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Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Opti-
mization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A
level-p QAOA circuit consists of p steps; in each step a classical Hamiltonian, derived from the cost
function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamil-
tonians are applied are the parameters of the algorithm, which are to be optimized classically for
the best performance. As p increases, parameter optimization becomes inefficient due to the curse
of dimensionality. The success of the QAOA approach will depend, in part, on finding effective
parameter-setting strategies. Here, we analytically and numerically study parameter setting for
QAOA applied to MaxCut. For level-1 QAOA, we derive an analytical expression for a general
graph. In principle, expressions for higher p could be derived, but the number of terms quickly
becomes prohibitive. For a special case of MaxCut, the ring of disagrees, or the 1D antiferromag-
netic ring, we provide an analysis for arbitrarily high level. Using a fermionic representation, the
evolution of the system under QAOA translates into quantum control of an ensemble of independent
spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for
any p. It also greatly simplifies numerical search for the optimal values of the parameters. By
exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can
be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter
values. Further, we numerically investigate the parameter landscape and show that it is a simple
one in the sense of having no local optima.

PACS numbers:

I. INTRODUCTION

Recently, Farhi et al. [1] proposed a new class of quan-
tum algorithm, the Quantum Approximate Optimization
Algorithm (QAOA), to tackle challenging approximate
optimization problems on a gate model quantum com-
puter. In QAOA, the problem Hamiltonian, which en-
codes the cost function of the optimization problem, and
a mixing Hamiltonian are applied alternately. A handful
of recent papers suggest the power of such circuits [2–5].
Once the problem and mixing Hamiltonians have been
chosen, the parameters of the algorithm are the times for
which each Hamiltonian is applied at each stage. With
an optimized time sequence for each piece, the optimal
output of the problem Hamiltonian is approximated.

The success of QAOA relies on being able to find a
good time sequence. A level-p algorithm has 2p parame-
ters, the times (angles) for which the problem Hamilto-
nian and the mixing Hamiltonian are applied at each iter-
ation. For QAOA of a fixed level, straight-forward sam-
pling of search space was proposed [1], but it is practical
only for small p; as the level increases the parameter op-
timization becomes inefficient due to the curse of dimen-
sionality. Elegant analytical tools designed for specific
problem class can provide parameter values for p � 1
that give near optimal performance, e.g., search an un-
structured database [5], but for a general problem, prac-
tical search strategies are needed. Here, we analytically

and numerically study the parameter setting problem,
with a focus on the MaxCut problem. We demonstrate
how analyzing parameter symmetries and the landscape
of the expectation value over the space of the parameter
values can aid in finding optimal parameter values.

In Ref. [1], Farhi et al. investigated MaxCut for specific
(bounded-degree) graphs, and provided numerical results
for a special case, termed ring of disagrees, which is a one-
dimensional chain of spin-1/2’s with nearest-neighbored
antiferromagnetic couplings. We first extend the results
of MaxCut to derive analytical expressions which can
be solved to obtain the optimal parameters for level-one
QAOA for MaxCut on arbitrary graphs. Direct analysis
through operator reduction quickly becomes cumbersome
as the level p of the algorithm increases. We focus on the
ring of disagrees where we are able to advance the anal-
ysis to arbitrary levels.

Using a Fermionic representation, we show that the
evolution of the system under QAOA translates into
quantum optimal control of an ensemble of independent
spins, significantly simplifying the analysis. In the new
representation, the analytical expression for the expecta-
tion value as a trigonometric polynomial of the parame-
ters can be efficiently derived for arbitrary level p. Fur-
thermore, the reduction to independent spins simplifies
the numerical search greatly because evaluation involves
only ∼ 2p matrix multiplications of 2-by-2 matrices and
is linear in problem size, the number of spins in the orig-
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inal problem, n. Further, by exploring symmetries, we
identify a lower-dimensional sub-manifold whose critical
points are also critical points in the full manifold. We nu-
merically confirm for small p that all optimal parameters
lie in this sub-manifold. The search effort can be accord-
ingly reduced, and it also explains an observed symmetry
in the optimal parameter values. Finally, a numerical in-
vestigation of the parameter landscape shows that it is a
simple one in the sense of having only global optima.

In Sec. II we give a recap of the QAOA algorithm,
and a literature review. In Sec. III we introduce QAOA
for MaxCut and present an analytical expression for
level-1 QAOA. From Sec. IV on, we focus on the anti-
ferromagnetic chain (ring of disagrees). Sec. IV A re-
views the formulation of QAOA on this problem. In
Sec. IV B, we transform to a fermionic representation
and reduce the problem to the control of non-interacting
spins. Sec. IV C provides analysis on the size-dependence
of the approximation ratio. We analyze the symme-
try in the system in Sec. IV D, and identify criticality-
constrained manifolds where the global optima of the pa-
rameters live. In Sec. IV E, QAOA of level-1 and level-2
are illustrated; In Sec. IV F, we discuss the landscape to-
pography of the search space of the parameter values and
its relation to known theory in quantum control. Sec. V
summarizes the main results and conclusions of the pa-
per.

II. RECAP OF THE ALGORITHM

Given an objective function C : {0, 1}n → R to max-
imize, the aim of an approximation algorithm is to find,
upon specification of a desired approximation ratio r∗, a
bit string x such that C(x) is within a factor of r∗ of the
maximum:

C(x)

Cmax
> r∗. (1)

An algorithm is an r∗-approximation algorithm for prob-
lem, if for every instance of the problem, the algorithm
finds a bit string with cost function within r∗ of the max-
imum. QAOA is a quantum approximate optimization
algorithm that iteratively alternates between applying a
problem Hamiltonian HC derived from the cost function
and applying a mixing Hamiltonian HB , which in the
standard case is the transverse field HB =

∑
j σ

x
j . For

many problems, alternative mixing Hamiltonians that in-
corporate some problem constraints can reduce resource
requirements and improve performance over the standard
setup [6].

