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We investigate the extreme dynamics of non-Hermitian systems near higher order exceptional
points in photonic networks constructed using the bosonic algebra method. We show that strong
power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace
geometry and its dimensionality collapse near these singularities. By using complementary numerical
and analytical approaches, we show that, in the PT phase near exceptional points, the logarithm
of the maximum optical power amplification scales linearly with the order of the exceptional point.
We focus in our discussion on photonic systems but we note that our results apply to other physical
systems as well.

I. INTRODUCTION

One of the intriguing features of non-Hermitian Hamil-
tonians is the breakdown of eigenstate orthogonality (as
defined by the Hermitian inner product) [1]. In the most
extreme case, two or more distinct eigenstates can even
become identical (share the same eigenvalue and eigen-
vector), giving rise to eigenspace dimensionality collapse
at the so called exceptional points [2–7]. An exceptional
point of order N (denoted as EPN) is formed by the coa-
lescence ofN eigenvectors to form an ‘exceptional vector’.
The incompleteness of the eigenbases at these special
points leads to important consequences such as the di-
vergence of Petermann factor [8–12] and ultra-sensitivity
to external perturbations [13, 14]. While systems ex-
hibiting EP2 have been intensively investigated both at
the theoretical and experimental levels, higher order EPs
(mostly of order three) have so far received little atten-
tion [15–21], partly due to implementation difficult in
the laboratory. Recently however, two groundbreaking
experimental works have successfully demonstrated sys-
tems operating at a third order exceptional point using
acoustic [22] and optical [23] platforms. More complex
schemes supporting even higher order exceptional points
can be constructed by using bosonic algebra [17].

Even though higher order EPs are expected to demon-
strate most of the general features of their counterpart
second order singularities, a quantitative description of
the extreme dynamics near EPN is still lacking. In par-
ticular, power oscillations near EP2 in parity-time (PT)
symmetric systems have been investigated in [24–27].
Additionally, transient power growth in non-Hermitian
optical setups have been recently studied using pseudo-
spectrum techniques [28]. Here we investigate the ex-
treme dynamics in PT symmetric [29–46] Hamiltonian
having higher order EPs [17].

By employing complementary numerical and analyt-
icity approaches, we are able to quantify the maximum
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value of the extreme optical power amplification for any
higher order EPN when the system approaches it from
the PT phase. The main results of our work are: (1) es-
tablishing the link between the dynamical evolution near
EPs and the geometry of the eigenbases associated with
the underlying PT system; (2) demonstrating that the
maximum power amplification follow a power-law depen-
dence on the order N of the EP. Though our results are
very general, for illustration purpose, we concentrate in
our discussion on photonic implementations.

In the remaining of this work, for sake of generality we
use dimensionless quantities. Physical parameters can be
always calculated depending on the details of the physical
system of interest.

II. POWER OSCILLATIONS NEAR
EXCEPTIONAL POINTS: A GEOMETRIC

PERSPECTIVE

Consider a discrete non-Hermitian Hamiltonian H of
dimensions N × N (we do not treat infinite dimensions
cases here). Within the optical coupled mode formal-
ism, this Hamiltonian can describe for example an ar-
ray of coupled waveguides or resonators, and will obey

the equation i
da

dz
= Ha. Here a = [a0, a1, ..., aN−1]T is

the electric field amplitude vector and, assuming coupled
waveguides, z is the propagation distance (for coupled
cavities, z is replaced by the evolution time t). Suppose
ek are the right eigenvectors of H. Non-orthogonality im-
plies that 〈ek, el〉 = e∗k · el 6= 0 where 〈〉 is the Hermitian
inner product, the symbol ‘∗’ is the complex conjugate
and ‘·’ denotes the vector product without any further
conjugation. A non-Hermitian inner product that re-
stores orthogonality (also called biorthogonality) can be
also defined: 〈ẽk, el〉 = ek · el = 0(k 6= l), where ẽk = e∗k
is the transpose of the left eigenvectors of H.

