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Nested quantum annealing correction (NQAC) is an error correcting scheme for quantum annealing that
allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding
replaces each logical qubit by a complete graph of degree C. The nesting level C represents the distance of
the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical
mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512
qubits) showed that NQAC has the potential to achieve a scalable effective temperature reduction, Teff ∼ C−η ,
with η ≤ 2. We confirm that this scaling is preserved when NQAC is tested on a D-Wave 2000Q device
(supporting up to 2048 qubits). In addition, we show that NQAC can be also used in sampling problems to lower
the effective temperature of a quantum annealer. Such effective temperature reduction is relevant for machine-
learning applications. Since we demonstrate that NQAC achieves error correction via an effective reduction of
the temperature of the quantum annealing device, our results address the problem of the “temperature scaling
law for quantum annealers”, which requires the temperature of quantum annealers to be reduced as problems of
larger sizes are attempted to be solved.

I. INTRODUCTION

Quantum annealing (QA) [1–5] is a predecessor of the
quantum adiabatic algorithm (QAA) [6, 7] and adiabatic quan-
tum optimization (AQO) [8, 9], originally conceived as an al-
gorithm that exploits simulated quantum (rather than thermal)
fluctuations and tunneling to providing a quantum-inspired
version of simulated annealing (SA) [10] for the solution of
combinatorial optimization problems. Nowadays it is consid-
ered a special case of adiabatic quantum computation (AQC)
[11], a paradigm that is universal for quantum computation
[12–19]. For reviews see [20, 21].

In AQC, the computation proceeds from an initial Hamilto-
nian whose ground state is easy to prepare, to a final Hamil-
tonian whose ground state encodes the solution to the compu-
tational problem. In the closed-system setting, the adiabatic
theorem [22, 23] guarantees that the system will track the in-
stantaneous ground state provided the Hamiltonian varies suf-
ficiently slowly, and relates the required running time to the
inverse of the minimum gap encountered during the computa-
tion. The only errors present in this setting are control errors
and non-adiabatic transitions. The latter can be made arbitrar-
ily small by a suitable choice of the path from the initial to the
final Hamiltonian [24–27].

In the open-system setting, interactions with the environ-
ment produce additional errors in the form of dephasing
between computational basis states and thermal excitations.
Thermal excitation errors are suppressed due to the presence
of finite gaps during the computation and corrected due to a
certain amount of relaxation back to the ground state [28–32].
This picture is generally appropriate in the weak-coupling
regime and when the temperature of the bath is small com-
pared to the minimum gap [33, 34].

In practical implementations of AQC and QA, however,
the system may be strongly coupled to the environment and

the temperature of the thermal bath may be much larger than
the small gaps expected when implementing computation-
ally hard problems. It is not a surprise that in this scenario,
AQC and QA require quantum error correction just like any
other form of quantum information processing [35]. More-
over, it has been shown that for Hamiltonians that are sums
of commuting two-body interactions it is not possible to even
store quantum information reliably in the ground subspace (let
alone compute), even at zero temperature [36]. Unfortunately,
despite the existence of various error suppression and correc-
tion techniques [37–53], it is not yet known how to achieve
fault-tolerance in AQC and QA. Effective error suppression
codes for AQC and QA typically require highly non-local
Hamiltonians and very strong energy penalties [40, 41, 51–
54] which are difficult to implement physically. Moreover,
fault-tolerance assumes that it is possible to implement codes
of arbitrary size (as measured in terms of the number of phys-
ical and logical qubits), in order to allow for scalable error
correction of arbitrarily large computations. This is achieved
in the circuit model, e.g., via concatenated codes [55]. While
a comparable approach is still missing in AQC, nested quan-
tum annealing correction (NQAC) [56] represents the first at-
tempt to introduce scalable error correction for quantum an-
nealing. NQAC is a scalable generalization of quantum an-
nealing correction (QAC) [45–49], an error correcting tech-
niques tailored to commercially available quantum annealing
devices [57–61].

Such devices operate in a noisy regime in which both ther-
mal and analog control errors play a crucial role in determin-
ing their performance [62–69]. Indeed, both theoretical and
empirical studies suggest current quantum annealing devices
work in a quasi-static regime [70–74]. In this regime, due to
the strong interaction with the thermal bath, there is an initial
phase of quasi-static evolution in which thermalization times
are much shorter than the annealing time. Towards the end of
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the anneal, thermalization times grow and eventually become
much longer than the annealing time. The system thus enters
a regime in which dynamics is frozen. The final outcomes of a
quasi-static quantum annealing process thus provides a snap-
shot of the thermal (Gibbs) state of the system at the freezing
point. The faster the freezing process, the closer to a thermal
distribution at the freezing point the system will be at the end
of the annealing process. A rough measure of performance for
a quasi-static quantum annealer is thus given by an effective
freezing temperature Teff , i.e., the temperature of the approx-
imate thermal distribution at the freezing point.

Performing quantum annealing in a quasi-static regime may
hide signs of potential quantum speedup, as discussed in
Ref. [70]. On the other hand, this provides an opportunity
for using quantum annealers as thermal samplers that can be
effectively used in machine-learning applications, e.g., in the
training of Boltzmann machines [75–78]. On general grounds
we expect the effective freezing temperature Teff to grow with
the problem size (earlier freezing or longer thermalization
times for larger systems). The effects of intrinsic control er-
rors typically also grows with problem size. Thus, no matter
what the application, error correction remains crucial in order
to ensure a scalable use of quantum annealers.

