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Abstract – Quantum emitters interacting through a waveguide setup has been proposed as a 
promising platform for basic research on light-matter interactions and quantum information 
processing. Here, we propose to augment waveguide setups with the use of multiport 
devices. Specifically, we demonstrate theoretically the possibility of exciting N-qubit 
subradiant, maximally entangled, states with the use of suitably designed N-port devices. 
Our general methodology is then applied based on two different devices: an epsilon-and-
mu-near-zero (EMNZ) waveguide hub and a nonreciprocal circulator. A sensitivity analysis 
is carried out in order to assess the robustness of the system against a number of 
nonidealities. These findings link and merge the designs of devices for quantum state 
engineering with classical communication network methodologies. 
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I. Introduction – The excitation and preparation of multi-qubit entangled states is of 
fundamental scientific interest as well as the key resource for quantum computing, quantum 
information processing and quantum metrology [1–6]. Ideally, the ultimate goal is to excite 
a long-lived state encompassing the entanglement between distant qubits, which requires 
both long-range interactions and the mitigation of decoherence phenomena [5]. Waveguide 
setups are particularly well-suited for this purpose [7–13]: On the one hand, long-range 
interactions are intrinsic to guided modes. On the other hand, the observation of near-unity 
coupling efficiencies implies that the dissipative coupling with the environment can be 
canalized into the desired source of interaction. As a matter of fact, although quantum 
systems inevitably interact with their environment, thus making entanglement inherently 
fragile [14], dissipative interactions can be designed such that they become the driving 
force to carry out quantum information processing tasks [15–17]. Indeed, this methodology 
has been proposed to prepare two-qubit  [18–22], mesoscopic  [23,24] and macroscopic 
 [25] entangled states, to realize quantum memories  [26], quantum repeaters  [27] and 
quantum simulators [28], to perform quantum computation  [29] and to generate arbitrary 
photonic states [30].  

Here, we propose augmenting waveguide setups driven by dissipative interactions with the 
dedicated design of multiport devices. In doing so, we connect the field of quantum state 
engineering with the communication networking, and subsequently align the fields of 
reservoir engineering with the design of multiport devices for microwave and optical 
networks [31]. We expect that this merging of the two concepts will encourage both the 
adaptation and reutilization of classic multiport devices and the development of innovative 
devices for quantum state engineering. As a particular example, we demonstrate 
theoretically the possibility of preparing subradiant multi-qubit states, corresponding to 
𝑊!  states [32], i.e., N-qubit maximally entangled states. These subradiant states have also 

been regarded as a particular class of bound-states in the continuum [33], with applications 
in lasing, filtering and sensing [33]. We derive a generic procedure for the design of a N-
port device preparing a N-qubit subradiant state, and then we particularize it into two 
different implementations: a novel epsilon-and-mu-near-zero (EMNZ) two-dimensional 
(2D) waveguide hub and a conventional nonreciprocal device, a circulator.  

Previous studies have investigated the use of multiport devices to engineer quantum 
interference and generate multiphoton entanglement [34,35]. However, these works are 
essentially different from our work, where we utilize multiport devices to design dipole-
dipole interactions, resulting in the excitation of multi-qubit entangled states.   

 

II. Configuration and generic procedure - A conceptual sketch of the proposed 
configuration is depicted in Fig. 1: A set of N single-mode waveguides are connected via a 
generic N-port device. The response of this device can be described classically by its 
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scattering matrix 𝑺, composed by S-parameters describing the complex-valued reflection 
(𝑆!!) and transmission (𝑆!",𝑛 ≠ 𝑚) coefficients at the waveguide ports (see, e.g., Ref. 
 [31]). We assume that there is a quantum emitter (QE), coupled to each of the waveguides 
at a distance d from the multiport device. In the following, the QEs are modeled as identical 
two-level systems 𝑒! , 𝑔!  with transition frequency 𝜔! and decay rate into the 
waveguide mode Г!".  

In a general sense, these distant quantum emitters can be thought to be interacting via 
photons within a common macroscopic environment, characterized by a given 
inhomogeneous relative permittivity distribution 𝜀 𝐫,𝜔 , conforming the multiport device 
and waveguides (see, e.g., Ref.  [36–38], Appendix A). Within the Born-Markov 
approximation, the dynamics of the QE system, characterized by reduced density matrix 𝜌, 
is prescribed by the solution of a quantum master equation on its Lindblad form [14,23]: 

𝜕!𝜌 = 𝐽!" 𝜎!𝜌𝜎!
! − 𝜌𝜎!𝜎!

! + ℎ. 𝑐.!,! . Here, 𝜎! = 𝑔! 𝑒! , and 𝐽!" = −𝑖 ℏ
ε0

ω0
2

c2
𝐩n ∙

𝐆 𝐫n, 𝐫m,𝜔0 ∙ 𝐩m are the coupling parameters that describe the environment-mediated 
interaction between the different QEs (see Appendix A for a derivation of the master 
equation and coupling parameters). 𝐆 𝐫, 𝐫!,ω  stands for the classical dyadic Green’s 
function of the macroscopic environment. 

Let us assume that we initially excite only one of the QEs such that the initial state of the 
QE system is given by 𝜓 0 =  𝜎!

! 0 . In doing so, we impose that there is a single 
excitation on the system, and the state of the QE system at any time t is restricted to 
𝜓 𝑡 = 𝑐! 𝑡  𝜎!

! 0 + 𝑐! 𝑡!
!!!  0 . In this manner, the number of allowed transitions 

within the original density matrix is constrained, and the dynamics of the system, described 
by the aforementioned quantum master equation in Linblad form, are greatly simplified. In 
particular, we show in Appendix B, that the equation governing the time evolution of the 
probability amplitudes of the excited states 𝑐! 𝑡  for 𝑛 = 1,… ,𝑁, can be simply written in 
matrix form: 𝜕!𝒄 𝑡 = 𝑲 ∙ 𝒄 𝑡 , where 𝒄 = 𝑐! 𝑡 ,… , 𝑐! 𝑡 ! is a vector gathering all 
probability amplitudes, and 𝑲 is a square 𝑁×𝑁 matrix, whose elements are simply 
described by the classical Green’s function of the macroscopic environment: 𝐾!" = −𝐽!"∗  . 
For the single mode waveguide system depicted in Fig. 1, we can simply write 𝐾!" =
− Г!"