From a classical cost function that is a polynomial in
binary variables x1, . . . , xn, we can construct a Hamilto-
nian HC on n qubits by first rewriting the cost function
in terms of variables zi ∈ {−1, 1} where xi = (1− zi)/2
to obtain a polynomial f(z) =

∑
C⊂{1,...n} αC

∏
j∈C zj

and then replacing each occurance of zi with the Pauli
operator σzi . Thus, HC is diagonal in the σz-basis and

takes the form

HC =
∑

C⊂{1,...n}

αC
⊗
j∈C

σzj , (2)

where C is a subset of all qubits, and αC is a real coeffi-
cient for the many-body coupling between qubits in the
subset C.

We will use QAOAp to refer to a level-p QAOA circuit
consisting of p steps. In each step, we first apply the
problem Hamiltonian HC , and then a mixing Hamilto-
nian HB . Once the mixing Hamiltonian and the prob-
lem Hamiltonian have been chosen, the parameters of
a QAOAp circuit are the 2p real numbers (γi, βi), for
1 6 i 6 p, which determine how long each operator is
applied in iteration i:

UC(γi) = exp[−iγiHC ] (3)

UB(βi) = exp[−iβiHB ]. (4)

Following Farhi et al. [2], we refer to these times as an-
gles. The standard initial state |ψ0〉, a superposition of
all classical bit strings, is prepared as the ground state of
−HB with density matrix

ρ0 = |ψ0〉〈ψ0| =
⊗
j

1

2
(1 + σxj ). (5)

The circuit

U = UB(βp)UC(γp) · · ·UB(β2)UC(γ2)UB(β1)UC(γ1)
(6)

applied to the initial state creates a final state

|γ,β〉 = U |ψ0〉, (7)

for which the expectation value of HC is

F (γ,β) = Tr[HCUρ0U
†]. (8)

Let F ∗ = F (γ∗,β∗) be the optimal value of F over
the value range of the parameter set {(γ,β)}. The ap-
proximation ratio for the QAOA circuit with parameters
{(γ,β)} is

r ≡ F/Cmax. (9)

The goal of the circuit U is to drive the system into a
quantum state which, upon measuring in the computa-
tional basis, yields with high probability a classical bit
string that is r∗-approximately optimal. This goal is
achieved if the expectation value F ∗ in the final state
is r∗-approximately optimal, i.e., r > r∗, and the dis-
tribution of bit strings from measuring this state in the
computational basis is concentrated on bit strings with
costs close to this expectation value.

In Farhi et al. [2], a QAOA1 algorithm beat the exist-
ing best approximation bound for efficient classical algo-
rithms for the problem E3Lin2, only to inspire a better
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classical algorithm [7] that beats the approximation ratio
for the QAOA1 algorithm by a log factor. The perfor-
mance of QAOAp for E3Lin2 with p > 1 has yet to be de-
termined. Circuits with the above alternating structure
have been used for purposes other than approximate op-
timization. For example, such QAOA circuits have also
been applied for exact optimization [5, 8] and sampling
[3]. Wecker et al. [8] explores learning parameters for
QAOA circuits on instances of MAX-2-SAT that result
in high overlap with the optimal state. Jiang et al. [5]
demonstrates that the class of QAOA circuits is power-
ful enough to obtain the Θ(

√
2n) query complexity on

Grover’s problem, and also provides the first algorithm
within the QAOA framework to show a quantum advan-
tage for a number of iterations p in the intermediate range
between p = 1 and p→∞. Farhi and Harrow [3] proved
that, under reasonable complexity assumptions, the out-
put distribution of even QAOA1 circuits cannot be effi-
ciently sampled classically. QAOA circuits are therefore
among the most promising candidates for early demon-
strations of “quantum supremacy” [9, 10]. It remains an
open question whether QAOA circuits provide a quan-
tum advantage for approximate optimization.

QAOA has close connection with the Variational
Quantum Algorithm (VQA), in which classical optimiza-
tion of parameters for a quantum evolution is performed.
The result of evaluation of the final state is fed back to
the parameter optimization, forming a closed-loop learn-
ing process. Yang et al. [4] proved that for evolution un-
der a Hamiltonian that is the weighted sum of Hamilto-
nian terms, with the weights allowed to vary in time, the
optimal control is bang-bang, i.e. constant magnitude,
of either the maximum or minimum allowed weight, for
each of the terms in the Hamiltonian at any given time.
Their work implies that QAOA circuits with the right
parameters are optimal among Hamiltonians of the form
H(s) =

(
1 − f(s)

)
HB + f(s)HC , where f(s) is a real

function in the range [0, 1].
The ultimate success of the QAOA approach will de-

pend on finding effective parameter-setting strategies.
For fixed p, the optimal parameters can be computed
in time polynomial in the number of qubits n [1]. With
increasing p, however, exhaustive search of the QAOA
parameters becomes inefficient due to the curse of di-
mensionality. If we discretize so that each parameter can
take on m values, exhaustive search of the optimum takes
exponential steps in p as m2p. Here, we analytically and
numerically study parameter setting for QAOA applied
to MaxCut.

III. QAOA1 FOR MAXCUT

In this section, we derive an analytical expression for
the expecation value F for QAOA1 for MaxCut on gen-
eral graphs, furthering the analysis in [1]. In principle,
we could similarly derive expressions for higher p, but the
workload quickly becomes prohibitive.

MaxCut Problem: Given a graph G = (V,E) with
n = |V | vertices and |E| edges, the objective is to parti-
tion the graph vertices into two sets such that the number
of edges connecting vertices in different sets is maximized.

The cost function for MaxCut is

C =
1

2

∑
(i,j)∈E

(1− zizj) (10)

where zi and zj are binary variables associated to the
vertices in V which assume value +1 or -1 depending
on which of the two partitions defined by the cut are
assigned. The Hamiltonian corresponding to this cost
function is

HC =
∑
〈uv〉∈E

Cuv, Cuv =
1

2
(I − σzuσzv) . (11)

The expectation value of HC in QAOA decomposes as

F (γ,β) =
∑
〈uv〉∈E

〈Cuv〉 (12)

where 〈Cuv〉 := Tr[CuvUρ0U
†]. As 〈Cuv〉 6 1, the ex-

pected approximation ratio is lower bounded as

r >
F (γ,β)

|E|
. (13)

Theorem 1. For QAOA with p = 1, for each edge 〈uv〉,

〈Cuv〉 =
1

2
+

1

4
(sin 4β sin γ)(cosdu γ + cosdv γ)

− 1

4
(sin2 β cosdu+dv−2λuv γ)(1− cosλuv 2γ) ,

(14)

where du + 1 and dv + 1 are the degrees of vertices u and
v, respectively, and λuv is the number of triangles in the
graph containing edge 〈uv〉 .

