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We consider multi-time correlators for output signals from linear detectors, continuously mea-
suring several qubit observables at the same time. Using the quantum Bayesian formalism, we
show that for unital (symmetric) evolution in the absence of phase backaction, an N -time correla-
tor can be expressed as a product of two-time correlators when N is even. For odd N , there is a
similar factorization, which also includes a single-time average. Theoretical predictions agree well
with experimental results for two detectors, which simultaneously measure non-commuting qubit
observables.

Introduction.—Partial and continuous quantum mea-
surements (CQMs) have recently attracted a significant
attention within the quantum information community.
They have been discussed theoretically for a long time [1–
11], and renewed interest has been motivated by the
rapid progress with superconducting qubits, which are
currently the main experimental system for realization
of CQMs [12–18]. The main contribution from the the-
ory and experiments on CQMs to fundamental aspects
of quantum physics is a clear understanding of quantum
evolution in the process of the state collapse due to mea-
surement. Besides that, we now understand quantum dy-
namics in some peculiar processes like uncollapse [19, 20]
and simultaneous measurement of non-commuting ob-
servables [21, 22]. There is also a growing interest in
the use of CQMs for quantum computing applications,
such as quantum feedback [14, 17, 23–26], rapid state pu-
rification [27], entanglement by continuous measurement
[28–30] and quantum error correction [31, 32].

A recent experiment [22] opened a way to experimen-
tal verification of theoretical predictions related to si-
multaneous measurement of non-commuting observables.
In particular, two-time correlators for the output signals
from two detectors measuring two observables of a qubit,
have been calculated in Ref. [33], and the theoretical re-
sults showed a good agreement with experimental data.
Similarly, the theoretical results for two-time state corre-
lators have been compared with experiment in Ref. [34].

In this work we again consider temporal correlations
for signals from linear detectors, simultaneously measur-
ing non-commuting observables of a qubit. However, now
the number of detectors and observables is arbitrary, ob-
servables can change in time, and we extend the previous
analysis of two-time correlators [33, 35, 36] to multi-time
correlators, thus fully describing statistics of the output
signals. Our analysis also extends the recent result [37]
for correlations between sequential infinitesimally weak
measurements in the absence of evolution.

Let us consider a qubit, which is weakly coupled to
Nd linear detectors, measuring simultaneously and con-
tinuously an arbitrary set of qubit observables σ` ≡

n`σ, where ` = 1, 2, ... Nd, the unit vector n` =
(nx,`, ny,`, nz,`) is the `th measurement axis direction on
the Bloch sphere, and σ = (σx, σy, σz) is the vector of
Pauli matrices. For the output signals I`(t) from the
detectors, the multi-time correlators of interest are

K`1`2...`N (t1, t2, ...tN ) ≡
〈
I`N (tN ) · · · I`2(t2)I`1(t1)

〉
, (1)

where averaging is over the ensemble of realizations, we
assume that the time arguments are ordered as t1 < t2 <
... < tN , and N can be smaller, equal, or larger than Nd.
As we show in this paper, for unital evolution (with sym-
metry between qubit states |0〉 and |1〉) in the absence
of phase backaction from measurement, the N -time cor-
relator (1) has a quite simple form. Rather surprisingly,
for even N it factorizes into a product of N/2 sequential
two-time correlators, so that the qubit evolution between
tN−2k and tN−2k+1 does not affect the correlator (1). For
odd N , there is a similar product, which also includes the
average signal at the earliest time, 〈I`1(t1)〉. In this paper
we also compare the theoretical predictions with exper-
imental data for a two-detector configuration similar to
Ref. [22].