!
 𝑆!" 𝑒!!!!"! , for 𝑛 ≠ 𝑚, and  𝐾!! = − Г!"

!
 1+ 𝑆!!𝑒!!!!"! , where 𝑘!" is the 

propagation constant of the waveguide at the transition frequency 𝜔!. Less ideal coupling 
parameters, including, e.g., emission into free-space are considered later. 

Formulating the coupling parameters, which describe the QE-interactions mediated through 
the environment, in terms of classical S-parameters enables both the adoption of classic 
multiport devices (e.g., a circulator) and the dedicated design of new devices (e.g., an 
EMNZ waveguide hub) for the purposes of reservoir and quantum state engineering. As 
anticipated, let us illustrate this point with the generation of multi-qubit subradiant states. 
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For example, let 𝒈!  and 𝛾! = 𝛼! + 𝑖𝛽!  be the eigenvectors and associated complex 
eigenvalues of 𝑲, respectively. Consequently, we can write 𝒄 𝑡 = 𝑎! 𝑡 𝒈! =!

𝑎! 0 𝑒!!!𝒈!! . It is thus clear that long-term (𝑡 → ∞) asymptotic state of the system is 
defined by the Kernel of 𝑲, i.e., 𝒄 ∞ = 𝑎! 0 𝒈!!!  for 𝒈!! = 𝒈! ∈ ker 𝑲 . In other 
words, the system decays into its initial projection in the decoherence-free subspace (DFS), 
i.e., a combination of the subradiant or dark states of the system, determined by the initial 
condition on the QE system 𝒄 0 . In this manner, and since, 𝑲 is described by the N-port 
device scattering matrix, one directly recasts the quantum state engineering problem to the 
design of a conventional waveguide device.  

For instance, if the multiport device is designed such that ker 𝑲  is spanned by the state 

𝑊! = !
!

 𝜎!
! 0!

!!!  (i.e., 𝑐! = 𝑐! = ⋯ 𝑐! = 1/ 𝑁), then the system will eventually 

decay into 𝜓 ∞ = 𝑃! 𝑊!  + 1− 𝑃! 0  . That is to say, the desired state is 
generated with probability 𝑃! = 𝑎! 0 ! = 𝑁!!. Interestingly, this probability is 
independent of the N-port device, since it is prescribed by the projection of the initial state 
into the target state. On the contrary, additional aspects of the process such as the transient 
time required to reach this state and/or the robustness of the system against nonidealities do 
depend on the design of the N-port device.  

Here, it is important to remark that the failure in generating the desired state is heralded by 
the measurement of a photon at the exit of the waveguides. In other words, measuring a 
photon during the transient process projects the state of the system 𝜓 = 𝑃! 𝑊!  +
1− 𝑃! 0   into 𝜓 = 0  , while not measuring it projects the state of the system into 
𝜓 = 𝑊! . Therefore, the fidelity in preparing the 𝑊!   can in theory approach one. 

Naturally, and as it is investigated later, any practical realization will present a number of 
nonidealities. As a result, the subradiant state will always have a finite lifetime, and the 
fidelity in generating the state is always in practice smaller than one. 

Admittedly, more sophisticated protocols exhibiting higher performance/fidelity could be 
developed by using more complex (e.g., multi-level) emitters, or excitation configurations 
(e.g., individually addressing the emitters with a dedicated laser)  [39]. Here, we have opted 
for a simple configuration based on two-level systems in order to further re-emphasize the 
main conclusion behind this work: part of the complexity behind quantum state engineering 
processes can be relaxed and transferred to the design of classical waveguide devices. In 
the next sections we examine two specific N-port devices that can be utilized in the 
generation of these states: 

 

III. Epsilon-and-mu-near-zero (EMNZ) two-dimensional (2D) hubs - Continuous media 
and artificially engineered structures with near-zero parameters (e.g., EMNZ media, a 
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medium with near-zero relative permittivity 𝜀 ≈ 0 and permeability 𝜇 ≈ 0  [40–42]), 
exhibit a number of salient features, such as the decoupling of spatial and temporal field 
variations [42,43], leading to exotic wave dynamics [44]. In particular, waveguide sections 
filled with EMNZ media enable the perfect tunneling of electromagnetic waves (i.e., a 
transmission coefficient of unity for the two-port EMNZ scenario) independently of certain 
geometrical deformations of the transmission channel [45–48]. The decay of and interaction 
between QEs embedded within ENZ waveguides have also attracted the attention of the 
researchers [21,49–55]. Interestingly, we find that multiport EMNZ waveguide hubs can 
also be utilized for the preparation of multi-qubit states via the methodology described in 
the previous section.  

In order to illustrate this point, we consider a two-dimensional (2D) system depicted in Fig. 
2a, which consists of an arbitrarily shaped N-port EMNZ waveguide hub. Next we derive 
the S-parameters of this device that, owing to the special properties of EMNZ structures, 
exhibit highly symmetric properties. First, we note that since the magnetic field is constant 
within this 2D device [47], we have: 𝑆!" = 𝑆!! − 1 ,∀𝑚,∀𝑛 ≠ 𝑚. Next, since 𝜇 ≈ 0 
the circulation of the electric field must be zero according to Faraday’s law, and thus we 
find 1+ 𝑆!" = 0 ∀𝑚!

!!! . By exploiting these two conditions, we find that the scattering 

parameters of an EMNZ hub are: 𝑆!! =
!!!
!

  ∀𝑛 and 𝑆!" = − !
!
, for 𝑛 ≠ 𝑚. One 

important characteristic of this 2D device with N equal waveguide ports is that if it is 
excited from one port with a classical time-harmonic wave, the waves exiting the other 
ports are identical in magnitude and phase, regardless of the locations and orientations of 
the ports (see Fig. 2).  