See Appendix A for a proof. The theorem implies
that for p = 1 the expectation value of any edge
〈Cuv〉 depends only on the parameters (du, dv, λuv).
Then, the overall expectation value is F (γ, β) =∑

(d1,d2,λ)
〈Cuv〉χ(d1, d2, λ), where the summation is

taken over distinct subgraphs (d1, d2, λ) and χ is the mul-
tiplicity of the subgraph, i.e. the number of times the
subgraph appears in G. Thus, for an arbitrary graph the
expectation value F (γ, β) may be efficiently computed
classically, while to find an actual bit string realizing an
approximate solution, quantum computation resulting in
the quantum state U |ψ0〉 followed by measurement is re-
quired.

Corollary 1. For a triangle-free (d + 1)-regular graph,
the expectation value of QAOA1 is

F (γ, β) =
|E|
2

(
1 + sin 4β sin γ cosd γ

)
(15)
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with maximum

F ∗ =
|E|
2

(
1 +

1√
d+ 1

( d

d+ 1

) d
2

)
=: Creg

max(d) . (16)

For any such graph, one optimal pair of angles is (γ, β) =

(arctan(1/
√
d), π/8).

Notice that
(

d
d+1

)d
> 1

e , the optimal approximation
ratio is lower-bounded as

r >
1

2

(
1 +

1√
e

1√
d+ 1

)
(17)

MaxCut in the case of a regular graph of degree 2,
so the graph is a ring, is termed the ring of disagrees
in Ref. [1]. In this case, for even n, the optimal par-
tition is simply to include every other vertex into one
set and the rest into the other set, hence Cmax = n.
Equation (16) yields the approximation ratio 0.75 at
(β, γ) = (π/8, π/4), reproducing the results in [1]. For
triangle-free 3-regular graph (d = 2), the ratio is 0.692,
also in agreement with the results of Ref. [1] for a general
3-regular graph.

Because Creg
max(d) > |E|/2 holds for all d, and the val-

ues are concentrated around the expectation, QAOA1

beats random guessing for arbitrary triangle-free regular
graphs. For an arbitrary triangle-free graph with maxi-
mum vertex degree d+1, applying the value to the right-
hand side of Eq. (16) gives a lower bound to F ∗.

While it is straightforward to extend the analysis in the
proof of Theorem 1 to QAOA of higher levels, the number
of terms quickly becomes prohibitive for direct calcula-
tion; many more non-commuting terms coming from the
UC ’s and UB ’s must be retained and carried through the
calculation. The expectation value of a given edge will
also depend on its local graph topology, which becomes
difficult to succinctly characterize as p increases. (See
Appendix C for the expression for the ring of disagrees
for p = 2.)

IV. ANALYSIS OF THE PROBLEM OF RING
OF DISAGREES (ANTI-FERROMAGNETIC

CHAIN)

We now study in detail QAOA for the ring of disagrees.
We show that analysis can be done for QAOAp for ar-
bitrary level p, extending numerical results for small p
given in Ref. [1].

A. Formulation of the problem

The Hamiltonian for the ring of disagrees with n ver-
tices i.e., a one-dimentional ring of spins of spin-1/2, is

H̃C = 1
2

∑n
j=1(1− σzjσzj+1) where σzn+1 = σz1 . For conve-

nience, we later consider only even n, in which case the

ground state of H̃C is trivial with every pair of neighbor-
ing spins aligned in anti-parallel fashion, corresponding
to Cmax = n. The approximation ratio is then r = F ∗/n.

To simplify the derivation, and also to conform to the
convention in physics to minimize instead of maximize,
we drop the constant and rescale H̃C to be

HC =
∑
j

σzjσ
z
j+1 , (18)

which defines the operator UC(γ) given in Eq. (3). The
initial state of the system is prepared (Eq. (5)), and the
algorithm is specified by the QAOA circuit of Eq. (6).
Rewriting Eq. (8) taking into account our simplification,
the approximation ratio for F with parameters (β, γ) is

r =
1

2

(
1− F ∗

n

)
. (19)

The problem is now to determine parameters (β, γ)
that create a quantum state that approximately mini-
mizes the expectation value of HC (and thus maximizes
r). The relation between the angles and the expectation
values used in the remainder of this paper and the ones
in Ref. [1] (notations with tilde) is γ = −γ̃/2, β = β̃

and F̃ (γ̃, β̃) =
(
n−F (γ,β)

)
/2, while the approximation

ratio is the same.

B. Fermionic representation

We show that using a fermionic representation, the
parameter setting of QAOA reduces to finding the op-
timal quantum control of an ensemble of independent
spins (spin-1/2).

Since spin operators do not obey canonical com-
mutation relations, transforming them into bosonic or
fermionic operators is often useful for analysis. Such
transformations enable the application of standard tech-
niques in condensed matter physics such as diagrammatic
perturbation. The algebra of the original spin opera-
tors must be preserved in the mappings. The Jordan-
Wigner transformation [11, 12] maps the spin operators
to fermions with a long-range phase factor.