A successful error correction scheme in quasi-static quan-
tum annealing should effectively reduce the freezing temper-
ature Teff :

Teff → Teff/µ , µ > 1 . (1)

The temperature reduction can be equivalently interpreted as
achieving an effective energy boost

(hi, Jij)→ µ(hi, Jij) , (2)

where hi and Jij are the couplings defining the given problem
Hamiltonian [see Eq. (5)]. A scalable error correction scheme
should allow for µ to scale with the code size.

In Ref. [56] it was shown that NQAC indeed achieves error
correction by introducing an energy boost µ and thus effec-
tively reducing the effective temperature at which a D-Wave
Two (DW2) quantum annealer operated. This immediately
serves to address pessimistic “temperature scaling law” con-
clusions of the type presented in Ref. [74], which do not ac-
count for error correction. Moreover, Ref. [56] showed that
the energy boost obeys a power-law scaling:

µ ∼
(
Nphys

N

)η
, (3)

where Nphys is the number of physical qubits used to encode
N logical qubits. These empirical results were theoretically
interpreted in terms of a mean field analysis in Refs. [49, 56,
79].

This paper is organized as follows. Section II provides a
summary and preview of our main results. We briefly review
NQAC in Sec. III. In Sec. IV we show that the power law scal-
ing found on a DW2 device continues to hold on a DW2KQ
device, albeit with a reduced η value. The DW2KQ device
enabled us to use up to 728 physical qubits for NQAC encod-
ing, whereas NQAC on the DW2 was limited to 288 physical

qubits. We also show that NQAC outperforms classical repeti-
tion coding when NQAC is implemented in a regime in which
the strength of the energy penalties is not a limiting factor. In
Sec. V we show that NQAC can be implemented in conjunc-
tion with sampling applications. In particular, we show that
NQAC can be used to reduce the sampling temperature of a
quantum annealing device without significantly reducing the
quality of the sampling. We conclude with a discussion of the
implications of our results in Sec. VI.

II. PREVIEW OF MAIN RESULTS

Our work extends the results and analysis of Ref. [56],
which introduced NQAC, in two significant ways. First, we
confirm that NQAC provides a performance improvement that
can be interpreted as an effective temperature reduction when
the method is implemented on a D-Wave 2000Q (DW2KQ)
quantum annealer (the DW2KQ device has four times as many
physical qubits as the DW2 device used in Ref. [56]). This
allows us to consider NQAC encodings with larger nesting
levels (or code distance) C; e.g., from C = 8 on the DW2
device to C = 13 in the present case, for K4 problem in-
stances. Moreover, we are able to study the encoding of larger
problems (up to C = 2 for K24 problem instances). We con-
firm the existence of a scaling law Teff ∼ C−η that is valid
in the scaling regime, i.e., when the energy scale factor α is
small enough that the NQAC implementation is not limited
by the strength of the energy penalties. In this scaling regime
NQAC outperforms classical repetition, a benchmark for any
bona fide error correcting scheme.

Second, for the first time we study the use of NQAC in
sampling applications, specifically estimating the gradient re-
quired for training Boltzmann machines. We argue that there
are two important quantities that characterize the performance
of quantum annealers as samplers: the sampling temperature
and the quality of sampling. Improving the performance of
a quantum annealing device for sampling via error correction
should reduce the sampling temperature of the device with-
out diminishing the quality of the sampling. We show that
NQAC can indeed achieve a monotonic reduction of the sam-
pling temperature. As in the case of optimization applications,
this holds in the scaling regime, i.e., when the encoding is not
limited by the strength of the energy penalties used in the en-
coding.

III. NESTED QUANTUM ANNEALING CORRECTION

We start by briefly reviewing the nested quantum annealing
correction (NQAC) construction [56]. A standard quantum
annealing protocol is defined by the following transverse-field
quantum annealing Hamiltonian:

H(t) = A(t)HX +B(t)HP , t ∈ [0, tf ] , (4)

in which the annealing schedules A(t) and B(t) (monotoni-
cally decreasing and increasing respectively) control the an-
nealing schedule. The driver HX = −

∑
i σ

x
i serves to set
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up an initial uniform superposition (its ground state) and con-
trols the tunneling rate, while the solution to an optimization
problem of interest is encoded in the ground state of the Ising
problem Hamiltonian HP:

HP =
∑
i∈V

hiσ
z
i +

∑
(i,j)∈E

Jijσ
z
i σ

z
j . (5)

The sums above are performed over the vertices V and edges
E of a graph G = (V, E) that corresponds to the hardware (or
connectivity) graph of a given quantum annealing device. The
local fields {hi}, couplings {Jij}, and annealing time tf are
programmed in order to represent the correct computational
problem [57–59].

In quantum annealing correction, instead of trying to solve
a computational problem by directly implementing the quan-
tum annealing Hamiltonian H(t), one builds an “encoded
Hamiltonian” H̄(t) [45–49]:

H̄(t) = A(t)HX +B(t)H̄P , t ∈ [0, tf ] , (6)

defined over a set of physical qubits Nphys larger than the
number of logical qubits N . We call H̄P the “encoded prob-
lem Hamiltonian”. The logical states of the logical Hamilto-
nian HP are then recovered through an appropriate decoding
procedure of the states of H̄P. Note that, due to practical lim-
itations of current QA devices that prevent the programmabil-
ity of the driver term HX , only HP is encoded in QAC.