Our results are useful for parameter estimation via cor-
relators (see [33]) and noise characterization as a tool
for diagnosing sources of fluctuations in multiqubit sys-
tems, with multi-observable correlators probing the dy-
namics within the whole Hilbert space. Our results are
also useful for analysis of error syndromes in quantum er-
ror correction codes based on continuous measurements.
In particular, the theory presented here has been implic-
itly used (without any discussion or formulas) in Ref. [32]
for error analysis in the four-qubit Bacon-Shor code oper-
ated with continuous measurements; the parity operators
for that code correspond to non-commuting observables
of the gauge qubit.
The quantum Bayesian formalism.—A simultaneous

continuous measurement of the qubit observables σ` pro-
duces the normalized output signals [11, 21, 38]

I`(t) = Tr[σ`ρ(t)] +
√
τ` ξ`(t) = n`r(t) +

√
τ` ξ`(t), (2)
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where the Bloch vector r = (x, y, z) for the qubit density
matrix ρ is defined via parametrization ρ = (11 + xσx +
yσy + zσz)/2 and τ` denotes the measurement (collapse)
time needed for informational signal-to-noise ratio of 1
for the `th-measurement channel. We use the Marko-
vian quantum Bayesian theory (assuming the “bad cav-
ity limit”), so the noises ξ`(t) are assumed to be white,
Gaussian and uncorrelated, with two-time correlators

〈ξ`(t) ξ`′(t′)〉 = δ``′δ(t− t′). (3)

We also assume that the quantum backaction due to mea-
surement is only of the informational type, so that there
is no phase backaction [38]; in a circuit QED experiment
this requires that the optimal microwave quadrature is
amplified by a phase-sensitive amplifier. Then the quan-
tum Bayesian equation for the qubit state evolution (in
Itô interpretation) is [10, 21, 38]

ṙ = Λens(r − rst) +

Nd∑
`=1

n` − (n`r) r
√
τ`

ξ`(t), (4)

where the second term depends on the noisy outputs
I`(t), while the first term describes ensemble-averaged
evolution, characterized by a 3×3 matrix Λens and qua-
sistationary state rst (Λens, rst, n`, and τ` can all be
time-dependent). Note that

ṙens = Λens(rens − rst), (5)

is the most general form of a linear Markovian evolu-
tion of the ensemble-averaged qubit state rens = 〈r〉,
which directly corresponds to the Lindblad-form equa-
tion [40] ρ̇ens = −(i/~)[Hq, ρens] + L[ρens], where qubit
Hamiltonian Hq describes Rabi oscillations, while L ac-
counts for environmental decoherence and measurement-
induced ensemble dephasing. In particular, the measure-
ment contributes Lm[ρ] =

∑
` Γ` [σ`ρσ` − ρ] /2, where

Γ` = 1/2η`τ` and η` is the quantum efficiency of `th
detector [21, 38].

An important special case is unital evolution, for which
rst = 0, so that a fully mixed qubit state, rens = 0,
does not evolve. Unital evolution essentially means the
symmetry between the qubit states |0〉 and |1〉. In experi-
ments with superconducting qubits this symmetry is usu-
ally broken by energy relaxation; however, there is an ap-
proximate symmetry if Rabi oscillations are much faster
than energy relaxation. In particular, in the experiment
[22] on simultaneous measurement of non-commuting ob-
servables and for the data used in this paper, the evolu-
tion of the effective qubit is practically unital [33]. Let
us denote the solution of Eq. (5) as rens(t|r0, t0), where
r0 is an initial condition at time t0. For unital evolution

rens
(
t
∣∣− r0, t0) = −rens

(
t
∣∣r0, t0). (6)

If phase backaction is included, then we need to add

into Eq. (4) the term
∑

` τ
−1/2
` K`(n` × r) ξ`(t), where

the coefficient K` parametrizes the relative strength of

phase backaction [38] (K` = tanφ`, where φ` is the angle
between the amplified and optimal quadratures). The
ensemble dephasing rate is then Γ` = (1 + K2

` )/2η`τ`.
However, as mentioned above, in this paper we assume
K` = 0.
Collapse recipe.—As shown in Section A of Supple-

mental Material [39], in the absence of phase backaction
(K` = 0, unitality is not needed), the qubit evolution
(4) leads to the following simple recipe for calculation
of the multi-time correlators (1). The correct result can
be obtained by replacing actual continuous measurement
with projective measurement of operators σ`k at time
moments tk (k = 1, 2, ... N), while the qubit evolution at
t 6= tk is replaced with the ensemble-averaged evolution.
This “collapse recipe” was proven in Ref. [35] for Nd = 1
and N = 2, and also in Ref. [33] for N = Nd = 2. In Sec-
tion A of Supplemental Material we prove it for arbitrary
N and Nd.