The general solution for the equation of motion for

H is a(z) =
N∑
k=1

Ckek exp(−iλkz), where λk are eigen-

values of H and the coefficients Ck are determined by
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FIG. 1. Geometric intuitive illustration of the origin of ex-
treme fluctuations in the vicinity of exceptional points in two
and N dimensional spaces as described in details in the text
are depicted in panels (a) and (b), respectively. In (b), the
vectors e′i and e′′i are components of ei in the directions par-
allel and perpendicular to ve, respectively. Since the compo-
nents e′′i are small and the vector aI is orthogonal to ve, it
follows that the coefficients Ck must have large values.

the initial condition aI = a(z = 0) =
N∑
k=1

Ckek. In

the rest of this work, we will use the normalization
〈ek, ek〉 = 〈aI ,aI〉 = 1. As a direct outcome of the
non-Hermiticity, the total power P (z) ≡ 〈a(z),a(z)〉, is
not conserved but rather varies along the propagation
distance. In non-Hermitian systems that do not exhibit
gain, the evolution of P (z) will be decaying oscillations.
We are interested mainly in the oscillatory part which,
in some cases, can be isolated by a simple gauge trans-
formation that results in parity-time symmetric Hamilto-
nian [31]. The oscillatory behavior of these systems can
be quantified either by using the total power behavior

P (z) or its z averaged value 〈P 〉 ≡ 1

L

∫ L
0
P (z)dz, where

for perfect periodic variation L is the period of one cy-
cle and otherwise L → ∞. In this section we will use
the latter to develop the geometric intuition behind the
phenomena of extreme power oscillation near EPs. An
obvious advantage of using 〈P 〉 is its direct dependence

on the coefficients Ck: 〈P 〉 =
N∑
k=1

|Ck|2. By consider-

ing the geometry of the non-orthogonal eigenbases, we
now show that the quantity 〈P 〉 takes large values in the
vicinity of an exceptional point, which in turn indicates
large oscillatory amplitudes.

Let us first focus on the simple case of second order
exceptional point, EP2. As demonstrated in Fig. 1(a),
in an orthogonal coordinate system (left panel) the pro-
jections of any vector cannot exceed the length of the
vector itself. On the other hand, if the two basis vectors
are almost parallel, a vector which is nearly orthogonal
to the bases can exhibit very large projection coefficients,

diverging in the limit when the two base vectors become
identical thus signaling the incompleteness of the bases.
This argument can be generalized to higher dimensions
as demonstrated schematically in Fig. 1(b). Particu-
larly, if an N×N Hamiltonian H exhibits an exceptional
point of order N , EPN, all the eigenvectors of H become
nearly ‘parallel’ to the exceptional vector ve (the notion
of parallel vectors is defined here in the Hermitian sense).
Thus the projection coefficients of a vector aI which lies
in N − 1 hyperplane orthogonal to ve are large, implying
a large value of 〈P 〉. This behavior can be also under-
stood by using the notion of biorthogonality. Particu-
larly, since Ck = 〈ẽk,aI〉 / 〈ẽk, ek〉 and by noting that
the ‘complex length’ of the exceptional vector (i.e. the

quantity
√
〈ṽe,ve〉) is zero, it is clear that Ck becomes

larger when ek ∼ ve as long as 〈ẽk,aI〉 > 〈ẽk, ek〉 which
can happen when aI⊥ve (though this is not necessarily
guaranteed for all vectors in the orthogonal subspace).

Having presented this intuitive picture, we next pro-
ceed by considering a concrete example of PT symmetric
Hamiltonians having higher order exceptional points [17]:

HN =


ig0 κ0 ... 0 0

...
... κn−1 ign κn ...

...
0 0 ... κN−2 igN−1

 , (1)

where the non-Hermitian (gain or loss) and coupling
coefficients follow the rules gn = g(2n − N + 1) and

κn = κ
√

(n+ 1)(N − n− 1) (n=0,1,2,...,N − 1), with
the real-valued quantities g and κ representing scaling
parameters. The reason for the unusual numbering of
the matrix elements (starting from 0 instead of 1) will be
clear in the next section. As has been shown in [17], HN

generalizes the canonical PT symmetric toy model H2.
Particularly, when g̃ ≡ g/κ < 1, HN is in the PT phase.
The transition to the broken phase (g̃ > 1) is marked by
an Nth-order exceptional point at g̃ = 1. Here we are
interested in the situation where g approaches κ from
below where the system is still in the PT phase.

One possible measure to characterize the relationship
between the eigenvectors of HN is the Hermitian angle
[47, 48] which is defined between two complex vectors v

and u as cos Θ(v,u) ≡ |〈v,u〉|
|v||u| with Θ(v,u) ∈ [0, π/2].