We apply the Jordan-Wigner transformation [11, 12],

aj = S−j e
−iφj (20)

a†j = S+
j e

iφj (21)

where S+
j = (σyj + iσzj )/2, S−j = (σyj − iσzj )/2, and the

phase factor φj = π
∑
j′<j(σ

x
j′ + 1)/2 is long-ranged in-

volving all operators for j′ < j. The new operators

aj , a
†
j can be verified to obey the fermion anticommu-

tation relations, {aj , a†j′} = aja
†
j′ + a†j′aj = δj,j′ , and

{aj , aj′} = {a†j , a
†
j′} = 0. The inverse transformation
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reads

S+
j = a†je

−iφj (22)

S−j = aje
iφj (23)

σxj = 2a†jaj − 1 (24)

and the phase factor in the fermionic representation is

φj = π
∑
j′<j a

†
j′aj′ . The Jordan-Wigner transformation

is a convenient tool for one-dimentional spin systems,
particularly for nearest-neighbored couplings because in
products of the neighboring spin operators like S+

j S
−
j+1,

the phase factors drop out, leaving a concise expression
with short-ranged coupling.

The Jordan-Wigner transformation for our problem
works for both even and odd n. We will work on this
general case in this section. Applying the transformation
to the problem and mixing Hamiltonians, we get

HB =

n∑
j=1

(
2a†jaj − 1

)
(25)

HC =

n−1∑
j=1

a†jaj+1 + ajaj+1 − (a†Na1 + aNa1)G+ h.c. ,

(26)

where we introduce the gauge operator G =

exp[iπ
∑n
l=1 a

†
l al] = (−1)n

∏n
j=1 σ

x
j , a necessary treat-

ment for periodic boundary conditions. In the standard
QAOA setting, the initial state is an eigenstate of G with
eigenvalue 1 for even n and -1 for odd n. The operator G
is a constant of motion since it commutes with both HB

and HC , so the value of G remains constant throughout
the evolution. Therefore for even n, the sign of the j = n
term in HC is different from the others and requires a
special treatment.

We further introduce a phase factor to unify the ex-
pression, bj = aje

−ijπ/n. The Hamiltonians then read

HB =

n∑
j=1

(2b†jbj − 1) (27)

HC = eiπ/n
n∑
j=1

(
b†jbj+1 + e2ijπ/nbjbj+1

)
+ h.c.(28)

Upon applying a Fourier transformation to bj (to aj for
odd n),

ck =
1√
n

n∑
j=1

eωjkbj , ω = 2iπ/n , (29)

the driver and the problem Hamiltonians in the momen-

tum space take the form

HB =

n−1∑
k=0

(2c†kck − 1) (30)

HC = 2

bn−1
2 c∑

k=0

cos θk
(
c†kck + c†−kc−k

)
+i sin θk

(
ckc−k + c†kc

†
−k
)

+HC,0 (31)

where for even n
HC,0 = 0

θk = (2k + 1)π/n

c−k ≡ cn−1−k ,
(32)

and for odd n 
HC,0 = −c†0c0
θk = 2kπ/n

c−k ≡ cn−k .
(33)

Since in Eq. (31), ck and c†k are solely coupled to c−k
and c†−k, we only need to solve a set of 2-fermion prob-
lems. Because both HB and HC preserve the parity of
the fermionic excitations, we need to consider only the
ground state and the double excited state of the two
fermions. For each k, in this two-dimensional subspace
the driver and the problem Hamiltonians become 2σz and
2σz cos θk + 2σx sin θk, respectively.

In summary, after transforming the problem to a
fermionic representation, the original many-body Hamil-
tonian of a ring of n spins reduces to an ensemble of n/2
non-interacting spins of spin-1/2, which we would refer
to as pseudospins to distinguish them from spins in the
original problem:

HB =

bn−1
2 c∑

k=0

HB,k

HC =

bn−1
2 c∑

k=0

HC,k (34)

each term taking the form

HB,k = 2σz (35)

HC,k = 2
(

cos θkσ
z + sin θkσ

x
)

= 2k̂ · σ̂. (36)

where the unit vector k̂ = (sin θk, 0, cos θk).
The initial state for each pseudospin is the ground state

of −HB,k, i.e., ρ0 = |1〉〈1| = (1+σz)/2 and the optimiza-
tion reduces to minimize

F (γ,β) =

bn−1
2 c∑

k=0

Fk(γ,β) , (37)
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where

Fk(γ,β) =
1

2

[
HC,kUkσ

zU†k
]

(38)

= Tr
[
k̂ · σ̂UkσzU†k

]
. (39)

Hereafter, for notation simplicity, we drop the subscript
for Uk and use U to refer to the evolution operator for the
single pseudospin. U = UB(βp)UC(γp) · · ·UB(β1)UC(γ1)
now consists of only single-spin operators

UB(βl) = exp[−i2βlσz] (40)

UC(γl) = exp[−i2γlk̂ · σ̂] (41)

for l = 1, 2, . . . , p.

C. Size-dependence of the approximation ratio

For sufficiently large problem sizes, the approximation
ratio of QAOA on the problem of ring of disagrees of even
n is independent of the problem size. This property has
been shown in Ref. [1] using an operator reduction argu-
ment. The specific value of the approximation ratio for
QAOAp was conjectured to be (2p+ 1)/(2p+ 2) therein.
Here, we show that this size-independence feature comes
naturally out of the picture of single spin rotations. Each
UC(γ) = cos(2γ)− i sin(2γ)k · σ̂ can contribute a trigono-
metric function of θk. Thus, Fk takes a form

Fk =

2p+1∑
l, l′ = 0

l + l′ 6 2p+ 1

fl,l′(γ,β) sinl θk cosl
′
θk , (42)

where (fl,l′)’s are real coefficients independent of θk.
Since each sin θk accompanies one σx, using properties
of Pauli matrices, Tr[σασα′ ] = 2δα,α′ , the coefficient
fl,l′(γ,β) is zero for odd l. Recall that θk = (2k−1)π/n.
When we consider F ,

F =

2p+1∑
l, l′ = 0

l + l′ 6 2p+ 1

(
fl,l′(γ,β)

n/2∑
k=1

sinl θk cosl
′
θk

)
,

(43)

for even l, we have
∑n/2
k=1 sinl θk cosl

′
θk = 0 for odd l′.

Therefore, we need to keep only terms with even l and
even l′, reducing Eq. (42), to a trigonometric polynomial
of 2θk of degree p,

Fk =

p∑
s=0

d2s(γ,β) cos(2sθk) , (44)

where d2s(γ,β) is a coefficient independent of k. See the
analysis for p = 1 and 2 in Sec. IV E for example.