Next, if we set 𝑘!"𝑑 = 𝜋, the coupling parameters reduce to 𝐾!! = −𝛤!" 𝑁 − 1 /𝑁   ∀𝑛  
and 𝐾!" = 𝛤!"/𝑁   for 𝑛 ≠ 𝑚. In the matrix form, we have: 

𝑲 = −
Г!"
𝑁

𝑁 − 1 −1 ⋯ −1
−1 𝑁 − 1 ⋯
⋯ ⋯ −1
−1 ⋯ −1 𝑁 − 1

  (1) 

 

It can be readily checked by inspecting the pertinent characteristic equations that the kernel 
of 𝑲 is spanned by 𝑊! . Since this effect appears when the QE decay rate is compensated 
by the cooperative decay rates, a classical analogue effect to this subradiant or dark state is 
that when the QEs are replaced by time-harmonic classical point dipoles emitting in phase, 
no power is exiting the system. This effect is illustrated in Figs. 3b and 3c, which depict 
snapshots of the magnetic field (𝐻! component) excited by 2D point dipoles emitting in 
phase located at the entrance of EMNZ waveguide hubs of N = 3 and N = 4 ports, 
respectively. The field distributions were computed with a full-wave numerical solver [56].  
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In this manner, our analysis indicates that if one of the QEs is initially excited, the system 
will then decay into 𝑊!   after a transitory time. Alternatively, one can explicitly solve 
𝜕!𝒄 𝑡 = 𝑲 ∙ 𝒄 𝑡  to keep track of the time-evolution of the probability amplitude of 
excitation of each QE. This exercise leads to (see Appendix C) 

𝑐! 𝑡 =
1
𝑁 1+ 𝑁 − 1  e!Г!"!  (2) 

and 

𝑐! 𝑡 = !
!
1−  e!Г!"! , for 𝑛 = 2,… ,𝑁 (3) 

 

Figures 3d and 3e depict a comparison of the time evolution of the probability amplitude 
coefficients, as compared to the numerical solution of quantum master equation by using 
the Euler method, for implementations with 𝑁 = 3 and 𝑁 = 4 ports, respectively. It is 
apparent from the figure that indeed the system decays into the desired subradiant, 
maximally entangled, state. One interesting aspect of the transitory time is that the time-
evolution of the probability amplitude of the QEs initially in the ground state are identical, 
i.e., 𝑐! 𝑡 = 𝑐! 𝑡 =  … = 𝑐! 𝑡   ∀𝑡 . This effect is a consequence of the nonlocal 
properties of the EMNZ hub. Specifically, since the coupling is independent of the position 
of the waveguides, it is impossible to discern the evolution between the QEs sharing the 
same initial conditions.  

EMNZ tunneling has been experimentally validated at microwave frequencies by using 
waveguides at cut-off [46,48] and arrays of dielectric particles [57]. The latter approach 
have also been recently scaled up to optical frequencies and integrated into a chip [58]. 
Extending these validated two-port devices to multi-port systems is straightforward, and 
therefore we believe that the practical implementation of our proposed concept should be 
within reach of current technology.  

For instance, for a possible future experimentation one can consider the following 
preliminary design of an all-dielectric (and therefore low-loss) implementation of a four-
port EMNZ hub, suitable for operation at optical frequencies and integration on a chip, 
depicted in Fig. 3. Following the design of a two-port device presented in Ref.  [55], the 
systems is designed by using two different photonic crystals, both constructed by using 
circular rods of radius 𝑟!,! and relative permittivity 𝜀! = 12.5, arranged in a rectangular 
lattice with period 𝑎!,!. Specifically, the EMNZ region (𝑎! = 0.56𝜆!, 𝑟! = 0.2𝑎!) is created 
by following the design in  [57], such that the photonic crystal exhibits a Dirac cone at k = 
0, which effectively presents an EMNZ behavior [59]. This region is then bounded by a 
second PC (𝑎! = 0.56𝜆!, 𝑟! = 0.2𝑎!) exhibiting a complete band-gap at the frequency of 
operation. This serves to effectively “close” the system, except for four waveguides and 
input ports constructed by removing rows of the PC.  
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Then, this 2D structure is excited with out-of-plane electric current lines (𝑱 = 𝒛 𝐼, shown as 
blue dots in Fig. 4a), which generate the mode preferably excited for dipole emitters with 
the transition dipole oriented along the  𝒛 direction. It can be readily checked via numerical 
simulations [56] that this synthetic device does indeed effectively behave as the previously 
studied homogeneous EMNZ hub. For example, if only one of the sources is activated (see 
Fig. 4b), the outgoing waves through all the three remaining ports are identical in phase and 
magnitude. Moreover, if all sources are excited at the same time (see Fig. 4c), the excited 
fields correspond to a subradiant or dark state, and there are no outgoing waves (nor power) 
exiting the system. As anticipated, this is the classical counterpart of mapping a 𝑊!   state 
into the decoherence-free subspace of the system. This preliminary design suggests that in 
the future the proposed configuration could be implemented in practice in an all-dielectric 
platform. 

  

IV. Nonreciprocal hub: Circulator- Our generic procedure could be implemented by using 
a variety of devices, including classical waveguide devices that have been developed for 
entirely different applications. For example, circulators are essential components of 
microwave [60], millimeter wave [61] and optical–fiber networks [62]. As schematically 
depicted in Fig. 5a, an ideal circulator can be defined as a matched nonreciprocal device 
that enables one-to-one unidirectional nonreciprocal transmission. Consequently, the only 
nonzero elements of the scattering matrix are 𝑆!!  =  1 and 𝑆! !!! =  1 for 𝑛 >  1 (see 
Fig. 5a). Note that in general the scattering parameters of a circulator might incorporate a 
phase factor (e.g., 𝑆!!  =  𝑒!!!!). However, these phase factors can be easily removed by 
defining the position of the input ports of the circulator at the planes when the phase factors 
vanish. In this case, and if the separation between the QEs and the input ports is set to 
𝑘!"𝑑 = 𝜋/2, then the coupling parameters can be written in matrix form as follows 

𝑲 = −
Г!"
2

1 0 ⋯ 0 −1
−1 1 0 ⋯ 0
0 −1 ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ 0
0 ⋯ 0 −1 1

  (4) 

 

Again, it can be readily checked that ker 𝑲  is spanned by 𝑊!  . Alternatively, the time-
evolution of the probability amplitudes can be found by explicitly solving the master 
equations, leading to (see Appendix D) 

𝑐! 𝑡 = !
!

exp − Г!"
!