Nested quantum annealing correction was introduced in
Ref. [56]1 with the goals of obtaining a QAC scheme that (1)
can be implemented on arbitrary quadratic unconstrained op-
timization problems (QUBO), (2) is potentially scalable by al-
lowing a variable code-size and (3) could be implemented on
a generic quantum annealing device. These three goals were
achieved by means of a “nesting” procedure that we now out-
line.

The most general QUBO has arbitrary pairwise interactions
between a set ofN logical variables. We thus consider the en-
coding of a problem Hamiltonian HP defined on a complete
graph KN . NQAC involves two maps between three types of
qubits: (i) each logical qubit (representing a logical variable)
is mapped to a set of code qubits, whereupon HP 7→ H̃P,
(ii) each code qubit is mapped to a set of physical qubits,
whereupon H̃P 7→ H̄P, the encoded problem Hamiltonian
in Eq. (6). The role of the code qubits is primarily to pro-
vide protection against thermal and control errors. The code
qubits typically comprise a repetition code, though more gen-
eral stabilizer codes are certainly possible in principle [42].
The map from code qubits to physical qubits is required for
embedding purposes, since the code qubits of a given logical
qubit are fully connected in NQAC, and the hardware graphG
is typically not fully connected. The repetition code can be de-
coded at the end of each annealing run, which means that ex-
cited states can be used profitably to recover the sought-after

1 A 9-bit instance of the scheme first appeared in Ref. [42] in the context of
correcting uncorrelated random control errors on the problem Hamiltonian.
This work showed that such control errors can be quadratically suppressed
in the code distance using an NQAC-like scheme.

ground state of HP. We now describe each of these compo-
nents of NQAC in turn, in more detail

A. From logical qubits to code qubits

The first step of the NQAC scheme consists in transforming
the logical problem HP into a “nested” Hamiltonian H̃P that
is defined on a largerKC×N . The nesting level C controls the
amount of hardware resources (qubits, couplers, etc.) used
in the transformation and enables the scalability of the error
correction method. Each logical qubit i (i = 1, . . . , N ) in
H̃P is represented by a C-tuple of code qubits (i, c), with c =
1, . . . , C. This C-tuple occupies the vertices of a KC with
equally weighted ferromagnetic edges, which also serves as a
distance-C repetition code. Code qubits c and c′ belonging to
different logical qubits i and j are coupled with strength Jij .
Thus, the “nested” couplers J̃(i,c),(j,c′) and local fields h̃(i,c)

are defined as follows:

J̃(i,c),(j,c′) = Jij , ∀c, c′, i 6= j , (7a)

h̃(i,c) = Chi , ∀c, i , (7b)

J̃(i,c),(i,c′) = −γ , ∀c 6= c′ . (7c)

Note that each logical coupling Jij has C2 copies J̃(i,c),(j,c′)

while the local fields hi have C copies h̃(i,c). For each log-
ical qubit i, there are C(C − 1)/2 ferromagnetic couplings
J̃(i,c),(i,c′) of strength γ > 0 representing energy penalties
that facilitate the alignment of the C code qubits that repre-
sent one logical qubit.

B. From code qubits to physical qubits

The nested Hamiltonian H̃P constructed over the code
qubits in the previous step must be implemented in given QA
hardware. The required transformation from code qubits to
physical qubits, i.e., from H̃P to H̄P can be accomplished
using, e.g., minor embedding (ME) [80–84], or the Lechner-
Hauke-Zoller (LHZ) scheme [85–87]. We focus here on the
ME scheme primarily since it is the relevant one for D-Wave
quantum annealers.

The ME step replaces each code qubit in H̃P by a ferro-
magnetically coupled chain of physical qubits, such that all
couplings in H̃P are represented by inter-chain couplings.
The intra-chain coupling represents additional energy penal-
ties that force the chain of physical qubits to behave as a single
code qubit. The minor embedding of a KC×N graph requires
that each code qubit (i, c) is represented by a physical chain of
lengthL = dCN/4e+1 on the Chimera graph [81]. The num-
ber of physical qubits necessary to implement the C-th level
of nested encoding (i.e., a distance-C code) of a problem with
N logical variables is thus

Nphys
C = CNL ∼ C2N2/4 , (8)

i.e., it scales quadratically with both C and N .
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C. Decoding

Finally, a decoding procedure must be employed to recover
the logical state from the readout of the physical qubits. This
is a two-step process since we must first decode the length-L
chain of physical qubits representing each code qubit (i, c),
and then decode the C code qubits to yield the state of the i-th
logical qubit. For simplicity we only consider majority vote
decoding for both steps, although other decoding strategies
are possible and have been explored [47].

D. Boosting effect

As mentioned above, error correction for quantum anneal-
ing in the quasi-static scenario should achieve a scalable ef-
fective temperature reduction. In the NQAC construction,
each logical coupling is represented by C2 physical copies
and could ideally provide a maximal energy boost that grows
quadratically with the nesting level C: µ ∼ Cη with η = 2.
A mean-field analysis has confirmed this by showing that the
free energy F after nesting is indeed equal to the free energy
without encoding provided the logical couplings are boosted
by a factor of C2 [49, 56, 79]:

FC(β, J, λ,Γ) = F1(β,C2J,C2λ,CΓ) . (9)

Note, however, that the transverse field is only sub-optimally
boosted by a factor of C: Γ 7→ CΓ. This is due to the afore-
mentioned limitation of not being able to encode the driver
Hamiltonian. Despite this limitation, NQAC was shown to
provide a scalable energy boost in experiments performed
with a DW2 quantum annealer, in which small logical prob-
lems were nested until the physically encoded Hamiltonian
used up to 288 physical qubits. The empirical findings con-
firmed a power law scaling of the energy boost with nesting
level, but with a suboptimal scaling factor η < 2. This sub-
optimal scaling is a consequence of the combined detrimental
effects of minor embedding, control errors, and the role played
in the dynamics by the unencoded transverse field [56].