Fig. 2 presents a comparison between the minimum Her-
mitian angle Θe associated with the eigenvectors of HN

for different values of N . Note that Θe is smaller for
larger values of N , indicating a faster collapse of the
eigenspace dimensionality as g̃ → 1. Consequently, one
expects more ‘violent’ power oscillation for larger N val-
ues. In the following section, we confirm and quantify
this behavior analytically.
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FIG. 2. The minimum Hermitian angle Θe between any two
eigenvectors of the PT Hamiltonians HN for different values
of N as a function of the non-Hermitian parameter g̃. Clearly,
Θe is smaller for larger N , indicating faster eigenspace dimen-
sionality collapse near higher order exceptional points. This
in turn suggests that more ‘violent’ dynamics take place near
EPN with higher orders. Our analysis in the next section
confirms and quantifies this prediction.

III. EXACT RESULTS USING BOSONIC
ALGEBRA

In this section, we employ the bosonic algebra method
to study spectrum and propagation dynamics of a system
described by HN . In contrast to the previous section,
here we focus on P (z) rather than its z average.

To do so, we consider the non-Hermitian two-side non-
interacting Bose-Hubbard model that were used to con-
struct HN :

Ĥ = −ig(b̂†1b̂1 − b̂
†
2b̂2) + κ(b̂†1b̂2 + b̂1b̂

†
2), (2)

where b̂†1,2 and b̂1,2 are the bosonic creation and annihi-
lation operators of oscillators 1 and 2, and we assumed
~ = 1. In the bases |Np − n, n〉 representing a Fock state
with Np − n and n bosons in sites 1 and 2 respectively
(i.e. a total number of Np bosonic particles), the matrix

representation of Ĥ is HN [17], where N = Np + 1.
Before we proceed, we emphasize that the model in Eq.

(2) does not represent an actual PT symmetric quantum
system [37, 49–51] but is rather used as a mathematical
tool to facilitate the analysis. Motivated by the fact that
the Hamiltonian HN is generated from Ĥ in Eq. (2) by
populating the latter with Np particles and by noting

that Ĥ is obtained from the quantizing H2 [17], we now

focus on the Ĥ and consider the following normalized in-

put state at z = 0: |I(q1, q2)〉 = 1√
Np!

(q1b̂
†
1+q2b̂

†
2)Np |0, 0〉

with |q1|2 + |q2|2 = 1. This state can be also cast in

the form |I(q1, q2)〉 =
∑Np

n=0 an |Np − n, n〉 with the ex-

pansion coefficients given by an =
√

Np!
(Np−n)!n!q

Np−n
1 qn2 .

Although this particular construction of |I(q1, q2)〉 does
not span all the vector space when Np > 1, we will see

later that it suffices for our calculations.

The output state at distance z can be written as (see
Appendix 1 for the derivation):

|O〉 = e−iĤz |I〉

=
1√
Np!

[q1(z)b̂†1 + q2(z)b̂†2]Np |0, 0〉

=

Np∑
n=0

an(z) |Np − n, n〉 ,

(3)

where an(z) =

√
Np!

(Np − n)!n!
[q1(z)]Np−n[q2(z)]n with

the z dependent quantities q1(z) = q1U11(z) + q2U21(z)
and q2(z) = q1U12(z) + q2U22(z) and the elements of
U(z) ≡ e−iH2z are:

U(z) =

[
cos(λz)− g

λ sin(λz) −iκλ sin(λz)
−iκλ sin(λz) cos(λz) + g

λ sin(λz)

]
,

(4)

where λ =
√
κ2 − g2.

Note that within the coupled mode formalism of
waveguides (or cavities) arrays, the states |Np − n, n〉
represents waveguide number n while the coefficients
an(z) describe the associated field amplitudes (see [17]
for more details). Therefore, the total power is given by

P (z) =
∑N−1
n=0 |an(z)|2. When the input power is taken

to be unity, the expression for the maximum amplifica-
tion thus becomes GN = max[PN (z)].

For the case of N = 2, it is easy to show that, apart
from a phase factor, the initial optimal vector leading
to the maximum amplification is aopt

I = (q1, q2)T =
1√
2
(1,−i)T. Under these condition, the power oscilla-

tions dynamics are given by:

P opt
2 (z) = 1 +

2g̃

1− g̃
sin2(λz), (5)

and this initial condition let G2 = 1+g̃
1−g̃ . Note that the

Hermitian angle between aopt
I and ve is π/2, i.e., aopt

I is
orthogonal to ve, in agreement with the discussion in the
previous section.

