for the calculation of
the mean, we obtain

〈
χ̂

∣∣∣∣
I+ Z

2
⊗X

∣∣∣∣ χ̂
〉

=
2ξ2

Nγc2(k∗)
kT
∗K

−1k∗

=
2ξ2k∗ · k̃∗
Nγc2(k∗)

, (39)

from which we easily deduce the variance k̃∗∗:

k̃∗∗ = k∗∗ −
Nγ

2ξ2
c2(k∗)

〈
χ̂

∣∣∣∣
I+ Z

2
⊗X

∣∣∣∣ χ̂
〉
. (40)

Given that both y and k∗ are sparse, and K is well-
conditioned, we have an efficient way of computing both
the mean and variance function of Gaussian process re-
gression. In this situation, because we are making use
of a quantum linear systems algorithm, we achieve an
exponential speed-up over its classical counterpart.

V. CONCLUSION

We presented a continuous-variable quantum system
assisted Gaussian process regression algorithm that of-
fers the potential of an exponential speed-up over clas-
sical techniques. It generalized the result given in [12]
where the authors had initially considered the applica-
tion of quantum systems of linear equations algorithm
[10] to Gaussian process regression using discrete-variable
quantum systems. The application of the such HHL al-
gorithm constraints the matrixK (6) related to Gaussian
processes to be well-conditioned. K needs to be robustly
invertible [19], which restricts the condition number κ to
remain low even as N increases. We can make K ro-
bust by increasing the variance noise (σ2

I) so that λmin

remains above a certain threshold (λmin & σ2). This di-
lution trick would work only if the statistical properties
of the concerned model are not significantly altered.
In [17], the authors provided a method for non-sparse

matrices in an oracular setting which required only one-
sparse simulation techniques. We made use of this
method to encode K for the computation of the mean
and covariance function of a Gaussian process regression
model. Our presented method provides a continuous-
variable quantum-assisted singular value decomposition

6

of non-sparse low rank matrices. This hints at applica-
tions of our technique to subroutines beyond quantum
systems of linear equations algorithms.

ACKNOWLEDGMENTS

We thank Patrick Rebentrost for helpful comments and
feedback. SD acknowledges support from the LSU Grad-

uate School Economic Development Assistantship. GS
acknowledges support from the U.S. Office of Naval Re-
search under award number N00014-15-1-2646.

[1] Arthur L. Samuel. Some studies in machine learning us-
ing the game of checkers. IBM Journal of research and
development, 3(3):210–229, 1959.

[2] Maxwell W. Libbrecht and William Stafford Noble. Ma-
chine learning applications in genetics and genomics. Na-
ture Reviews Genetics, 16(6):321–332, 2015.

[3] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dol-
son, David Held, Soeren Kammel, J. Zico Kolter, Dirk
Langer, Oliver Pink, Vaughan Pratt, et al. Towards fully
autonomous driving: Systems and algorithms. In Intel-
ligent Vehicles Symposium (IV), 2011 IEEE, pages 163–
168. IEEE, 2011.

[4] Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press,
2005.

[5] Michael A. Nielsen and Isaac L. Chuang. Quantum com-
putation and Quantum information. Cambridge Univer-
sity Press India, 2000.

[6] Charles H. Bennett and David P. DiVincenzo. Quantum
information and computation. Nature, 404(6775):247–
255, 2000.

[7] Jonathan P. Dowling. Schrödinger’s killer app: race to
build the world’s first quantum computer. CRC Press,
2013.

[8] Ashley Montanaro. Quantum algorithms: an overview.
npj Quantum Information 2, (15023), January 2016.
arXiv:1511.04206.

[9] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick
Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum
machine learning. 2016. arXiv:1611.09347.

[10] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd.
Quantum algorithm for linear systems of equations.
Physical Review Letters, 103(15):150502, 2009.

[11] Andrew M. Childs, Robin Kothari, and Rolando D.
Somma. Quantum linear systems algorithm with expo-
nentially improved dependence on precision. MIT-CTP

#4687, LA-UR-15-27205, 2015.
[12] Zhikuan Zhao, Jack K. Fitzsimons, and Joseph F. Fitzsi-

mons. Quantum assisted gaussian process regression.
2015. arXiv:1512.03929.

[13] Arman Melkumyan and Fabio Ramos. A sparse covari-
ance function for exact gaussian process inference in large
datasets. In IJCAI, volume 9, pages 1936–1942, 2009.

[14] Christian Weedbrook, Stefano Pirandola, Raúl Garćıa-
Patrón, Nicolas J Cerf, Timothy C Ralph, Jeffrey H
Shapiro, and Seth Lloyd. Gaussian quantum informa-
tion. Reviews of Modern Physics, 84(2):621, 2012.

[15] Hoi-Kwan Lau, Raphael Pooser, George Siopsis, and
Christian Weedbrook. Quantum machine learning
over infinite dimensions. Physical Review Letters,
118(8):080501, 2017.

[16] Seth Lloyd and Samuel L. Braunstein. Quantum compu-
tation over continuous variables. Physical Review Letters,
82(8):1784, 1999.

[17] Patrick Rebentrost, Adrian Steffens, and Seth Lloyd.
Quantum singular value decomposition of non-sparse
low-rank matrices. 2016. arXiv:1607.05404.

[18] Dominic W. Berry, Andrew M. Childs, Richard Cleve,
Robin Kothari, and Rolando D. Somma. Exponential
improvement in precision for simulating sparse hamiltoni-
ans. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing, pages 283–292. ACM, 2014.

[19] Scott Aaronson. Read the fine print. Nature Physics,
11(4):291–293, April 2015.

[20] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone.
Quantum random access memory. Physical Review Let-
ters, 100(16):160501, April 2008.

[21] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone.
Architectures for a quantum random access memory.
Physical Review A, 78(5):052310, November 2008.

[22] Kevin Marshall, Raphael Pooser, George Siopsis, and
Christian Weedbrook. Repeat-until-success cubic phase
gate for universal continuous-variable quantum compu-
tation. Physical Review A, 91:032321, 2015.