IV. NQAC FOR OPTIMIZATION

In this and the next section we discuss NQAC in experi-
ments with up to 728 physical qubits performed on a DW2KQ
device, up from 288 reported in Ref. [56], which used a DW2
device. The results of this section confirm and extend those
obtained in Ref. [56], while the results of the next section ad-
dress NQAC in the new context of sampling. Experimental
background details are given in Appendix A.

A. Scalable energy boost

We closely follow the methodology of Ref. [56] to show
that NQAC provides an energy boost that scales as a power
law with the number of physical qubits used in the encoding.

We start by introducing an overall energy scale α [65] for
the problem Hamiltonian: HP 7→ αHP, with 0 < α ≤ 1.
The dimensionless parameter α controls the level of thermal
and dynamically induced errors, as well as the relevance of
analog control errors, and thus controls the hardness of an op-
timization problem when implemented on a quantum anneal-
ing device. The introduction of the scale α also allows us to
extract the energy boost µC provided by an NQAC encoding
with C levels of nesting. The energy boost µC is defined as
the rescaling factor required so that

PC(α) ≈ P1(µCα) , (10)

where PC is the success probability of QA when a given op-
timization problem is implemented with C levels of nesting,
and C = 1 corresponds to the unencoded case. Equation (10)
states that the performance enhancement obtained at nesting
level C can be interpreted as increasing the energy scale α by
a factor of µC relative to the unencoded case.

We are interested in the scaling of µC for large C. We thus
consider the implementation of a small logical problem that
can be nested several times. On the DW2KQ device, a com-
pletely antiferromagnetic (hi = 0, ∀ i) Ising problem over
K4 (Jij = 1 ∀ i, j) can be nested up to C = 13 with bal-
anced minor embeddings.2 The results are shown in Fig. 1.
Figure 1(a) shows the success probability PC(α) as a func-
tion of the nesting level C and of the energy scale α. The
strength of the energy penalty γ was optimized to obtain the
best performance for the NQAC encoding among the 9 values
γ ∈ {0.1, 0.2, . . . , 0.9, 1}. For all experiments we used 25
different, randomly generated balanced embeddings using the
algorithm introduced in Ref. [84]. For each embedding we
performed 1000 annealing runs. As expected, PC(α) drops
from PC(1) = 1 (solution always found) to PC(0) = 6/16
(random sampling of 6 ground states, where 4 out of the 6
couplings are satisfied, out of a total of 16 states).

In Fig. 1(a) we see two regions in which NQAC has a dif-
ferent behavior: small and large α. In the small α region the
success probability grows monotonically with α and C. In
the large α region the success probability starts dropping for
large C. This drop is due to the fact that the largest imple-
mentable value for the energy penalty γ is suboptimal, i.e.,
too small. For this reason, we refer to the large α region as
“penalty-limited”. The monotonic improvement of the suc-
cess probability in the small α region is consistent with a scal-
able increase of µC . We thus refer to the small α region as the
“scaling” region.

Figure 1(b) shows that the data from the left panel can be
collapsed using the scaling ansatz given in Eq. (10), and hence
that the effects of nesting can be interpreted, at least in the
scaling region, as providing an energy boost µC . Figure 1(c)
shows the energy boost µC as a function of C, as determined

2 In a balanced embedding all chains have same length. We limited our
experiments to balanced embedding since we found that the use of more
general, unbalanced, embeddings reduces the performance enhancement
provided by NQAC.
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FIG. 1. Empirical results for the antiferromagnetic K4, after encoding, followed by ME and decoding. (a) DW2KQ success probabilities
PC(α) for 13 nesting levels C. Increasing C generally increases PC(α) at fixed α. (b) Rescaled PC(α) 7→ PC(α/µC) data, exhibiting
data-collapse. Here µC is chosen for each C such that the quality of the data-collapse is maximized. Using the values of µC found from
data-collapse, (c) shows the scaling of the energy boost µC vs the amount of physical resources used (Nphys ∼ C2). Empirical data are
consistent with a power-law scaling µC ∼ Cη , where η = 0.68 ± 0.6. In all panels Nphys ∈ [8, 728]. The error bars in the left and center
figures correspond to the median, 25-th and 75-th percentiles of PC(α) computed for each embedding. See Appendix B for more details on
the determination of µC and the associated error bars.

via the data collapse shown in the middle panel. We see that
the energy boost µC grows monotonically with C following
the power law scaling µC ∼ Cη with η determined empiri-
cally to be η ∼ 0.68.

We have previously observed that a nested graph KC×N
contains C2 equivalent copies of the same logical coupling
Jij , thus intuitively providing a maximal energy boost in
which µC ∼ C2. We empirically find η ≈ 0.68 < 2. This
suboptimal scaling was explained in Ref. [56] as being at-
tributable mainly to the overhead cost of minor embedding
and the detrimental effect of control errors. The scaling pa-
rameter η was found to be η ≈ 1.1 < 2 on a DW2 device.
We expect to observe different scaling due to the various dif-
ferences between the DW2 and DW2KQ devices: smaller op-
erating temperature for the DW2KQ, smaller analog control
error strength for the DW2KQ, different embedding used for
NQAC due to uncalibrated qubits (fewer in DW2KQ but more
uniformly distributed over the hardware graph).