Using this recipe, in Eq. (1) we have 2N combinations
of discrete outcomes, I`k = ±1, each of them correspond-
ingly collapsing the qubit state to the point ±n`k on the
Bloch sphere (an eigenstate of σ`k). Each combination

contributes the value
∏N

k=1 I`k to the N -time correlator,
with the weight equal to the probability of such combi-
nation of outcomes. In this way we obtain

K`1...`N (t1, ... tN ) =
∑2N

{I`=±1}
p(I`N

∣∣I`N−1
)

× p(I`N−1

∣∣I`N−2
) · · · p(I`2

∣∣I`1) p(I`1)
∏N

k=1
I`k , (7)

where p(I`k
∣∣I`k−1

) ≡ p(I`k , tk
∣∣I`k−1

, tk−1) is the proba-
bility to obtain projective result I`k at time tk if at time
tk−1 the result was I`k−1

(for brevity we omit time mo-
ments in the notation), while p(I`1) ≡ p(I`1 , t1) is the
probability to obtain projective result I`1 = ±1 at time
t1. It is easy to see that

p(I`1) =
1 + I`1Tr[σ`1ρens(t1)]

2
=

1 + I`1n`1rens(t1)

2
,

(8)

where rens(t1) is the qubit state at the time t1. If the
qubit is prepared in a state rin at the time tin < t1, then
rens(t1) is obtained via Eq. (5). Similarly,

p(I`k |I`k−1
) =

1 + I`kn`krens(tk
∣∣I`k−1

n`k−1
, tk−1)

2
, (9)

where rens(tk
∣∣I`k−1

n`k−1
, tk−1) is the qubit state at time

tk obtained from Eq. (5) with the initial condition r =
I`k−1

n`k−1
at the time tk−1. This initial condition is due

to collapse of the qubit state by projective measurement
of σ`k−1

at the time tk−1 with result I`k−1
. Note that

while the collapse recipe is applicable to correlators, it is
not applicable to the joint probability distribution of the
continuous output signals I`k(tk), for which no formula
like Eq. (7) is possible.
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Correlator factorization for unital evolution.—Using
Eqs. (7) and (9), we can write the N -time correlator as

K`1...`N (t1, ... tN ) =
∑2N−2

{I`=±1}

∑
I`N−1

=±1
I`N−1

× n`Nrens(tN
∣∣I`N−1

n`N−1
, tN−1)

× [1 + I`N−1
n`N−1

rens(tN−1
∣∣I`N−2

n`N−2
, tN−2)]/2

× p(I`N−2

∣∣I`N−3
) · · · p(I`2

∣∣I`1) p(I`1)
∏N−2

k=1
I`k , (10)

where we separated the factors for the latest pair of mea-
surements and already summed over the result I`N = ±1
of the latest measurement. For the summation over
I`N−1

= ±1, let us use the symmetry property (6) of uni-
tal evolution, which gives rens(tN |I`N−1

n`N−1
, tN−1) =

I`N−1
rens(tN |n`N−1

, tN−1). This cancels the factor I`N−1

on the first line of Eq. (10) since I2`N−1
= 1, so summation

over I`N−1
only affects the second term in the third line,

which sums to zero. Therefore, the last two measure-
ments bring only the factor n`Nrens(tN |n`N−1