1− 𝑒!"
!!
!  𝑡 + 𝑖𝑚 2𝜋 !!!!!

!
 !!!

!!!   for n=1, …,N (5) 
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Figs. 5b and 5d depict a comparison of the time-evolution of the probability amplitudes 
obtained via numerical solution of the quantum master equation and Eq. (5), for circulators 
with N = 3 and N = 4 ports, respectively. As expected, the system again decays into 𝑊!   
with probability N-1. However, the time-evolution of the 𝑐! 𝑡  coefficients is substantially 
different from those of the EMNZ waveguide hub. In fact, in this case, the probability 
amplitudes of the initially non-excited emitters are not identical, and the transient time 
required to generate the entangled state is slightly longer. This difference arises from the 
restriction to one-to-one interactions within a circulator. This analysis reveals that N-port 
devices could be engineered to optimize the desired transient time required to generate the 
entangled state. This and other optimization efforts that could be applied to N-port devices 
are beyond the scope of the present work.  

This setup could be implemented in a variety of platforms. Indeed, conventional circulators 
are widely used in communication and sensor networks, and they are commercially 
available in microwave, millimeter waveguides and optical fibers [63]. Alternative 
realizations of circulators have also been proposed in photonic crystal [64] and 
plasmonic [65] platforms. Moreover, recent advances in chiral photonic circuits when 
combined with nonreciprocal structures (e.g., an atom exhibiting Zeeman sublevels) might 
point to ideas and scenarios with efficient and on-chip non-reciprocal photonic 
elements [66–68], including the recent demonstration of a circulator [69]. In addition, an 
acoustic circulator has been recently experimentally demonstrated [70]. Therefore, the 
proposed configuration could also be extrapolated to other physical systems.  

 

V. Beyond the ideal case – In previous sections dealing with ideal cases, the initial 
excitation probabilistically decays into a multi-qubit entangled state, which is a subradiant 
or dark state mapped into the DFS of the system, and therefore it remains there for an 
indefinite time. Moreover, since the failure in generating the state is heralded by a photon 
exiting the system in the waveguides, the fidelity in generating the entangled state 
theoretically approaches one. Admittedly, any practical realization of the proposed 
configurations will present a number of nonidealities. As a result, the subradiant state will 
always exhibit a finite lifetime, and the fidelity in generating the state will always be 
smaller than unity. Typical nonidealities in the system might include undesired decay 
processes (e.g., irreversible decay into free-space, dissipation into the environment and/or 
internal decays within the QEs), imprecision in positioning the emitters, and deviations 
from the prescribed scattering parameters of the 𝑁-port devices, due to deviations from the 
ideal material parameters and/or fabrication tolerances.  

In this section we carry out a sensitivity analysis in order to estimate the robustness of our 
system against these nonidealities. To this end, we introduce phenomenological coupling 
parameters for the interaction via a imperfect single-mode waveguide, given by: 𝐾!! =
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− !!"!
!

1− 𝛽 + 𝛽 1+ 𝑆!!𝑒!!!!"!!  and 𝐾!" = −𝛽 !!"!
!
𝑆!"𝑒!!!!" !!!!!  for 𝑛 ≠ 𝑚. 

Here, 𝛽 is the usual 𝛽-factor [11], which characterizes the efficiency in the coupling of the 
QE to the desired waveguide mode: 𝛤!" = 𝛽𝛤!"!. Note that the distances of each individual 
emitter to its closer port have been explicitly included to account for errors in positioning 
them. Deviations from the ideal scattering parameters can be simply taken into account 
when evaluating them.  

In our analysis, we model the QE 𝛽-factors as 𝛽! = 0.95+ 0.01∆𝛽!, 𝑛 = 1,… ,𝑁, with 
∆𝛽! following a standard normal distribution. These can be considered realistic values, for 
example, for QDs inserted in photonic crystal waveguides, where near unity coupling 
parameters (𝛽 =  0.9843± 0.0004) have been reported [71]. Similarly, inaccuracies in 

positioning the emitters are modeled as 𝑟! =
!!"
!

1+ 0.05 ∆𝑟!  with ∆𝑟! following a 
standard normal distribution. To finalize, we include deviations in the scattering parameters 
as variations in the magnitude of the transmission coefficients 
𝑆!" = 0.95+ 0.01 ∆𝑆!" 𝑆!"! , where 𝑆!"!  is the ideal transmission coefficient, and 
∆𝑆!" is again modeled with a standard normal distribution. Physically, this model 
corresponds to a well-matched device, which however exhibits a certain insertion loss due 
to dissipation, scattering or mode conversion; which is commonly the case in optical 
waveguide devices. Without loss of generality, inaccuracies in the phase of the scattering 
coefficients can be considered included in the positioning of the QEs. We remark that 
different random distributions are used for the parameters of each of the emitters 𝛽-factors, 
position, and scattering parameters. In this manner, the impact of a lack of symmetry in the 
coupling between the emitters induced by nonidealities in the systems is taken into account 
in the sensitivity analysis. 

As in previous sections, we compute the dynamics of the system via the quantum master 
equation, repeat the simulation 𝑀 = 5×10! times, and use the data to evaluate the 
performance of the system. First, we compute the time-evolution of the probability of the 
initial excitation remaining in the QE system, 𝑃! 𝑡 = 𝑐! 𝑡 !!

!!! . Fig. 6(a) depicts a 
comparison between the ideal and nonideal cases, for an EMNZ hub of 𝑁 = 4 ports. In the 
ideal case, the time evolution adjust to the theoretical result: 𝑃! 𝑡 = !!!

!
 𝑒!!!!"! + !

!
, 

corresponding to a transient decay process with decay rate twice the individual decay into 
the waveguide, 2 𝛤!", and the excitation of a subradiant state with (ideally) infinite lifetime. 
On the other hand, the values obtained in the sensitivity analysis correspond to the 
combination of a fast decay during the transitory time, and a slower decay associated with 
the finite lifetime of the subradiant mode. Specifically, we find that 𝑃! 𝑡  accurately fits to 
𝑃! 𝑡 = !!!

