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Physical modeling translates measured data into a physical model. Physical modeling is a major
objective in physics and is generally regarded as a creative process. How good are computers at
solving this task? Here we show that in the absence of physical heuristics, the inference of optimal
quantum models cannot be computed efficiently (unless P = NP). This result illuminates rigorous
limits to the extent to which computers can be used to further our understanding of nature.

A characterization of a physical experiment is always
at least two-fold. On the one hand, we have a description

S =
(

description of the state
)

of the state of the physical system. For instance, S can
contain a few paragraphs of text with detailed instruc-
tions for preparing that state experimentally in the lab,
or for finding it in nature.
The second part of the characterization of an experi-

ment is the description of the measurement that is per-
formed. As for the state, the measurement may be de-
scribed in terms of a short text,

M =
(

description of the measurement
)

.

M may be a complete manual for constructing the mea-
surement device we use.
Both M and S can specify temporal and spatial infor-

mation, e.g., the desired state is the state resulting from
a particular initial state after letting it evolve for 1µs.
Every experimental paper must provide M and S.
Performing the measurement M results in a measure-

ment outcome. We denote by Z the number of different
measurement outcomes. Each of the outcomes may again
be characterized in terms of a few paragraphs of text

Oz =
(

description of zth measurement outcome
)

for all z ∈ [Z] := {1, ..., Z}. Here we assume without loss
of generality that the description Oz also specifies M,
i.e., it both fully specifies the measurement device and
the way it signals ‘outcome z has been measured ’ to the
observer.
Oftentimes we do not only consider a single state S and

a single measurement
(

Oz

)

z∈[Z]
but X states

(

Sx

)

x∈[X]

and Y measurements
(

Oyz

)

z∈[Z]
(y ∈ [Y ]). For instance,

we could be interested in measuring the spin of an elec-
tron in different directions and at different times. Re-
peatedly measuring the state Sx with the measurement
My we are able to collect empirical frequency distribu-

tions (fxyz)
Z
z=1 for that particular sequence of measure-

ments. I.e., fxyz = ♯{z|xy}/Nxy where Nxy denotes the
number of times we measure Sx with My and where

♯{z|xy} denotes the number of times we see outcome Oyz

during these runs of the experiment.

To describe the experiment quantum mechanically we
need to translate the descriptions Sx and Oyz into quan-
tum states ρx and measurement operators Eyz. This cor-
responds to the task of modeling. The assignment of ma-
trices to Sx and Oyz must be such that the quantum me-
chanical predictions are compatible with the previously
measured data fxyz. By Born’s rule, tr(ρxEyz) is the
probability for measuring outcome z if we measure state
Sx with the measurement My. Hence, achieving com-
patibility between the theoretical model ρx, Eyz on the
one hand and the experimental description Sx,Oyz on
the other hand requires to searching states and measure-
ments satisfying tr(ρxEyz) ≈ fxyz for all (x, y, z) ∈ Ω.
Here, Ω ⊆ [X ] × [Y ] × [Z] marks the particular combi-
nations (x, y, z) that we have measured experimentally.
Combinations in the complement (x, y, z) ∈ Ωc are un-
known. A common pitfall to avoid is overfitting, that is,
finding an excessively complicated model that perfectly
fits the data but has no predictive power over future ob-
servations. To avoid overfitting we need to search for the
lowest-dimensional model satisfying tr(ρxEyz) ≈ fxyz. In
fact, if we placed no restriction on the dimension, then we
could fit every dataset exactly with a finite-dimensional

quantum model that does not allow for the prediction of
future measurement outcomes. For instance, we could
fit the measured data with an X-dimensional model
where ρx = |x〉〈x| and Eyz =

∑X

x=1 fxyz|x〉〈x|. Indeed,
tr(ρxEyz) = fxyz. On the other hand, if a subsystem
structure (e.g., two independent parties Alice and Bob)
is imposed then there are circumstances where datasets
cannot be modeled by finite-dimensional quantum mod-
els [1, 2].

In the remainder we are going to assume that the em-
pirical frequencies fxyz are equal to the probabilities pxyz
for measuring outcome Oyz given that we prepared Sx

and measured My. This condition is met if we can mea-
sure states Sx with measurements My an unbounded
number of times (Nxy → ∞). We will see that infer-
ence is NP-hard even in this noiseless setting where we
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want to solve

minimize d

such that ∃ d-dimensional states and measurements

satisfying pxyz = tr(ρxEyz) ∀(x, y, z) ∈ Ω.