The general case for N > 2 is more subtle. In princi-
ple, one has to chose the optimal initial vector that results
in the maximum amplification from the set of all initial

conditions |I ′〉 =
∑Np

n=0 qn(b̂†1)Np−n(b̂†2)n |0, 0〉. The in-
put state |I〉 however describes only a subset of all ini-
tial states. Within this subspace, it is straightforward
to show that even when N > 2, the optimal vector still
corresponds to |I(q1, q2)〉 with (q1, q2) = 1√

2
(1,−i). In

that case, the power dynamics and the maximum GN
are given by (See Appendix 2):

P opt
N (z) = [1 +

2g̃

1− g̃
sin2(λz)]N−1, (6)
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and

GN (g̃) = max[P opt
N (z)] = (

1 + g̃

1− g̃
)N−1. (7)

Note that here also aopt
I is perpendicular to the excep-

tional vector ve which in higher dimensions can be gen-
erated from the expression for |I(q1, q2)〉 by substituting
(q1, q2) = 1√

2
(1, i).

Even though Eq. (7) is derived by using a subset of all
the possible initial conditions, we expect it to hold when
all the possible initial conditions are considered since all
the Hamiltonians HN are generated from Ĥ. To confirm
this intuition, we will now employ a numerical technique
based on singular value decomposition (SVD) to estab-
lish that the value of GN as obtained by Eq. (7) indeed
provide the global maximum [28]. This method is an ex-
act optimization problem that determines the maximum
possible optimal amplification for any given propagation
distance z by considering all possible initial conditions.
Furthermore it determines the corresponding initial con-
ditions that lead to such maximum power growth. In
particular, it can be shown analytically that the maxi-
mum possible power amplification at a given z is equal to
the largest singular value of the propagator of the prob-
lem or equivalently of the matrix norm of the propagator
e−iHNz (where the norm of a matrix M is generally de-
fined ‖M‖ ≡ supu ‖Mu‖/‖u‖, where ‖u‖ is the usual
Euclidean norm of the vector u). In other words we have

Gopt
N (z) = ||e−iHNz||2 = (max[σN ])2, where σN are the

singular values associated with e−iHNz. The right singu-
lar eigenvector of the propagator determines the specific
initial conditions that lead to the maximum amplifica-
tion. The global maximum can be then found by maxi-
mizing Gopt

N (z) with respect to z by scanning z ∈ [0, L],

to obtain G′N (g̃) = max[Gopt
N (z)]. Fig. 3(a) depicts the

values of G′N and GN versus the order of the exceptional
point N on a log scale. A prefect agreement is found
between th value of GN and the global maximum as ob-
tained by SVD.

Eq. (7) is the central result of this work and demon-
strating that maximum amplification is given by GN
and follows a power-law dependence on the order of the
exceptional point, with oscillation dynamics becoming
more pronounced for larger N . An interesting observa-
tion is that, when g̃ ∼ 1, one can recast GN in the form:
GN (K2) = (4K2)N−1, where K2 = (1 − g̃2)−1 is the
Petermann factor associated with H2.

Finally, we also study the propagation dynamics of
the optimal initial condition for the case of H5. Fig.
3(b) present the evolution of the power in the individ-
ual waveguides (top panel) as well as the total power
(lower panel). An important observation here is that the
propagation distance at which the total power attains its
maximum value does not necessarily correspond to the
maximum power in the individual channels.
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FIG. 3. (a) A plot of GN and G′N against N when (g̃ = 0.9)
given by Eq. (7) on a log scale. Clearly the expression (7) for
GN provides the global value of the maximum amplification
and it follows a power law dependence on N . (b) Propaga-
tion dynamics in a waveguide array implementing a 5th-order
EP, i.e. described by H5, under the optimal input excitation:
aI = 1

4
(1,−2i,−

√
6, 2i, 1)T. The top panel presents the in-

tensities in the individual waveguides while the lower panel
plots the total intensity in normalized units. Note that the
dynamics is oscillatory and that the maximum of the inten-
sity in each waveguide does not necessarily occur at the same
distance where the total intensity assume its maximum value.