!
 𝑒!!!! + !

!
 𝑒!!!!, with 𝛤! = 1.85 𝛤!" and 𝛤! = 0.125 𝛤!". We emphasize that 

the transient decay process is more than one order of magnitude faster than the decay of the 
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subradiant decay, !!
!!
= 14.8, and, therefore, we are optimistic that the multiple decay 

processes could be observed experimentally, evidencing the excitation of a multi-qubit 
subradiant state. 

Even if the subradiant states can be experimentally observed, one might wonder if they can 
be generated on demand. In this regard, the presence of multiple decay paths also limits the 
fidelity with which the subradiant state is prepared. In the ideal case, the system at long 
times decays into lim!→! 𝜓 𝑡 = 𝑃! 𝑊! + 𝑃!"  0   / 𝑃! + 𝑃!" . In addition, 
since in the ideal case the only decay path is the waveguide mode, not measuring a photon 
at the outputs of the waveguides projects the state of the system into  lim!→! 𝜓 𝑡 =
𝑊! , which trivially results in a unit fidelity, ℱ = 𝑊! 𝜓 𝑡 ! → 1. However, in 

practice, the waveguide mode is not the only decay path, and not measuring a photon 
projects the system into a superposition of 𝑊!  and a state in which the photon has 
irreversibly decayed via a different decay path, necessarily resulting in fidelities smaller 
than unity in the process of generation of the 𝑊!  state.  

A limitation of our formalism is that, in computing the reduced density matrix for the QE 
system, the different decay paths cannot be easily resolved. This is first due to the fact that 
the photonic environment in which the QEs interact is modeled as a common macroscopic 
bath encompassing all decay paths, and, secondly, because any information on the bath is 
lost when tracing out the electromagnetic degrees of freedom (see Appendix A). 

Despite this fact, a lower bound of the expected fidelity can be estimated under some 
reasonable assumptions. To this end, an ansatz of the state of the system at time 𝑡 can be 
written as follows: 𝜓 𝑡 = 𝑐! 𝑡 𝜎!

! 0!
!!! + 𝑃!"(𝑡)+ 𝑃!"##(𝑡) 0 , with 𝑃! 𝑡 +

𝑃!" 𝑡 + 𝑃!"## 𝑡 = 1 at any time 𝑡. Here, we have split the probability all QEs being in the 
ground state to discriminate between  𝑃!" (waveguide decay) and 𝑃!"## (additional decay 
paths). In this case, not measuring a photon at the output of the waveguides projects the 
system into 𝜓 𝑡 = 𝑃!(𝑡)+ 𝑃!"##(𝑡) !!/! 𝑐! 𝑡 𝜎!

! 0 + 𝑃!"##(𝑡) 0!
!!! . As 

anticipated, our difficulty in studying the fidelity of the process stems from the lack of 
knowledge of 𝑃!"##(𝑡). However, an upper bound on 𝑃!"##(𝑡) , and thus a lower bound on 
the fidelity ℱ , can be obtained by assuming that the probability of decay into the 
waveguide is larger than that of the ideal configuration, i.e., 𝑃!" 𝑡 ≥ 𝑃!"! 𝑡 = 1− 𝑃!! 𝑡 . 
This assumption is particularly conservative after the transient time, since 𝑃!"! 𝑡 = 0. In 
this manner, the fidelity in the generation of the state can be estimated as follows: 

ℱ 𝑡 = 𝑊! 𝜓 𝑡 ! ≈ 𝑁 𝑃!! 𝑡
!!

𝑐! 𝑡!
!!!

!.  

Fig. 6(b) depicts a comparison between the fidelity predicted for the ideal case and in the 
sensitivity analysis. In the ideal case, the fidelity starts at 𝑡 = 0 at the projection of the 
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initial state on the desired state, ℱ 0 ≈ 𝑊! 𝜎!
! 0

!
= 𝑁!!, and it monotonically 

increases until it approaches 1 after a transient time. By contrast, when nonidealities are 
taken into account, the average fidelity peaks at 𝛤!"𝑡! = 1.9 with a value of ℱ 𝑡 =
0.733. Fig. 6(c) depicts the histograms of the evaluated fidelities at 𝛤!"𝑡! = 1.9 and 
𝛤!"𝑡! = 3, the later being a time point where the transient decay has already finished. The 
figures reveal that predicted fidelities exhibit a quasi-normal distribution, centered around 
its average values 0.733 and 0.672, respectively, highlighted with a vertical red line, 
excluding the existence of pathological configurations that might dramatically degrade the 
performance of the system. 

Therefore, we conclude for the sensitivity analysis that the procedure is progressively 
degraded, but not conceptually forbidden, by the existence of different nonidealities in the 
system. Our results suggest that the generation of multi-qubit subradiant (maximally 
entangled) states could be experimentally validated, even though it is clear that a very high-
quality setup would be required to obtain a relatively high fidelity. We remark that this is 
only one example of the many potential applications of the scheme based on N-port 
devices. Moreover, assessing the performance and potential application of the system for a 
quantum information or metrology systems would require a much-in-depth and specific 
analysis, including additional factors such as the efficiency of the detectors, excitation 
scheme, bandwidth and similarity of the emitters, which is left for future efforts. 