(1)

We call problem (1) MinDim; it describes the task
of learning effective quantum models from experimental
data. Our result that MinDim is NP -hard implies that
computers are not capable of computing optimal quan-
tum models describing general experimental observations
(unless P = NP ).

NP -hardness is a term from computational complex-

ity theory which aims at classifying problems according
to their complexity. The relevant complexity measure
depends on the particular application. Here we focus on
time complexity which measures the time it takes to solve
a problem on a computer (deterministic Turing machine).
A particularly important family of problems are decision
problems. These are problems whose solution is either
yes or no. 3-coloring of graphs is a famous example. In
3-coloring (3col) we are given a graph with vertices spec-
ified by a vertex set V and with edges specified by an
edge set E. Our task is to decide whether or not it is
possible to assign colours red, green or blue to vertices
v ∈ V in such a way that vertices v, v′ are colored dif-
ferently whenever the edge (v, v′) with endpoints v, v′ is
an element of E. In this example, the specification of V
and E forms the problem instance and the criterion for
the solution yes (i.e., ‘yes, this graph is 3-colorable’) is
the so called acceptance condition. A decision problem
is specified by an acceptance condition and by a set of
problem instances.

The complexity classes P and NP have been intro-
duced to classify problems according to their complexity.
The complexity class P is the set of all decision prob-
lems whose complexity is a polynomial in the size of the
problem instances (e.g., the number of vertices in case
of 3col). The class NP is the set of problems with the
following property. Every yes-instance admits a proof
that can be checked in polynomial time. For example in
case of 3col, we can prove that a graph is 3-colorable by
providing an explicit 3-coloring of that graph; the cor-
rectness of that coloring can be verified by checking that
for all (v, v′) ∈ E, the vertices v and v′ are colored dif-
ferently.

Intuitively, a problem A is clearly harder to solve than
a problem B if any polynomial-time algorithm for A can
be used to solve B in polynomial time (we might use
the algorithm for A as a subroutine in another algorithm
to solve B). This intuition is rigorously captured in the
notion of reductions. We say that problem B is reducible
to A if there exists an algorithm A (polynomial-time)
that maps problem instances i for B to problem instances

A(i) for A in such a way that

i ‘yes’ for B ⇔ A(i) ‘yes’ for A.

Therefore, if there exists a polynomial-time algorithm to
solve A then this algorithm induces via A a polynomial
time algorithm to solve B. A problem A is NP-hard if
all problems C ∈ NP are reducible to A. For example,
3col is NP -hard [3].
A natural decision version of MinDim is the problem

Dim-d.

Dim-d. Instance: X,Y, Z ∈ N, Ω ⊆ [X ]× [Y ]× [Z] and
scalars

(

pxyz
)

x,y,z∈Ω
. Acceptance condition: there exist

d-dimensional states ρx and measurements (Eyz)z∈[Z]

such that px;yz = tr(ρxEyz) for all (x, y, z) ∈ Ω.

We note that Dim-d outputs yes if and only if the
optimal solution dMinDim of MinDim satisfies dMinDim ≤
d. Hence, MinDim is NP-hard if Dim-3 is NP -hard. In
this work, we prove the latter by reduction from 3col.
Thus, we are arriving at our main result, Theorem 1.

Theorem 1. MinDim is NP-hard.

Every experiment can be described in terms of (Sx)x
and (O)yz . Therefore, problem (1) does not make any
assumptions about the underlying quantum model. Of-
ten, however, we accept some side information about the
physical system we wish to analyze. A common postu-
late is that we measure a global state with local measure-
ments [4–7]. In this setting we want to solve the following
modification of MinDim.

minimize d

such that ∃ a d2-dimensional state ρ and d-dimensional

measurements (Eyz)z and (Fyz)z satisfying

pyzy′z′ = tr(ρEyz ⊗ Fy′z′) ∀(yzy′z′) ∈ Ω

(2)

(for some Ω ⊆ [Y ]× [Z]× [Y ′]× [Z ′]). We are referring to
problem (2) in terms of MinDim(AB); the label (AB) ref-
erences two parties, usually called Alice and Bob. Here
we prove NP -hardness of MinDim(AB) by showing that
the natural decision problem Dim-3(AB) (see the supple-
mentary material) of MinDim(AB) is NP -hard.

Theorem 2. MinDim(AB) is NP-hard.