Eq. (44) takes the form of the Fourier transformation
of series d2s with a cutoff at order p. For any specific

parameter values (γ,β), for n > 2p + 2, the constant
component d0 =

∑
k Fk/n:

F =
n

2
· d0(γ,β) . (45)

Since the n-dependence of Fk lies in θk and d0 is θk-
independent, the expectation value F , and furthermore
the approximation ratio of QAOA, is independent of n.
For an arbitrary level p, simplifying Eq. (39) to get the
specific trigonometrical function form can be done easily.
Finding parameters (γ,β) that optimize F appears to be
highly non-trivial.

D. Symmetry and criticality-constrained manifolds

In this section, we show that, based on symmetries in
the pseudospin rotations, we can identify sub-manifolds
in the search space that admit extrema. In later sections,
we provide numerical evidence that the global minima
always lie in these sub-manifolds. This evidence suggests
that one can focus the search within the identified sub-
manifolds and thus reduce the search effort.

1. Physics: rotations of the Bloch vectors

For each pseudospin, Eq. (39) can be expressed as

Fk(γ,β) = 4Fk − 2 (46)

where

Fk ≡ Tr[ρk̂UρzU
†] (47)

and ρk̂ = 1
2 (1 + k̂ · σ̂) and ρz = 1

2 (1 + σz).
On the Bloch sphere, ρk̂ and ρẑ can be inter-

preted as the density matrices for the Bloch vectors

in the k̂-direction and ẑ-direction, respectively. Equa-
tion (47) represents a single pseudospin, initialized along

ẑ-direction, then rotated about k̂-axis for angle 4γ1, ro-

tated about ẑ for 4β1, ..., rotated about k̂ for 4γp, rotated

about ẑ for 4βp, and measured along k̂. The fidelity
Fk measures the overlap between the final state and the

state ρk̂, whose Bloch vector is along direction k̂. Due
to the periodicity in rotation, F (4γ + 2lπ, 4β + 2l′π) =
F (γ,β) ⇒ F (γ + l · π/2,β + l′ · π/2) = F (γ,β), where
l, l′ ∈ Zp. Hence the search space can be limited to
βk, γk ∈ [0, π/2] for k = 1, 2, . . . , p.

QAOA on the ring of disagrees thus corresponds to a
physical picture in optimal quantum control, albeit with
a specialized set of constraints. For the final average over
k to get F , we can think of the system as an ensemble of
pseudospins, each pseudospin k experiencing a constant

magnetic field along k̂, (the quantization field), and the
system controlled by applying a strong uniform magnetic
field along ẑ in the “bang-bang” style. Specifically, when
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the field along ẑ, ~Bz, is on, the quantization field is negli-
gible and all pseudospins are rotated about ẑ by the same

angle 4γp; when ~Bz is paused, each pseudospin evolves

freely, i.e., rotates about its own quantization axis k̂ to
pick up an angle 4βp. After the whole control sequence is
applied, the overall magnetization along ẑ, F =

∑
k〈σzk〉,

is measured. The goal of the quantum control is to design
a time sequence (γ,β) so that F is minimized.

2. Criticality-constrained sub-manifolds

Since the trace operator preserves cycling, and the role

of ẑ and k̂ in Eq. (47) are interchangeable, after initial-

izing the pseudospin along the k̂-direction, the same re-
sult would be obtained by rotating about ẑ-axis for angle

−4βp, rotating about k̂ for −4γp,..., rotating about ẑ for

−4β1, rotating about k̂ for −4γ1, and measuring along ẑ.
Manifold 1: Due to equivalence in the two views, it

must hold that

Fk(γ,β) = Fk(−β′,−γ′) (48)

where

γ = (γ1, γ2, . . . , γp−1, γp) (49)

β = (β1, β2, . . . , βp−1, βp) (50)

γ′ = (γp, γp−1, . . . , γ2, γ1) (51)

β′ = (βp, βp−1, . . . , β2, β1) . (52)

This can be verified with the help of a π-rotation about

the axis ẑ + k̂, see Appendix B for a proof. Consider the
manifold that satisfies

γi + βp+1−i = 0 for i = 1, 2, . . . , p. (53)

It has a special property: the gradient of the function
Fk(γ,β) is constrained to lie tangent to the manifold.
Therefore, critical points in the manifold are critical
points of the whole function.

For p = 1, the relation (53) can also be proven to
be a necessary condition for the global minima. On the
Bloch sphere for a pseudospin, the rotation trajectory
has to switch at the intersection of the two circles on the
Bloch sphere which are perpendicular to one axis and
passes through the vector end of the other pseudospin,
as illustrated in Fig. 1. Because the intersection lies in

the plane spanned by ŷ and the bisector of −ẑ and k̂, it
is obvious that γ1 + β1 = 0, i.e., the relation (53) has to
be observed.

Manifold 2: Equation (47) actually holds for ρk̂ =
1
2 (1±k̂·σ̂) and ρz = 1

2 (1±σz). The + (−) sign correspond
to the picture when the initial and final states are parallel
(anti-parallel) with respect to the rotation axes, respec-
tively. Comparing these two pictures, since rotations by
the same anble about any axis −v̂ and +v̂ by the same

γ1-β1

x

k-z

Fig. 1: (Color online). Schematic for the evolution trajectory
of spin k on the Bloch sphere under QAOA1 for arbitrary
θk > θ∗1 = 2π/3. The trajectory of QAOA1 is shown as arcs
in solid lines.

angle are inverses to each other, R̂(v̂)(α) = R̂†(−v̂)(α), it

must hold that

Fk(γ,β) = Fk(β′,γ′) . (54)

Eq. (54) defines another manifold

γi − βp+1−i = 0 for i = 1, 2, . . . , p (55)

with constrained gradient.
Eqs. (48) and (54) further indicate that Fk and is

an even function of the angle sequence: Fk(γ,β) =
Fk(−γ,−β), and accordingly so is F ,

F (γ,β) = F (−γ,−β). (56)

Global extrema lie in the submanifolds In our
numerical search, the minima of F were always contained
in the manifold defined by Eq. (53) while the maxima of
F always lie in the manifold Eq. (55).