, tN−1),
which does not depend on the previous measurement re-
sults. Moreover, for unital evolution, this factor is ex-
actly the two-time correlator K`N−1`N (tN−1, tN ), as easy
to see using the collapse recipe. We emphasize that for
unital evolution the two-time correlators do not depend
on the initial state [33]. Thus, for unital evolution we
obtain factorization

K`1...`N (t1, ... tN ) = K`1...`N−2
(t1, ... tN−2)

×K`N−1`N (tN−1, tN ). (11)

Continuing this procedure, we see that for even N the
N -time correlator is a product of two-time correlators,

K`1...`N (t1, ... tN ) =
∏N/2

i=1
K`2i−1`2i(t2i−1, t2i), (12)

while for odd N the remaining factor is the average out-
put signal at t1, which depends on the initial state,

K`1...`N (t1, ... tN ) = 〈I`1(t1)〉
∏N−1

2

i=1
K`2i`2i+1

(t2i, t2i+1).

(13)

The two-time correlators do not depend on the initial
state and can be calculated by integrating Eq. (5) (with
rst = 0 for unital evolution),

K`i`k(ti, tk) = n`k

[
exp

(∫ tk

ti

Λens(t) dt

)
n`i

]
, (14)

where the exponential is time-ordered. For a time-
independent Λens, the two-time correlator (14) is obvi-
ously a function of the time difference tk − ti, while not
depending on ti.

The multi-time correlator factorization (12) and (13)
in the case of unital evolution is the main result of this
paper. Rather surprisingly, the N -time correlator does
not depend on the qubit evolution between neighboring

time moments tN−2i and tN−2i+1; in particular, the time
duration between them is not important. For even N ,
the correlator also does not depend on the initial qubit
state.

Our factorization result may seem similar to Wick’s
theorem in Gaussian field theory [41], indicating a triv-
ial correlation. However, this is not the case, since in
our problem only some specific pairwise correlators con-
tribute to Eqs. (12) and (13), while others do not. This
is a rather peculiar correlation; for example, the evolu-
tion between time moments tN−2i and tN−2i+1 obviously
affects the joint probability distribution but cancels out
in the correlator.

Note that the factorization result is somewhat simi-
lar to the result of Ref. [37] for sequential infinitesimally
weak measurements with no evolution in between. In
contrast, we show that the factorization holds for contin-
uous measurements in the presence of an arbitrary unital
evolution (but without phase backaction). If the qubit
evolution is not unital, then the N -time correlator still
can be calculated via Eq. (7) using the collapse recipe.
However, the correlator does not factorize. A recursive
relation for the N -time correlator in this case is presented
in Supplemental Material [39].

Singular contributions at coinciding times.—So far we
assumed that all time moments tk in the correlator (1)
are different. If a pair of neighboring time moments, tk
and tk+1, approach each other and they correspond to
the same detector, `k = `k+1, then we also need to add
to the correlator a singular contribution, ∝ δ(tk+1 − tk),
due to white noise in this detector – see Eq. (3). The
additional contribution will be τ`kδ(tk+1 − tk)KN−2,
where KN−2 denotes the remaining (N − 2)-time cor-
relator with the coinciding pair excluded. Similarly, if
there are two pairs of coinciding times (time-separated
from each other), which involve the same detectors,
`k = `k+1, `i = `i+1, then there will also be a contri-
bution τ`kτ`iδ(tk+1 − tk) δ(ti+1 − ti)KN−4, where KN−4
is the (N−4)-time correlator without coinciding pairs (if
`k 6= `i, then the formula is the same even if these two
pairs coincide in time). These formulas for the singular
contributions do not assume unital evolution. Note that
there is no singular contributions from three coinciding
times (with the same detector) because the noises ξ`(t)
are assumed to be Gaussian.