B. Classical repetition

The existence of two separate regions (scaling and penalty-
limited) becomes more evident when we consider the encod-
ing of larger logical problems. In Fig. 2(a) we show the empir-
ical results for an example instance (with couplings randomly
generated from the set Jij ∈ {±0.1,±0.2, . . . ,±0.9,±1})
defined on a K16 with up to C = 3 nesting levels. In the scal-
ing region the success probability is monotonically increasing.
In the penalty-limited region the success probability peaks at
a given value where the optimal penalty strength is close to
the largest allowed value and then decreases again at larger
values of α. Moreover, the success probability is typically not
a monotonically increasing function of the nesting level C.

The presence of a penalty-limited region prevents NQAC
from providing a scalable energy boost for a wider range of

energy scales α. This effects is particularly important when
comparing NQAC to classical repetition. For NQAC to be
considered as a practically useful scheme for error correction
in quantum annealing, it must be more effective than a clas-
sical repetition scheme that uses the same amount of physical
resources as the NQAC encoding. In particular, let us denote
by Cmax the largest nesting level C that can be implemented
on the QA device. Then MC = bNphys

Cmax
/Nphys

C c is the num-
ber of copies that can be implemented in parallel for a given
nesting level C. The “corrected” success probability of an
NQAC encoded optimization problem is thus the probability
of succeeding at least once after a run with MC statistically
independent, parallel copies:

P corr
C (α) = 1− [1− PC(α)]MC . (11)

Figure 2(b) shows the parallelized success probability for the
example instance of Fig. 2(a). We see that nesting does not
help in the penalty-limited region (the unencoded C = 1 case
gives the best results). However, nesting does help in the scal-
ing region, where the strength of the energy penalties is not
a bottleneck. In the case of the example shown we find the
existence of an optimal nesting level C = 2 in the scaling
region.

We now show that the empirical results discussed regard-
ing the example instance shown in Figs. 2(a) and 2(b) are
representative of the general behavior of NQAC. We have
confirmed this by studying four ensembles of 100 randomly
generated instances on 16 and 24 logical variables (K16 and
K24). Couplings are randomly generated from the set Jij ∈
{±0.1,±0.2, . . . ,±0.9,±1}. As in the previous section we
used 25 randomly generated balanced embeddings and for
each embedding we performed 1000 annealing runs. To keep
the running time on the DW2KQ manageable, we did not op-
timize the energy penalty γ, which we fixed to its maximum
value γ = 1. Figures 2(c)-2(f) show the experimental results.
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FIG. 2. (a) Success probabilities for a random K16 instance with up
toC = 3 nesting levels. Note the monotonic and non-monotonic im-
provements of PC in the scaling (small α) and penalty-limited (large
α) regions. (b) Same as (a), but with success probabilities accounting
for classical repetition via Eq. (11). Classical repetition outperforms
NQAC in the penalty-limited region while there is an optimal nest-
ing level (C = 2) for NQAC in the scaling region. Panels (c) and
(d) display the normalized success probabilities without (c) and with
(d) classical repetition for the K16 ensemble. Panels (e) and (f) dis-
play the same for the K24 ensemble. The behavior of the example
instance in (a) and (b) is representative for the class of random in-
stances it belongs to.

The figures show the median (error bars represent the 25th and
75th percentiles) ratios (PC/P1) and (P corr

C /P corr
1 ). Nesting

is preferable when the C > 1 curves are above the horizon-
tal breakeven line. Figures 2(c) and 2(e) show that nesting
generically provides a success probability improvement that is
monotonically increasing with C in the scaling region (small
α), while it does not necessarily improve performance in the
penalty-limited region. Figures 2(d) and 2(f) show that nest-
ing typically outperforms the unencoded (C = 1) case in the
scaling regime, while nesting does not help in the penalty-
limited region. After correcting for classical repetition, the
success probability improvement is not necessarily monotonic
in the scaling region. For example Fig. 2(d) shows that C = 2
is optimal for K16, in the sense that P corr

2 > P corr
1 , P corr

3 .

V. NQAC FOR SAMPLING

In this section we explore NQAC in the context of quantum
annealing used for sampling applications. The limited hard-
ware connectivity of quantum annealing devices and the finite
strength and precision of their couplings are major limitations
not only for optimization (previous section), but also for sam-
pling applications. We are particularly interested in machine-
learning applications in which quantum annealers are used as
samplers for training Boltzmann machines [75–78].

A. Training Boltzmann machines

Boltzmann machines are generative probabilistic models
that can be used for both supervised and non-supervised
machine-learning applications. Boltzmann machines can be
used as a building block for deep networks thus playing a
role in the booming fields of artificial intelligence and deep-
learning. A Boltzmann machine associates a given data point
z ≡ {zi} (here represented as a string zi = ±1, i = 1, ..., N )
to an Ising “energy” function E(z)

E(z) =
∑
i∈V

bizi +
∑

(i,j)∈E

wijzizj , (12)

and a corresponding probability distribution P (z):

P (z) = e−E(z)/Z, Z =
∑
z

e−E(z) . (13)