IV. CONCLUDING REMARKS

In this work, we have investigated the behavior of
PT symmetric systems having higher order exceptional
points. Our analysis, relying on the bosonic algebra
method, showed that for systems operating near excep-
tional points, the maximum possible amplification scales
with the power of N (the order of the EP). These results
have been confirmed by employing an exact numerical
optimization techniques based on singular value decom-
position. Given the recent success in implementing third
order exceptional points in acoustic and photonic systems
and the continuing effort to realize even more complex
structures, our results provide a valuable insight into the
generic behavior near EPs which may help direct future
research in this field.

In addition, our work opens up a new set of intriguing
questions that merit future investigations. For example,
do systems having higher order EPs exhibit the same
dynamics locally close to the EPs? In such a case, the
power law dependency discovered here would be univer-
sal. However, it is also possible that Hamiltonians that
do not have the form of HN behaves differently. We note
however that ,to date, Hamiltonians of the form HN are
the only systematic approach to realize arbitrarily higher
order EPs in discrete arrangements. Another interest-
ing question is how nonlinear interactions come into play
when the amplification leads to large intensities that trig-
ger various nonlinear effects? One of the very important
directions with practical consequences is the problem of
laser linewidth near EPs. Whereas a direct extrapola-
tion from the original work of Petermann [8] predicts a
divergent linewidth at EPs, recent analysis by Yoo et al.
[37] demonstrated that the linewidth enhancement is fi-
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nite. Our work here provides an intuitive framework for
understanding the amplification of noise near EPs and
hints that the even larger enhancement factors should be
expected near higher order EPs. It would be of interest
to fully develop this link either by using similar analysis
to that of [37] or other statistical methods [52].

Appendix A: Appendix 1

Here we present the derivation Eq. (3) in the main
text. First we note that |O〉 can be written as:

|O〉 = e−iĤz |I〉

=
1√
Np!

e−iĤz(q1b̂
†
1 + q2b̂

†
2)NpeiĤze−iĤz |0, 0〉

=
1√
Np!

[e−iĤz(q1b̂
†
1 + q2b̂

†
2)eiĤz]Np |0, 0〉 ,

(A1)

where we used the fact that e−iĤz |0, 0〉 = |0, 0〉. Next

we define b̂†1,2(z) ≡ e−iĤz b̂†1,2e
iĤz, which leads to the

equation of motion i ddz [b̂†1(z), b̂†2(z)]T = H2[b̂†1(z), b̂†2(z)]T ,

admitting the formal solution [b̂†1(z), b̂†2(z)]T =

e−iH2z[b̂†1, b̂
†
2]T ≡ U(z)(b̂†1, b̂

†
2)T. By substituting in

(A1), we then obtain:

|O〉 =
1√
Np!

[q1b̂
†
1(z) + q2b̂

†
2(z)]Np |0, 0〉

=
1√
Np!

[q1(z)b̂†1 + q2(z)b̂†2]Np |0, 0〉 ,
(A2)

where q1,2(z) are defined in the text. This completes the
derivation.

Appendix B: Appendix 2

Here we present the derivation of expression (6) in the
main text for a general N :

PN (z) =

Np∑
n=0

|an(z)|2

=

Np∑
n=0

Np!

(Np − n)!n!
[|q1(z)|2]Np−n[|q2(z)|2]n

= (|q1(z)|2 + |q2(z)|2)Np

= [P2(z)]N−1

(B1)
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041044 (2014).

[29] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[30] C. M. Bender, S. Boettcher, and P. N. Meisinger, J.
Math. Phys. 40, 2201 (1999).

[31] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti,
M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).

[32] C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nature Phys.
6, 192 (2010).

[33] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Phys.
Rev. Lett. 105, 053901 (2010).

[34] S. Longhi, Phys. Rev. A 82, 031801 (2010).
[35] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,

and D. N. Christodoulides, Phys. Rev. Lett. 106, 213901
(2011).

[36] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kot-
tos, Phys. Rev. A 84, 040101 (2011).

[37] G. Yoo, H.-S. Sim, and H. Schomerus, Phys. Rev. A 84,
063833 (2011).

[38] A. Regensburger, C. Bersch, M.-A. Miri, G. On-
ishchukov, D. N. Christodoulides, and U. Peschel, Na-
ture 488, 167 (2012).

[39] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang,
Science 346, 972 (2014).

[40] H. Hodaei, M.-A. Miri, M. Heinrich, D. N.
Christodoulides, and M. Khajavikhan, Science 346, 975
(2014).
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