E. Illustration of QAOA1 and QAOA2

We use QAOA1 and QAOA2 to illustrate the results of
symmetry and size-dependence of the optimization dis-
cussed above. Numerical results for higher levels (p > 2)
are shown in Appendix. C

For QAOA1, the unitary evolution operator is U =

e−i2β1σ
z

e−i2γ1k̂·σ̂ . Note that if a term f(k) in Fk satisfies
f(n/2 + 1 − k) = −f(k), then f(k) would vanish in F
through the summation over k; and note the properties
of Pauli matrices, Tr[σασα′ ] = 2δα,α′ , one comes to

F = 2 sin(4β) sin(4γ)
∑
k

sin2 θk (57)

=

{
n sin(4β) sin(4γ) for n = 2
n
2 sin(4β) sin(4γ) for n > 2 .

(58)



8

The optimal angles are (γ∗1 , β
∗
1) = π · (3/8, 1/8) or π ·

(1/8, 3/8).
For n = 2, the optimal angles correspond to F ∗ = −n

while for larger problem size, F ∗ = −n/2. This reflects
the property that QAOAp suffices to perfectly optimize
the ring for n 6 2p but for n > 2p + 2 the optimization
ratio is a fixed constant smaller than 1.

Eq. (58) is plotted in Fig. 2. Along the symmetry line
β1 + γ1 = 0, the critical points are global minima and
saddle points. While along the symmetry line β1−γ1 = 0,
the critical points are global maxima and saddle points.

β2 1/ π / πγ2 1

Fig. 2: (Color online). QAOA1. The expectation value F/n
as a function of γ1 and β1.

For level-2, the evolution operator reads

U = e−i2β2σ
z

e−i2γ2σ̂·k̂e−i2β1σ
z

e−i2γ1σ̂·k̂ . (59)

The expectation value F as a trigono-
metric function of (γ,β) is shown in Ap-
pendix C. Numerically found optimal angles are
(γ∗1 , β

∗
1 , γ
∗
2 , β
∗
2) = π · (0.3956, 0.1978, 0.3022, 0.1044) or

π · (0.2052, 0.1026, 0.3974, 0.2948). In both optimal
angle sets, 4(γ∗1 + β∗2) and 4(γ∗2 + β∗1) are integer
multipliers of 2π, thus both optima lie in the manifold
defined by Eq. (53).

F. Discussion: controllability and optimality

The optima of F for QAOA level p = 1 to 10 are tabu-
lated in Appendix C. The optimal angles were obtained
through numerical gradient descent search in the sub-
manifold Eq. (53). The evaluation for Fk in each step
is realized as Eq. (39), which only involves 2p multipli-
cations of 2-by-2 matrices, and sum over k gives F , so
optimal angles for higher p could be computed easily if
desired.

Starting with a random initial guess of (γ,β), the
search (with sufficiently small steps) always converges

γ1/π
0 0.1 0.2 0.3 0.4 0.5

β
1
/π

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.6

-0.4

-0.2

0

0.2

0.4

F/Nn

Fig. 3: (Color online). The landscape of F/n for QAOA2,
in the sub-manifold Eq. (53). The four darkest spots indicate
the global minima F ∗/n = −2/3. The origin (0, 0) is a saddle
point. No local minima are observed. The contour is sym-
metric w.r.t. (γ1, β1) = (π/4, π/4), reflecting the symmetry
in Eq. (56), (and the period π/2).

to a global minimum. This behavior suggests that at
least within the sub-manifold, all local minima are global
minima. For example, for p = 2, there are two free pa-
rameters in the sub-manifold, which we choose to be γ1
and β1. Figure 3 shows the landscape of the expectation
value F . The four minima (darkest spots) observed in
one period (γ1, β1,∈ [0, π/2]) are all global minima.

This result calls for extended understanding of land-
scapes of quantum control. In quantum control theory,
it has been shown that assuming controllability, i.e., evo-
lution between any two states is achievable via the set
of controls given, the landscape of the infidelity F over
the space of parameter values (γ,β) generically has only
global minima [13–15]. Without controllability, the quan-
tum control landscape in general is rugged and admits
local minima [16].

In the case of QAOA, the controls are constrained in
a specific way: if an infinite number of controls are al-
lowed, i.e., p→∞, then the system is controllable. The
finite number of control steps dictated by the level p lim-
its the controllability. For more general graphs, how-
ever, Eq. (14) shows that for QAOA on MaxCut, even
for p = 1, there exists local optima in the space of pa-
rameter values. For the special case of ring of disagrees,
the system is still not controllable, however, our numeri-
cal results indicate that, at least within the sub-manifold
Eq. (53), all local minima are global minima.

V. CONCLUSIONS

We studied parameter setting for QAOA on MaxCut.
For QAOA1, we extended the results in Ref. [1], pro-
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viding an analytical expression for general graphs. As
a corollary, for triangle-free graphs with fixed vertex de-
gree, the optimal angles for the driver Hamiltonian can be
directly read off while the optimal angles for the prob-
lem Hamiltonian show a dependence on the vertex de-
gree. For higher level p, direct analysis on the operator
expansion becomes cumbersome, providing further evi-
dence that more advanced parameter setting techniques
need to be developed.

For a special case of MaxCut, the ring of dis-
agrees, which corresponds to a one-dimentional anti-
ferromagnetic spin ring, we analyze QAOAp, for arbi-
trary p, using a fermionic representation. Applying the
Jordan-Wigner transformation transforms the evolution
of an n-qubit system under QAOA to a set of n/2 in-
dependent evolutions within two-dimensional subspaces.
The parameter setting problem, thus, corresponds to
finding optimal control parameters for an ensemble of
n/2 non-interacting pseudospins of spin- 12 . From this
treatment we obtain analytical expression for any p, and
an easy numerical search for the corresponding optimal
angles.