This is a Boltzmann distribution with unit temperature [the
connection to the physical temperature is discussed below —
see Eq. (16)]. The energy function in Eq. (12) corresponds to
an Ising model defined on a graph G = (V, E). A Boltzmann
machine is thus also a “graphical model”. Training a Boltz-
mann machine consists of finding the values of the weights bi
and wij such that the probability distribution P (z) generated
by the model will extract and generalize as many “features” as
possible from the data set. The training of a Boltzmann ma-
chine is achieved by minimizing the negative log-likelihood of
the data set with respect to the probability distribution P (z).
This results in iteratively adjusting the weights of the model
according to the following update rules:

δbi ∼ 〈zi〉data − 〈zi〉T
δwij ∼ 〈zizj〉data − 〈zizj〉T , (14)

where the first terms are averages over the data set and are
usually called “positive phases” while the second terms are
thermal averages [i.e., 〈X〉T ≡

∑
i xiP (xi) where xi are the

values taken by the random variableX], and are usually called
“negative phases”. Computing the negative phases is known
to be computationally hard with classical algorithms, essen-
tially since it requires sampling from the Gibbs state of a spin
glass, and is usually replaced with the contrastive divergence
approximation [88, 89]. Instead, one may try to compute the
negative phases using physical quantum annealing devices as
Boltzmann samplers [75–78]. The hope is that this can be
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done faster than a classical computation of the associated par-
tition function, which would be an example of a quantum ad-
vantage in quantum machine learning [90].

B. Relating the Boltzmann machine parameters to the
quantum annealer parameters

As we discussed previously, performing quantum anneal-
ing in a quasi-static regime allows one to approximately sam-
ple from the instantaneous thermal state at the freezing point
[70]. We shall assume here that the freezing point happens
late enough in the anneal such that the system freezes when
the problem Hamiltonian HP dominates. Performing quan-
tum annealing with a device that realizes Eqs. (4) and (5) al-
lows to thermally sample from the Boltzmann distribution of
the model given by Eqs. (12) and (13).

Let βphys denote the inverse physical temperature of the
quantum annealing device, B(t) the profile function control-
ling the energy scale of the problem Hamiltonian HP [as in
Eq. (4)], and t∗ < tf the freezing time. Because of freezing,
the quantum annealer (approximately) samples from a Gibbs
distribution at an effective temperature Teff = 1/βeff given
by:

βeff = βphysB(t∗)/B(tf ) . (15)

The existence of an effective sampling temperature allows us
to establish the connection between the physical parameters
of a quantum annealing device as defined in Eq. (5) and the
weights of a Boltzmann machine as defined in Eq. (12):

bi = βeffhi, wij = βeffJij . (16)

C. Methodology

Our goal in this section is to study whether NQAC can
be used to improve the performance of quantum annealers in
the training of fully connected (as opposed to restricted [89])
Boltzmann machines, i.e., when the graphical model underly-
ing the model of Eq. (12) is defined on a complete graph KN .
Due to the physical implementation of quantum annealing on
the Chimera graph, this means that the Boltzmann machine is
necessarily defined on the logical problem Hamiltonian HP

[Eq. (4)]. In order for NQAC to be successful for sampling
it should both allow for reliably sampling from logical ther-
mal distributions (defined over the logical problem Hamilto-
nian), and result in a reduction of the effective temperature
Teff = 1/βeff [or, equivalently, an effective boost of the an-
nealing couplers (hi, Jij)]. Of course, this is accomplished by
sampling from the corresponding minor embedded implemen-
tations defined via the encoded Hamiltonian H̄P [Eq. (6)].

1. The effective temperature associated with nesting level C

We associate an effective inverse temperature with each
nesting level C, which we denote by βC,eff . To find this quan-

tity, consider the “energy histogram”:

p(Ea) =
∑

z|E(z)=Ea

P (z) . (17)

This is the probability p(Ea) to obtain a state with given en-
ergy Ea.

For each logical instance defined on a KN , characterized
by a set of logical local fields and couplings {hi, Jij}, we
use Eq. (16) to define bi and wij , and numerically compute
via Eq. (17) the thermal energy histogram pT (Ea, β) [short-
hand for pT (Ea, bi = βhi, wij = βJij)]. To do so we first
computeE(z) [Eq. (12)] and the Boltzmann distribution P (z)
[Eq. (13)]. Similarly, for the same logical instances we eval-
uate the corresponding empirical DW2KQ energy histogram
pDW(Ea, C) [shorthand for pDW(Ea, C, hi, Jij)], after the
logical problem is encoded withC nesting levels and the phys-
ical qubit readouts have been decoded via majority vote.

The effective inverse temperature βC,eff is now obtained by
minimizing the total variation distance:

βC,eff = arg min
β
D(pDW, pT ) (18a)

= arg min
β

(
1

2

∑
a

|pDW(Ea, C)− pT (Ea, β)|

)
.

(18b)

In other words, the effective sampling temperature 1/βC,eff

for the quantum annealer is defined as the temperature that
minimizes the distance between the empirical and theoretical
energy histograms pDW(E,C) and pT (E, β), respectively.3

Note that the theoretical energy histograms involve comput-
ing the partition function [Eq. (13)] and so become numeri-
cally very demanding as N grows. Indeed, this is precisely
the reason that we are interested in the quantum annealing al-
ternative.