Comparison with experiment.—To check our theoret-
ical results for multi-time correlators, we use the data
from the experiment described in detail in Ref. [22] (two-
time correlators have been analyzed in Ref. [33]). In
this experiment, two linear detectors measure simulta-
neously and continuously the observables σz and σϕ =
σz cosϕ+σx sinϕ of a nominally non-evolving qubit, with
corresponding normalized output signals Iz(t) and Iϕ(t).
Here ϕ is the angle between the measurement axes in the
Bloch xz plane of the measured qubit; in the experiment
ϕ = nπ/10 with integer n from 0 to 10 (we neglect the
small correction ∆ϕ = 0.036 [33]). As shown in Ref. [33],
the decoherence-caused evolution of the measured effec-



4

𝑡21Γ

𝐾
𝜑
𝑧
𝜑
(Δ
𝑡 2
1
,Δ
𝑡 3
2
)

0 1 2

0

0.5

1.0

Δ𝑡32 = 0.31Γ−1

𝝋 = 𝟎

𝝋 = 𝝅/𝟓𝝋 = 𝟑𝝅/𝟏𝟎

𝝋 = 𝝅/𝟏𝟎

𝝋 = 𝟐𝝅/𝟓

(a)

Δ𝑡21 = 0.31Γ−1

𝝋 = 𝟎

𝝋 = 𝝅/𝟓

𝝋 = 𝟑𝝅/𝟏𝟎

𝝋 = 𝝅/𝟏𝟎

Δ𝑡32Γ

𝐾
𝜑
𝑧
𝜑
(Δ
𝑡 2
1
,Δ
𝑡 3
2
)

0 1 2

0

0.5

1.0

𝝋 = 𝟐𝝅/𝟓

(b)

FIG. 1. Comparison between experimental (solid lines) and
theoretical (dashed lines) three-time correlators for simultane-
ous measurement of qubit observables σz and σϕ, with ϕ being
the angle between the measurement axes on the Bloch sphere.
Upper and lower panels show the correlator Kϕzϕ(∆t21,∆t32)
as a function of the time difference ∆t21 and ∆t32, respec-
tively (see text). As predicted by theory, we see practically no
dependence on ∆t21, in contrast to a significant dependence
on ∆t32. In both measurement channels, Γ = (1.3µs)−1.

tive qubit is unital even in the presence of energy re-
laxation of the physical qubit (because of averaging over
sufficiently fast Rabi oscillations of the physical qubit,
creating the effective rotating-frame qubit). Since in the
experiment a Josephson parametric amplifier operated in
phase-sensitive mode has been used, amplifying the in-
formational (optimal) quadrature, the phase backaction
is nominally absent. Therefore, all conditions for our
factorization result for multi-time correlators, Eqs. (12)–
(14), are satisfied in the experiment.

Let us first consider the three-time correlator
Kϕzϕ(∆t21,∆t32) ≡

∫ ta+T

ta
dt1 〈Iϕ(t3) Iz(t2) Iϕ(t1)〉/T ,

where ∆t21 = t2 − t1, ∆t32 = t3 − t2, and additional
averaging over time t1 within the interval [ta, ta + T ] is
introduced to reduce fluctuations of the experimental cor-
relators. For brevity of notation, we omit dependence of
Kϕzϕ on ta and T ; in Fig. 1 we choose ta = 1µs and
T = 0.2µs. As follows from (13), Kϕzϕ(∆t21,∆t32) =

Kzϕ(∆t32)
∫ ta+T

ta
dt1 〈Iϕ(t1)〉/T , where the two-time cor-

relator Kzϕ(∆t32) and the average signal 〈Iϕ(t)〉 =
z(t) cosϕ + x(t) sinϕ can be found using the results
of Ref. [33], using the qubit initial state r(0) =
{sin(ϕ/2), 0, cos(ϕ/2)} – see Section B of Supplemental
Material [39]. Note that each measurement channel pro-
duces the measurement-induced ensemble dephasing rate
of Γ = (1.3µs)−1 in the corresponding basis. Our theory
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FIG. 2. Comparison between experimental and theoretical
four-time correlators. Panels (a) and (c) depict the depen-
dence of the correlator Kzϕzϕ(∆t21,∆t32,∆t43) on ∆t32 and
∆t21, respectively (solid lines for experimental results, dashed
lines for theory). Theory predicts no dependence on ∆t32.
Panel (b) depicts the average (circles) and standard deviation
(error bars) of the experimental correlators shown in panel
(a), averaged over ∆t32 within the range [0.5/Γ, 2.3/Γ], for
several values of ϕ. The dashed line in (b) is the theoretical
result 0.99 cos2 ϕ.