The fermionic picture also enables us to explain sym-
metries in the optimal parameters, suggesting a means to
further reduce the effort required to find optimal param-
eters by restricting to manifolds defined by these sym-
metries. The specific symmetry in the problem of ring
of disagrees has its roots in the equal footing of the ac-
tion of the driver and the problem Hamiltonians – each
corresponds to a single spin rotation. We observed nu-
merically that within the parameter space, all minima
are global minima. While such a “no-trap” character
of a quantum control landscape can be explained given
controllability, the structure of QAOA for finite p often
does not guarantee controllability. Future research that
reveals the underlying theory may shed further light on
the control landscape and the structure of QAOA, and
inspire ways to simplify or improve the algorithm.

In Ref. [1] it is conjectured that the best achievable ap-
proximation ratio for QAOAp on a ring of size n > 2p+2
is (2p+1)/(2p+2). The fermionic view we have presented,
by simplifying the analysis, may be a useful step toward
a proof, but for the moment the conjecture remains open.
Further work will examine how realistic noise affects the
performance. While for certain simple noise models, in-
cluding control noise affecting the times for which the
Hamiltonians are applied, can be analyzed within the
model, for other cases a combination of more sophisti-
cated analytical tools and experimentation on quantum
hardware will be needed to evaluate performance under
noise. The simplicity of QAOA on the ring makes it a
promising target for implementation on early quantum
processors.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1. For p = 1, only terms correspond-
ing to neighbors of u and v can contribute to the expecta-
tion of Cuv [1]. We thus partition our objective function
as

C =
1

2
(I − σzuσzv) + Cu + Cv + C̄,

where Cu is the d-many constraints involving only vertex
u but not v, and Cv is the e-many constraints involving
only v. The remaining constraints C̄ do not contribute
to the expectation value 〈Cuv〉. For simplicity, we write
(d, e, f) = (du, dv, λuv).

Let c = cos 2β and s = sin 2β. We have

eiβBσzuσ
z
ve
−iβB

= c2σzuσ
z
v + sc(σyuσ

z
v + σzuσ

y
v) + s2σyuσ

y
v . (A1)

The first term σzuσ
z
v commutes with C and does not con-

tribute to 〈Cuv〉. We conjugate each remaining term sep-
arately by eiγC . Let c′ = cos γ and s′ = sin γ. We have

Tr[ρ0e
iγCσyuσ

z
ve
−iγC ]

= Tr
[
ρ0(Ic′ − is′σzuσzv)

d∏
i=1

(Ic′ − is′σzuσzwi
)σyuσ

z
v

]
.

(A2)

Expanding the product on the right gives a sum of tensor
products of Pauli operators. Clearly, the only term that
can contribute is proportional to σzuσ

z
v ∗ I⊗d ∗ σyuσzv =

−iσxu. Thus we have

Tr
[
ρ0e

iγCσyuσ
z
ve
−iγC] = Tr

[
ρ0(−i)s′c′d(−iσxu)

]
= −s′c′d

(A3)

By symmetry, we have Tr[ρ0e
iγCσzuσ

y
ve
−iγC] = −s′c′e.

Observe that these terms are independent of the number
of mutual neighbours (triangles) of u and v. The next
term is

Tr
[
ρ0e

iγCσyuσ
y
ve
−iγC] = Tr

[
e2iγCue2iγCvσyuσ

y
v

]
= Tr

[ d∏
i=1

(c′I − is′σzuσzwi
)

e∏
j=1

(c′I − is′σzvσzwj
)σyuσ

y
v

]
(A4)

The simplest term that contributes in this case
is Tr

[
ρ0fc

′d+e−2(−is′)2(−iσxu)(−iσxv )
]

= fc′d+e−2s′2.
Corresponding to the triangles of 〈uv〉, in the above prod-
uct we have f -many distinct values i such that wi = wj .
As σzuσ

z
wi
∗ σzuσzwi

= I, if f > 2 then higher order terms
depending on the number of triangles f will contribute.
For example, the next order terms will result from three
pairs of (σzuσ

z
wi
, σzuσ

z
wi

) and hence be proportional to s′6.

Thus we have

Tr
[
ρ0(eiγCσyuσ

y
ve
−iγC)

]
=

(
f

1

)
c′d+e−2s′2 +

(
f

3

)
c′d+e−6s′6

+

(
f

5

)
c′d+e−10s′10 + . . .

= c′d+e−2f
f∑

i=1,3,5,...

(
f

i

)
(c′2)f−i(s′2)i. (A5)

To sum this series, recall the binomial theorem, which we
may split into even and odd sums as

f∑
i=0,2,...

(
f

i

)
af−ibi +

f∑
i=1,3,...

(
f

i

)
af−ibi

=

f∑
i=0

(
f

i

)
af−ibi = (a+ b)f (A6)

which also gives

f∑
i=0,2,...

(
f

i

)
af−ibi −

f∑
i=1,3,...

(
f

i

)
af−ibi

=

f∑
i=0

(−1)i
(
f

i

)
af−ibi = (a− b)f , (A7)

and hence

f∑
i=1,3,...

(
f

i

)
af−ibi =

1

2
((a+ b)f − (a− b)f ) . (A8)

Thus the above sum becomes

f∑
i=1,3,...

(
f

i

)
(c′2)f−i(s′2)i =

1

2
(1− cosf 2γ) (A9)

which yields

Tr
[
ρ0(eiγCσyuσ

y
ve
iγC)

]
=

1

2
c′d+e−2f (1− cosf 2γ) (A10)

Putting this all together, we have

〈Cuv〉 = Tr
[
ρ0e

iγCeiβBCuve
−iβBe−iγC

]
=

1

2
+
sc

2
Tr
[
ρ0e

iγC(σyuσ
z
v + σzuσ

y
v)e−iγC)

]
−s

2

2
Tr
[
ρ0e

iγCσyuσ
y
ve
−iγC)

]
=

1

2
+

1

2
scs′(c′d + c′e)− 1

4
s2c′d+e−2f (1− cosf 2γ).