2. Assessing the quality of the sampling distributions obtained
with NQAC

The effective sampling temperature is an indirect measure
of the quality of the sampling distribution obtained by the an-
nealer. We thus consider an additional quantity that is more
directly connected to the training of Boltzmann machines. Re-
call that the quantum annealer is used to evaluate the negative
phases [Eq. (14)] via sampling, i.e.,

〈zizj〉T ≡ ~∇T 7→ 〈zizj〉DW ≡ ~∇DW , (19)

where we have not included the quantities 〈zi〉DW and 〈zi〉T
since for all the instances we have considered we have vanish-
ing local fields, or biases, hi. We regard the negative phases

3 The total variation distanceD(p, q) ≡ 1
2

∑
a |pa−qa| between the prob-

ability distributions p and q provides a simple way to estimate the effective
sampling temperature which is good enough for our purposes. For more
sophisticated approaches, see for example Ref. [91].
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FIG. 3. Results for the K8 ensemble (top row), K16 ensemble (center row) and the K24 ensemble (bottom row), of 100 instances each.
Leftmost panels show the effective inverse temperature βC,eff . Center panels show the collapsed inverse temperature βC,eff . Rightmost panels
show the gradient overlap O(pDW, pT ). In all plots we display the median values with the error bars (25th and 75th percentiles) showing the
variation over the ensembles.

as vectors in the space of weights. This makes sense since the
negative phases enter the definition of a “gradient vector” as
in Eq. (14). We thus consider the overlap between the thermal
and experimental gradients:

O(C, βC,eff) ≡ ∇̂DW(C) · ∇̂T (βC,eff) (20)

where we have included a reminder that O compares the em-
pirical phases estimated with an NQAC encoding at nesting
level C and the negative phases numerically computed at tem-
perature β = βC,eff .

D. Empirical results

1. The effective temperature associated with nesting level C

In Fig. 3 we show the empirical results for the ensemble of
instances K8 [3(a)-3(c)], K16 [3(d)-3(f)] and K24 [3(g)-3(i)].
Figures in the leftmost panels show the effective temperature
βC,eff computed via Eq. (18b). We observe a behavior simi-
lar to that of PC [see, e.g., Fig. 1(a)]. In the scaling region,
βC,eff grows monotonically with respect to both α andC. This
shows that NQAC provides a systematic reduction of the ef-
fective sampling temperature. This interpretation is further
confirmed in the center-left panels, in which we show a data
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FIG. 4. Scaling of the inverse effective temperature reduction coeffi-
cient µC as a function of C for the four ensembles of instances stud-
ied. µC was computed as the rescaling coefficient that gives the data
collapse in the center panels of Fig. 3. Empirical data are consistent
with a power-law scaling µC ∼ Cη , where η(K4) = 0.66 ± 0.033
η(K8) = 0.71± 0.15, η(K16) = 0.84± 0.25, η(K24) = 0.87± 0.
See Appendix B for more details on the determination of µC and the
associated error bars.

collapse similar to that of Fig. 1(b). In the scaling region we
can find an energy boost µC such that

βC,eff(α) ≈ β1,eff(µCα) , (21)

in analogy to Eq. (10) for PC . Thus, in the scaling region
the effective sampling temperature of the annealer can be de-
creased at a given energy scale α of the problem Hamiltonian
by increasing the nesting level C [the scaling of µC is shown
in Fig. 4].

2. Assessing the quality of the sampling distributions obtained
with NQAC

The rightmost panels of Fig. 3 show the gradient overlap
O(pDW, pT ). We see that the numerically and empirically
computed gradients ~∇ are almost completely aligned for suf-
ficiently large values of α, in the scaling region. At small
values of α the gradient overlap shows a decay in sampling
quality. Thus, there is a sweet-spot for using NQAC in sam-
pling applications. For the examples shown here, this in the
range −1.5 . log10(α) . −0.5. In this range the empirically
computed gradients are indistinguishable from the numeri-
cally computed one [as measured byO(C, βC,eff)], and do not
decay significantly with increased nesting level C; moreover,
NQAC provides the added benefit of a monotonic reduction
of the sampling temperature.

Note that at small α (outside the “sweet-spot region”) we
find that O(C, βC,eff) is smaller for large C, so that higher
nesting appears to be less helpful. However, recall that we did
not optimize the energy penalty γ (we set γ = 1), and in the

small α region we expect that we can improve the sampling
quality for largerC by optimizing γ. Contrariwise, even with-
out optimizing the energy penalty strength nesting improves
matters for α larger than the sweet-spot region (this effect is
only visible for the K16 and K24 cases, since for K8 the over-
lap is pegged at 1 for large α).

3. Scaling of the energy boost

In Fig. 4 we show the scaling of µC as a function of the
nesting level C given by the data-collapse of the center panels
of Fig. 3. For the K4 case, Fig. 4 shows a power-law scal-
ing consistent with that we observed for the fully antiferro-
magnetic K4, where we found η = 0.68 ± 0.06 [Fig. 1(c)].
Interestingly, the result progressively improves for the larger
graphs, with K24 having the largest value of η, though this is
admittedly tenuous as it is based on only only two data points
due to the size limitations imposed by the DW2KQ. With this
caveat in mind, we conclude that NQAC provides a lower ef-
fective sampling temperature scaling that improves with prob-
lem size.

VI. DISCUSSION

Very recently it was pointed out that fixed finite temperature
quantum annealers satisfy an adversarial “temperature scaling
law” [74], that prevents them from functioning as competitive
scalable optimizers unless annealer temperatures are appro-
priately scaled down with problem size. This result places on
a more rigorous footing the folklore wisdom that, in a realis-
tic open system setting, AQC and QA require the temperature
to be reduced as problem sizes grow and (generically) gaps
shrink, since at a fixed temperature thermal transitions out of
the ground state would become inevitable. Because the third
law of thermodynamics (Nernst’s “unattainability principle”
formulation, though see Ref. [92]) forces the cooling rate to
vanish as the temperature approaches absolute zero, a scal-
able temperature reduction is considered impractical, known
colloquially as there being “no scaling law for refrigerators”.