VI. Conclusions - In conclusion, we proposed the use of multiport devices to complement 
waveguide QED setups, and thus exploit some of the methodologies of the communication 
network systems in the field of reservoir and quantum state engineering. As a particular 
example of the potential of this approach, we have demonstrated theoretically the 
possibility of exciting multi-qubit subradiant, maximally entangled states, with potential 
applications in quantum information processing, lasing and sensing. Further, we showed 
theoretically that this concept can be implemented, for instance, by using EMNZ 
waveguide hubs and conventional circulators. Both devices could be implemented in a 
variety of platforms and/or physical systems. In addition, different multi-port devices could 
be utilized for the same task. In a general sense, our theoretical results serve to indicate that 
part of the complexity of quantum state engineering tasks can be transferred to the design 
of multiport devices. We emphasize that more sophisticated protocols could be developed 
with multi-level emitters and/or addressing each of the QEs with a dedicated laser.  
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Appendix A: Derivation of the quantum master equation - The basis of our following 
derivations is the macroscopic QED formalism introduced in previous works [36–38]. Specifically, 
we consider a system composed of N identical quantum emitters (QEs), modeled as two-level 
𝑒! , 𝑔!  systems with transition frequency 𝜔! (including the medium-assisted Lamb-shift) and 

transition dipole moment 𝐩! = e! 𝐩! g! . We assume that the QEs interact via a common 
inhomogenous, lossy and dispersive photonic environment, characterized by relative permittivity 
ε 𝐫,ω = ε! 𝐫,ω + iε! 𝐫,ω  and relative permeability µ 𝐫,ω = µ! 𝐫,ω + iµ! 𝐫,ω . The 
associated Hamiltonian in the interaction picture, H = H! + H!,  includes the ensemble of QEs, the 
EM fields - matter system, as well as their interaction by means of electric dipole transitions: 

H! = ℏω!σ!
!

!

!!!

σ! + d!r ′ dω   ℏω 𝐟!
ϯ 𝐫′,ω ∙ 𝐟! 𝐫′,ω

!!!,!

 (A.1) 

 

H! t = − 𝐩! ∙ 𝐄 𝐫!, t σ!
!𝑒!!!! + h. c.

!

!!!

 (A.2) 

 

Here, σ! = g! e!  is the lowering operator of the n-th QE, and 𝐟! 𝐫′,ω  , 𝑞 = 𝑒,𝑚 are polaritonic 
operators representing excitations of the EM fields – matter system. The latter satisfy the 

commutation relations: 𝐟! 𝐫,ω , 𝐟!
ϯ 𝐫′,ω′ = 𝟏 𝛿!"𝛿 𝐫 − 𝐫′ 𝛿 ω − ω′  and  

𝐟! 𝐫,ω , 𝐟! 𝐫′,ω′ = 𝟎. The electric field operator is 𝐄 𝐫, t = 𝑑𝜔 𝑒!!"# 𝐄 𝐫,ω +  h. c., where 
𝐄 𝐫,ω = 𝑑! 𝑟 𝐆! 𝐫, 𝐫′,ω!!!,! ∙ 𝐟! 𝐫′,ω . We define the dyadic functions 𝐆! 𝐫, 𝐫′,ω =

i!
!

!!
ℏ
!!!

𝜀! 𝐫′,ω  𝐆 𝐫, 𝐫′,ω  and 𝐆! 𝐫, 𝐫′,ω = −i!
!

ℏ
!!!

!! 𝐫!,!
! 𝐫!,! !  𝐆 𝐫, 𝐫′,ω ×∇, where 

𝐆 𝐫, 𝐫′,ω  is the classical Green dyadic function of the background medium.	 

We follow an analysis similar to  [14,72] in order to derive the quantum master equation describing 
the dynamics of the reduced density matrix for the QE system, 𝜌! = Tr! 𝜌 , and the coupling 
parameters 𝐽!". Note that in the main text we drop the S sub-index for the sake of brevity. The 
dynamics of the system are given by the interaction picture Von Neumann equation:  [14]   
𝑖ℏ𝜕!𝜌 = H! t , 𝜌 𝑡 . Assuming that the relaxation of the background is much faster than that of 
the QE system, and that the influence of the quantum emitter on the system is small (Born-Markov 
approximation), we can derive the following integro-differential equation for the dynamics of the 
reduced density matrix 𝜌! [14] 
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𝜕!𝜌! 𝑡 = − 𝑑𝑠 Tr! H! t , H! t − s , ρ! t ⊗ ρ!
!

!
 (A.1) 

 

By introducing (A.2) and evaluating Tr! , we obtain a master equation in Linblad form  [14] 

𝜕!𝜌! = ℒ 𝜌! = 𝐽!" 𝜎!𝜌!𝜎!
! − 𝜌!𝜎!

! 𝜎!
!,!

+ ℎ. 𝑐. (A.2) 

 

Here, the 𝐽!" factors are derived as coupling parameters, given by 

𝐽!" = 𝑑𝑠
!

!
𝑒!!!!! + 𝑒!!!! 𝐩! ∙ 𝐄 𝐫!, t 𝐩! ∙ 𝐄 𝐫!, t − s  (A.3) 

 

Note that, following  [72], we keep the counter rotating terms. Next, we assume that the background 
field + matter systems is on its vacuum state (i.e., the QE system have a negligible impact on the 
background). Consequently, and applying the completeness relationship of the Green’s function we 
obtain 

𝐩! ∙ 𝐄 𝐫!, t  𝐩! ∙ 𝐄 𝐫!, t − s =
ℏ
πε!

 dω
!

!
 
ω!

c!
 e!!!! 𝐩! ∙ Im𝐆 𝐫!, 𝐫!,ω ∙ 𝐩! (A.5) 

 

In this manner, the coupling parameters can be written as 

𝐽!" =
ℏ
πε!

dω
!

!
 
ω!

c!
  𝐩! ∙ Im𝐆 𝐫!, 𝐫!,ω ∙ 𝐩! 𝑑𝑠

!

!
𝑒!! !!!! ! + 𝑒! !!!! !  (A.6) 

 

Next, recalling the identity 𝑑𝑠!
!  𝑒!"# = 𝜋𝛿 𝑎 + 𝑖𝑃 !

!
, we obtain 

𝐽!" =
ℏ
ε!
ω!!

c!
 𝐩! ∙ Im𝐆 𝐫!, 𝐫!,𝜔! ∙ 𝐩! 

 

+
iℏ
πε!

P dω
!

!
 
ω!

c!
  
𝐩! ∙ Im𝐆 𝐫!, 𝐫!,ω ∙ 𝐩!

𝜔! − 𝜔
−
𝐩! ∙ Im𝐆 𝐫!, 𝐫!,ω ∙ 𝐩!

𝜔! + 𝜔
 

(A.7) 

 

In addition, since 𝐺!"∗ 𝒓!, 𝒓! ,𝜔 = 𝐺!" 𝒓!, 𝒓! ,−𝜔∗    [36], we can simply write 

𝐽!" =
ℏ
ε!
ω!!

c!
 𝐩! ∙ Im𝐆 𝐫!, 𝐫!,𝜔! ∙ 𝐩! +

iℏ
πε!