(A11)
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Appendix B: Proof of symmetry relation Eq. (48)

We prove Eq. (48)

Fk(γ,β) = Fk(−β′,−γ′) (B1)

where

γ = (γ1, γ2, . . . , γp−1, γp) (B2)

β = (β1, β2, . . . , βp−1, βp) (B3)

γ′ = (γp, γp−1, . . . , γ2, γ1) (B4)

β′ = (βp, βp−1, . . . , β2, β1) . (B5)

Proof. We consider a unitary operator R = cos θ2σ
z +

sin θ
2σ

x which rotates a Bloch vector about axis (k̂ + ẑ)

by π. Note that R† = R, R2 = 1 and

RσzR = k̂ · σ̂
Rk̂ · σ̂R = σz

RUB(β)R = UC(β)

RUC(γ)R = UB(γ) , (B6)

we have

RUR = RUB(βp)RRUC(γp)R . . . RUB(β1)RRUC(γ1)R

= UC(βp)UB(γp) · · ·UC(β1)UB(γ1)

=
[
UB(−γ1)UC(−β1) · · ·UB(−γp)UC(−βp)

]†
= U ′† (B7)

where U ′ ≡ U(−β′,−γ′).

Insert R2 = 1 to Fk we get

Fk(γ,β) = Tr[(k̂ · σ̂)UσzU†]

= Tr[R(k̂ · σ̂)RRURRσzRRU†R]

= Tr[σzRUR(k̂ · σ̂)RU†R]

= Tr[σzU ′†(k̂ · σ̂)U ′]

= Tr[(k̂ · σ̂)U ′σzU ′†]

= Fk(−β′,−γ′) (B8)

Appendix C: Detailed results for p = 2 and higher

For p = 2, terms in that are non-vanishing to F is

F

n
=

1

64

[
− 7 cos(4β1 + 4β2 + 4γ1 + 4γ2)− 6 cos(4β1 + 4β2 + 4γ1)

+3 cos(4β1 + 4β2 − 4γ1 + 4γ2) + 4 cos(4β1 + 4β2 + 4γ2)

+3 cos(4β1 − 4β2 + 4γ1 + 4γ2)− 6 cos(4β1 − 4β2 + 4γ1)−
3 cos(4β1 − 4β2 − 4γ1 + 4γ2) + 4 cos(4β1 + 4γ1 + 4γ2)−
4 cos(4β1 + 4γ1)− 4 cos(4β1 + 4γ2)− 3 cos(−4β1 + 4β2 + 4γ1 + 4γ2)

+6 cos(−4β1 + 4β2 + 4γ1) + 3 cos(−4β1 + 4β2 − 4γ1 + 4γ2) +

7 cos(−4β1 − 4β2 + 4γ1 + 4γ2) + 6 cos(−4β1 − 4β2 + 4γ1)−
3 cos(−4β1 − 4β2 − 4γ1 + 4γ2)− 4 cos(−4β1 − 4β2 + 4γ2)−
4 cos(−4β1 + 4γ1 + 4γ2) + 4 cos(−4β1 + 4γ1) + 4 cos(−4β1 + 4γ2)−
6 cos(4β2 + 4γ1 + 4γ2)− 6 cos(4β2 − 4γ1 + 4γ2)− 4 cos(4β2 + 4γ2)

+6 cos(−4β2 + 4γ1 + 4γ2) + 6 cos(−4β2 − 4γ1 + 4γ2)

+4 cos(−4β2 + 4γ2)
]
. (C1)

If limited in the sub-manifold Eq. (53),
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p r F ∗/n γ1 β1 γ2 β2 γ3 β3 γ4 β4 γ5 β5

1 3/4 -1/2 0.1250

2 5/6 -2/3 0.2052 0.1026

3 7/8 -3/4 0.2268 0.1888 0.0918

4 9/10 -4/5 0.2357 0.2161 0.1791 0.0850

5 11/12 -5/6 0.2403 0.2282 0.2094 0.1724 0.0802

6 13/14 -6/7 0.3035 0.1639 0.2506 0.2835 0.0794 0.2409

7 15/16 -7/8 0.2303 0.1623 0.3468 0.2690 0.1042 0.2397 0.1599

8 17/18 -8/9 0.2445 0.1638 0.2839 0.3484 0.1539 0.1530 0.2581 0.1291

9 19/20 -9/10 0.1929 0.1648 0.3307 0.3016 0.1551 0.2538 0.2174 0.1089 0.3117

10 21/22 -10/11 0.2208 0.1374 0.3098 0.2974 0.2702 0.1205 0.3148 0.1904 0.1423 0.2572

TABLE I: Optimal angles for different levels of QAOA. Angles are in units of π radians. Gradient descend search is implemented
with the optimal angles for level p set to be the initial guess for level p+ 1. Arbitrary initial guess also always converges to a
global minimum of F (γ,β) in the sub-manifold Eq. (53). Multiple sets of optimal angles exist for p > 2, only one of them is
shown for each level.

4γ
1

4β
1

4γ
2

4β
2

4γ
3

4β
3

4γ
4

4β
4

4γ
5

4β
5

p = 1

p = 10

π/2

π 0

3π/2

Fig. 4: (Color online). Optimal angles in the submanifold defined by Eq. (53). The optimal points are plotted on the complex
plane with angles (4γ, 4β) as the argument and radius given by the level, p = 1 to p = 10 from the inner to outer circles.

F

n
=

1

64

(
− 2 cos(8β1) + 3 cos(8β1 + 8γ1)− 12 cos(4β1 + 8γ1)

−8 cos(4β1 + 4γ1) + 12 cos(4β1 − 8γ1) + 8 cos(4β1 − 4γ1)

+7 cos(8β1 − 8γ1)− 8 cos(8β1 − 4γ1) + 6 cos(8γ1)

+8 cos(4γ1)− 14
)
. (C2)
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In Table. I we show numerical for optimal angles for
higher QAOA levels in the manifold Eq. (53) (multiple
optima were found for p > 2, we show only one for each

p). The same sets of angles are also plotted on the circles
in Fig. 4.
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