However, these perspectives ignore the possibility of error
correction, which acts as an effective entropy sink, and can
be used to attain a scalable temperature reduction at the ex-
pense of using up physical qubits to create colder code qubits
[37, 53]. In this work we addressed and provided a poten-
tial solution for the “temperature scaling law” problem, by
demonstrating that NQAC allows for a scalable effective tem-
perature reduction, by using codes of increasing code distance
C to achieve an effective temperature reduction scaling as a
power law in C. This potentially addresses even the most ad-
versarial scenario considered in Ref. [74], wherein the tem-
perature must drop as a power law with problem size.

We do not expect the NQAC method studied here to pro-
vide an indefinite effective temperature reduction at arbitrary
problem sizes; such a result belongs in the realm of the open
problem of fault-tolerant AQC and QA. However, we do ex-
pect that the effective temperature reduction we have demon-
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strated here for both optimization and sampling applications
to fuel the continued study of practical and implementable er-
ror suppression schemes for QA, and perhaps even carry the
next generation of quantum annealers to the point of demon-
strating a quantum advantage.
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Appendix A: Experimental details

The annealing schedules of the D-Wave 2000Q (DW2KQ)
processor housed in Burnaby is shown in Fig. 5(a). The
Chimera hardware graphs of the DW2KQ processor we used
in this work is shown in Fig. 5(b). For additional experimental
details see, e.g., Refs. [59, 61, 93].

Appendix B: Determination of the energy boost µC and error
bars

Figures 1(c) and 4 show the experimental scaling of µC as
extracted by using, respectively, Eq. (10) (via success proba-
bility) and Eq. (21) (via effective temperature). To determine
the values of µC and estimate error bars, we proceeded as fol-
lows. Let us define MC(α) ≡ PC(α) or MC(α) ≡ βC,eff(α)
depending on whether we are using PC(α) [Fig. 1(c)] or
βC,eff(α) (Fig. 4).

First, we used smoothing splines to determine a contin-
uous interpolation Mmid

C (α) of the median data points of
MC(α). In the same way we also determined the higher and
lower interpolating curves Mhigh

C (α) and M low
C (α) for the

data points of the 75-th and 25-th percentiles of MC(α) re-
spectively. Then, a reference value αmid

C was determined such
that Mmid

C (αmid
C ) = M0, where we used the smooth interpo-

lation of the experimental data. The energy boost was then
determined as µC = αmid

1 /αmid
C . M0 is an arbitrarily chosen

reference value where the differentMC(α) curves are made to
overlap. This reference serves as a base point for computing
µC . As shown in the center panels of Fig. 1 and 3, the overlap

of the PC and βC,eff(α) data over the entire α range means
that the specific choice of M0 is arbitrary. We similarly de-
termined µhigh

C = αhigh
1 /αhigh

C and µlow
C = αlow

1 /αlow
C using

the corresponding interpolating curves. The error bars shown
in the figures were then centered at µC , with lower and upper
error bars being µhigh

C and µlow
C , respectively.
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FIG. 5. (a) Annealing schedule for the DW2KQ (with ~ = 1 units). As a reference, we include the operating temperatures of the device,
corresponding to 14.1mK for the DW2KQ. (b) “Chimera” hardware graph of the DW2KQ device in Burnaby used in this work. Available
qubits are shown in green, and unavailable qubits are shown in red. Programmable couplers are shown as black lines connecting qubits.
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[77] M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-
Ortiz, arXiv:1609.02542 (2016).

[78] D. Korenkevych, Y. Xue, Z. Bian, F. Chudak, W. G. Macready,
J. Rolfe, and E. Andriyash, arXiv:1611.04528 (2016).

[79] S. Matsuura, H. Nishimori, W. Vinci, T. Albash, and D. A.
Lidar, Physical Review A 95, 022308 (2017).

[80] W. M. Kaminsky, S. Lloyd, and T. P. Orlando, “Quantum com-
puting and quantum bits in mesoscopic systems,” (Springer,
New York, 2004) Chap. 25, pp. 229–236.

[81] V. Choi, Quant. Inf. Proc. 10, 343 (2011).
[82] C. Klymko, B. D. Sullivan, and T. S. Humble, Quant. Inf. Proc.

13, 709 (2014).
[83] J. Cai, W. G. Macready, and A. Roy, arXiv:1406.2741 (2014).
[84] T. Boothby, A. D. King, and A. Roy, arXiv:1507.04774 (2015).
[85] W. Lechner, P. Hauke, and P. Zoller, Science Advances 1

(2015), 10.1126/sciadv.1500838.
[86] T. Albash, W. Vinci, and D. A. Lidar, Physical Review A 94,

022327 (2016).
[87] F. Pastawski and J. Preskill, Physical Review A 93, 052325

(2016).
[88] G. E. Hinton and R. R. Salakhutdinov, Science 313, 504 (2006).
[89] Y. Bengio, Foundations and Trends in Machine Learning 2, 1

(2009).
[90] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,

and S. Lloyd, Nature 549, 195 (2017).
[91] J. Raymond, S. Yarkoni, and E. Andriyash, Frontiers in ICT 3,

23 (2016).
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