P dω
!

!!
 
ω!

c!
  
𝐩! ∙ Im𝐆 𝐫!, 𝐫!,ω ∙ 𝐩!

𝜔! − 𝜔
 (A.8) 
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To finalize, applying Kramers-Kronig relations for any causal function 𝑓 𝜔 , Re 𝑓 𝜔! =
!
!

 P dω!
!!

!" ! !
!!!!

 we obtain the simple form 

𝐽!" = −𝑖
ℏ
ε!
ω!!

c!
𝐩! ∙ 𝐆 𝐫!, 𝐫!,𝜔! ∙ 𝐩! (A.9) 

 

Appendix B: Quantum master equation for the single excitation case - In the single 
excitation case, the state of the QE system reduces to 𝜓! 𝑡 = 𝑐! 𝑡!

!!!  𝑒! + 𝑐! 𝑡 0 . The 
associated QE-system density matrix is thus given by  

𝜌! 𝑡 = 𝜓! 𝑡 𝜓! 𝑡 = 𝑐! 𝑡
!

!!!

𝑐!∗
!

!!!

𝑡  𝑒! 𝑒! + 𝑐! 𝑡 ! 0 0  

 

+ 𝑐! 𝑡 𝑐!∗
!

!!!

 𝑒! 0 + 𝑐! 𝑡 𝑐!∗
!

!!!

 0 𝑒!  

(B.1) 

 

Combining this density matrix with the QME we obtain the following generalized optical Bloch 
equations describing the decay of the QE system: 

𝜕! 𝑐! 𝑡 ! = 𝐽!"𝑐!𝑐!∗ + 𝐽!"∗ 𝑐!𝑐!∗
!

!!!

!

!!!

 (B.2) 

 

𝜕! 𝑐! 𝑡 𝑐!∗ 𝑡 = − 𝐽!"𝑐!𝑐!∗
!

!!!

 (B.3) 

 

𝜕! 𝑐! 𝑡 𝑐!∗ 𝑡 = − 𝐽!"𝑐!𝑐!∗ + 𝐽!"∗ 𝑐!𝑐!∗
!

!!!

 (B.4) 

 

To finalize, since these generalized optical Bloch equation must be satisfied for all 𝑎, 𝑏 coefficients, 
each 𝑐! 𝑡  coefficient is given by the solution to 𝜕! 𝑐! 𝑡 = 𝐾!"𝑐!!

!!! , with 𝐾!" = −𝐽!"∗ . 
Equivalently, we can write this equation in matrix form 

𝜕!𝒄 𝑡 = 𝑲 ∙ 𝒄 𝑡  (B.5) 
 

where 𝒄 = 𝑐! 𝑡 ,… , 𝑐! 𝑡 𝑻 is a vector gathering all probability amplitudes, and 𝑲 is a square 
𝑁×𝑁 composed by the  𝐾!" elements. 

Appendix C: Solution for epsilon-and-mu-near-zero (EMNZ) hubs 
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Here we derive explicit expressions for the time-evolution of the probability amplitudes of the 
excited states 𝑐! 𝑡  for 𝑛 = 1,… ,𝑁, for an EMNZ hub. As derived in the main text, if we set 
𝑘!"𝑑 = 𝜋, the elements of the 𝑲 reduce to 𝐾!! = −𝛤!" 𝑁 − 1 /𝑁   ∀𝑛  and 𝐾!" = 𝛤!"/𝑁   
for 𝑛 ≠ 𝑚. Subsequently, equation (B.5) can be explicitly written as follows 

𝜕!𝑐! 𝑡 = −
𝛤!"
𝑁

 𝑁 − 1 𝑐! 𝑡 − 𝑐! 𝑡
!!!

   ∀𝑛 (C.1) 

 

Next, we observe that due to the symmetry of the coupling parameters (the coupling is independent 
of the position of the ports), the probability amplitudes (and their time evolution) of those two-level 
systems sharing the same initial condition is identical. Therefore, assuming the initial state  
𝜓 0 = 𝜎!

! 0 , then we have 𝑐! 𝑡 = 𝑐! 𝑡 = ⋯ = 𝑐! 𝑡 , and 𝑐! 𝑡 ≠ 𝑐! 𝑡 . Thus, the above 
system of N differential equations reduces to two coupled differential equations 

𝜕!𝑐! 𝑡 = −
𝑁 − 1
𝑁

 𝛤!" 𝑐! 𝑡 − 𝑐! 𝑡     (C.2) 

 

 𝜕!𝑐! 𝑡 = −
𝛤!" 
𝑁

 𝑐! 𝑡 − 𝑐! 𝑡     (C.3) 

 

Here it is already clear that 𝑐! 𝑡 = 𝑐! 𝑡  is a stationary state of the system for which 𝜕!𝑐! 𝑡 = 0 
and 𝜕!𝑐! 𝑡 = 0. In any event, the general solution to the coupled equations is 𝑐! 𝑡 = 𝐴 +
𝐵𝑒!!!"! and 𝑐! 𝑡 = 𝐴 − 𝐵 𝑁 − 1 !!𝑒!!!"!.  The value of the constants 𝐴 and  𝐵, and thus the 
particular solution, is found by imposing the initial conditions 𝑐! 0 = 1 and 
𝜕!𝑐! 0 = −𝑁!! 𝑁 − 1  𝛤!", leading to 𝐴 = 𝑁!! and 𝐵 = 𝑁!! 𝑁 − 1 . 

 

Appendix D: Solution for nonreciprocal circulators - An ideal nonreciprocal circulator is 
defined as a N-port device allowing for nonreciprocal one-to-one interactions between the two-level 

systems. In this manner, the diagonal (self)coupling parameters are given by 𝐾!! = − !!"
!