predicts no dependence of Kϕzϕ on ∆t21. In agreement
with this prediction, the experimental correlators Kϕzϕ

shown by solid lines in Fig. 1(a) for several values of ϕ, do
not exhibit a significant dependence on ∆t21. Some devi-
ations from the theory (dashed lines) at ∆t21 < 0.5 Γ−1

are probably due to slowly fluctuating offsets of the out-
put signals. In contrast, the theory predicts a significant
dependence of Kϕzϕ on ∆t32, which also agrees with ex-
perimental correlators shown in Fig. 1(b). Note that ex-
perimental three-time correlators are much noisier than
the two-time correlators discussed in Ref. [33], so the en-
semble averaging over 200,000 experimental trajectories
still produces significant fluctuations in Fig. 1 (see [39]
for details of experimental signal processing).

Next, let us consider the similar four-time correla-

tor Kzϕzϕ(∆t21,∆t32,∆t43) ≡
∫ ta+T

ta
dt1 〈Iϕ(t4) Iz(t3) ×

Iϕ(t2) Iz(t1)〉/T with ∆tij = ti − tj . As follows from Eq.
(12), Kzϕzϕ(∆t21,∆t32,∆t43) = Kzϕ(∆t21)Kzϕ(∆t43),
predicting that Kzϕzϕ should not depend on the time
difference ∆t32 (it should also not depend on ta and
T ). Figure 2(a) shows the dependence of the exper-
imental correlators Kzϕzϕ on ∆t32 for several values
of ϕ, with ∆t21 = ∆t43 = 0.15 Γ−1, ta = 1µs, and
T = 0.5µs. Indeed, we see that experimental Kzϕzϕ

fluctuate around the theoretical constant values (hori-
zontal dashed lines), except for ∆t32 < 0.5 Γ−1, where
the solid lines deviate up from the theory [probably be-
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cause of the same reason as in Fig. 1(a)]. Figure 2(b)
shows the same values of Kzϕzϕ averaged over ∆t32 (ex-
cluding ∆t32 < 0.5 Γ−1) as a function of ϕ. We see a
good agreement with the theoretical result (shown by
dashed line), K2

zϕ(∆t) = A cos2 ϕ, where A ≈ 0.99 for

∆t = 0.15 Γ−1. Figure 2(c) depicts the dependence of
the experimental correlator on ∆t21 (with fixed ∆t32 and
∆t43); we again see a good agreement with the theory.
Similar results have been obtained for the dependence
on ∆t43 (not shown). Note that the four-time correla-
tors in Fig. 2(a,c) are even noisier than the three-time
correlators in Fig. 1; in general, higher-order correlators
are increasingly noisier because of multiplication of noise
terms.

Conclusion.—We have analyzed multi-time correlators
for the output signals of linear detectors, continuously
measuring arbitrary observables of a qubit at the same

time. We have shown that an N -time correlator can
be expressed as a simple product of two-time correla-
tors for even N [Eq. (12)], while for odd N there is also
a factor equal to the average signal at the earliest time
[Eq. (13)]. This result requires the absence of the phase
backaction from continuous measurements and also re-
quires a unital ensemble-averaged evolution. Experimen-
tal results for three-time and four-time correlators show
good agreement with the theory. Our results can be used
in parameter estimation and noise detection protocols in
qubit systems, and also for development and analysis of
quantum error correction codes operating with continu-
ous measurements; for this purpose a generalization of
our theory to multiqubit systems may be needed.
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