  ∀𝑛 , 

while the only nonzero nondiagonal coupling parameters are 𝐾!!  =  !!"
!

 and 𝐾! !!! =  !!"
!

 for 

𝑛 >  1 . Therefore, equation (B.5) an be written in a recursive manner as follows 

 𝜕!𝑐! 𝑡 = −
𝛤!"
2

 𝑐! 𝑡 − 𝑐!!! 𝑡      for    𝑛 ≥ 2 (D.1) 

and 

  𝜕!𝑐! 𝑡 = −
𝛤!"
2

 𝑐! 𝑡 − 𝑐! 𝑡     (D.2) 

 

These equations can be rearranged to compactly write 
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 𝑐! 𝑡 = 1 + 2
𝜕!
𝛤!"

!!!!!

 𝑐! 𝑡     ∀𝑛 (D.3) 

Including, for example  𝑐! 𝑡 = 1 + 2 !!
!!"

!
 𝑐! 𝑡 . Next, we try solutions of the form 𝑐! 𝑡 =

𝑒!!", with 𝛾 ∈ ℝ, leading to the characteristic equation 1 − 2  !
!!"

!
= 1 , with solutions 

𝛾 = !!"
!

1 − 𝑒!"!!/!     for    𝑚 = 0,1,… ,𝑁 − 1 . Then, by imposing the initial conditions for a 

single excitation, i.e.,  𝑐! 0 =1 and  𝑐! 0 = 0   for   𝑛 ≥ 2, onto the general solution constructed 
with all aforementioned eigenvalues, the time evolution of the probability amplitudes can be written 
as 

 𝑐! 𝑡 =
1
N

exp
!!!

!!!

−
𝛤!"
2

1 − 𝑒!"!!/! t + i𝑚2𝜋
𝑁 − 𝑛 + 1

𝑁
    ∀𝑛	 (D.4) 
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Fig. 1. Conceptual sketch of an N-port waveguide device. Sketch of a device: two-level 
systems are coupled to N single-mode waveguides connected via an N-port hub. The 
response of the device is characterized by its scattering (S-parameter) matrix, whose 
elements represent the reflection and transmission coefficients between the different ports.  
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Fig. 2: Wave propagation through an N-port EMNZ hub. a, Sketch of the simulation 
setup: a two-dimensional (2D) EMNZ body (𝜇 = 𝜀 = 0.001) of arbitrary shape is closed by 
a perfect electric conductor (PEC) wall and connected to the outside via four identical 2D 
waveguides (filled with air) of height ℎ!" = 0.25𝜆! and length 𝐿!" = 1.5𝜆!, terminated 
into waveguide ports supporting a TEM mode. b, Snapshot, c, magnitude and d, phase of 
the magnetic field excited when a wave is introduced into the system via the top port. The 
field distributions demonstrate that the waves outgoing the three remaining ports are 
identical in magnitude and phase.  
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Fig. 3. N-port epsilon-and-mu-near-zero (EMNZ) two-dimensional (2D) waveguide hubs. 
(a) Sketch and scattering matrix of a generic EMNZ waveguide hub. (b)-(c) Snapshot of the 
magnetic field (𝐻! component), showing no emitted power exiting the system and thus 
evidencing the excitation of a dark state, when the QEs are replaced by a classical 2D 
point electric dipoles emitting in phase, for (b) N = 3 and (c) N = 4 port devices.  (d)-(e) 
Numerical (solid line) and analytical (markers) solutions to the time-evolution of the 
probability amplitude of the individual QEs excited states, 𝑐! 𝑡 ,  located at a distance 
𝑘!"𝑑 = 𝜋 of the ports of a EMNZ waveguide hub with  (d) N=3 and (e) N=4 ports. 
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Fig. 4. Idea for a possible all-dielectric implementation of a four-port EMNZ hub. (a), 
Sketch of the geometry: an EMNZ region may be considered with a photonic crystal (PC)  
exhibiting a Dirac cone at k = 0 following  [57] and  [55]  (rectangular lattice with period 
𝑎! = 0.56𝜆!, of dielectric rods of radius 𝑟! = 0.2𝑎! and relative permittivity 𝜀! = 12.5). 
This region is closed by another PC (𝑎! = 0.392𝜆!, 𝑟! = 0.18𝑎!) exhibiting a complete 
band-gap at the EMNZ frequency. The system is excited by four different sources (s1, s2, s3 
and s4, shown as blue dots), modeled as out-of-plane current lines ( 𝑱 = 𝒛𝐼). (b), Snapshot 
of the electric field 𝐸! (top), and magnetic field magnitude 𝑯 , excited when only one 
source (s1, positioned in the top left waveguide) is activated. The field distributions confirm 
that the signals outgoing the other three ports are identical in magnitude and phase. (c), 
Same as b, but when all sources are activated at the same time. In this case, the electric 
field distribution evidences the excitation of a ‘dark state’, with no outgoing waves (nor 
power) exiting the system.	
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Fig. 5. Entanglement generation in N-port (nonreciprocal) circulators. (a) Sketch and 
scattering matrix of the ideal device. (b)-(c) Numerical (solid line) and analytical (markers) 
solutions to the time-evolution of the probability amplitude of the individual QEs excited 
states located at distance 𝑘!"𝑑 = 𝜋/2 of the ports of a circulator with (b) N=3 and (c) 
N=4 ports. 
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Fig. 6 Sensitivity analysis for a four-port EMNZ hub. (a) Comparison between the time evolution 
of the probability of the excitation remaining in the QE system, 𝑃! 𝑡 = 𝑐! 𝑡 !!

!!! , predicted in 
the ideal case and in the sensitivity analysis. Light blue background indicated the 95% confidence 
interval. For comparison we also include reference lines corresponding to the transient, subradiant 
and combined exponential decays, 𝑒!!!!, !

!
 𝑒!!!! and !!!

!
 𝑒!!!! + !

!
 𝑒!!!!, respectively, with 

𝛤! = 1.85 𝛤!" and 𝛤! = 0.125 𝛤!". (b) Comparison between the time evolution of the fidelity, 
ℱ = 𝑊! 𝜓 𝑡 !, predicted in the ideal case and average value in the sensitivity analysis. (c) 
Histograms of the fidelities predicted in the sensitivity analysis at the time points 𝛤!"𝑡 = 1.9, 
corresponding to the peak of the average fidelity, and  𝛤!"𝑡 = 3, corresponding to a point after the 
transient time. Average values are indicated with a vertical red line.	

	