Theorems 1 and 2 assume that the measurement prob-
abilities pxyz and pyzy′z′ are known exactly. Hence, The-
orem 1 and 2 do not allow to draw rigorous conclusions
about situations where pxyz are only known approxi-
mately. When does a physical theory qualify to be a good
physical theory? Answers provided are sometimes vague.
However, there is a consensus that predictive power is a
necessary criterion a good physical theory needs to sat-
isfy. This criterion is satisfied if models drawn from that
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theory (e.g., quantum theory) allow for the prediction of
future measurement outcomes, i.e., estimates of proba-
bilities pxyz associated to pairings (Sx,Oyz) that have
not been measured yet (i.e., (x, y, z) 6∈ Ω in problem
MinDim). For example, if x enumerates the states of
a system at different times, then we would like to be able
to predict future measurement outcomes. Therefore, con-
sidering Theorem 1 in the scenario where all probabilities
pxyz were measured beforehand (i.e., Ω = [X ]× [Y ]× [Z])
would not be very sensible because there would not be
anything left to predict. Results of hardness in this set-
ting are, however, of interest in mathematical optimiza-
tion where people study the optimal runtime of semidef-
inite program formulations of linear optimization prob-
lems [8–12].

Surprisingly, problem MinDim has only beed studied
sporadically [6, 13–20, 20, 21]. Related to MinDim is
the problem of estimating quantum processes in a way
that is robust to prepare and measure errors [22–27].
Moreover, MinDim realizes a non-commutative version
of topic models which one may want to call quantum

topic models [28]. In relation to inference of dynamics,
previous seminal work [29] showed that the identification
of dynamical laws is NP -hard. In contrast, our work does
not assume Markoviantity. Non-Markovian dynamics has
been intensively investigated in the past years; see, e.g.,
[30, 31]. Theorem 5.6 of [10] would be sufficient to prove
NP -hardness of MinDim if we were given an a priori
promise that the considered dataset (pxyz)xyz was gener-
ated by measuring pure states with rank-1 measurements.
Distinguishing these datasets from general datasets is an
interesting open problem.
In quantum state tomography we aim at inferring a

quantum state ρ after having postulated the Hilbert
space dimension and the measurement representations
Eyz. Research on quantum state tomography is more
mature than research on MinDim: efficient algorithms
are known and it is possible to report confidence regions
in situations where ρ has been measured a finite number
of times [32, 33]. Model selection [34–36] has been ap-
plied widely to overcome assumptions underlying state
tomography. It is an interesting open problem to ana-
lyze these model selection methods from the perspective
of computational complexity theory

Sketch of the proof. We prove Theorem 1 by show-
ing that Dim-3 is NP -hard. Figure 1 sketches the strat-
egy of our proof. We construct a sequence of reductions
whose composition reduces 3col to Dim-3. This suffices
to prove Theorem 1 because 3col is known to be NP -
hard [3]. Analogously, we prove Theorem 2 by showing
that the associated decision problem Dim-3(AB) is NP -
hard.

Thus, to prove Theorem 1, we need to find a
polynomial-time algorithm A that maps instances for
3col to instances of Dim-3 such that an instance i for
3col is a yes-instance for 3col if and only if A(i) is a

yes-instance for Dim-3. As suggested by figure 1, the
reduction A is the composition of several partial reduc-
tions, i.e., A = A3 ◦ A2 ◦ A1. Each of the parts A1,
A2, A3 are defined in the remainder of this section. The
reduction A0 from any problem in NP to 3col is intro-
duced in [3]. Consequently, reductions A◦A0 reduce any
problem in NP to Dim-3.
In the supplementary material we provide the analy-

sis of the algorithms Aj and the formal proof of The-
orem 1. Similarly, to prove Theorem 2 we provide a
reduction A′ = A′

3 ◦ A2 ◦ A1 from 3col to Dim-3(AB).
Here, the sub-reductions A1 and A2 are identical to the
sub-reductions used in the proof of Theorem 1. Only
the last sub-reduction A3 requires modification. That
modification A′

3 and its discussion are provided in the
supplementary material.
In the remainder we provide a short sketch of the indi-

vidual parts of the proof of Theorem 1. Following [37],
we say a matrix A ∈ C|V |×|V | fits a graph G = (V,E) if

• Ajj = 1 for all j ∈ V , and if

• Aij = 0 for all (i, j) ∈ E.

Using a key Theorem from [37] we can show in Lemma 5
(↔ reduction A1) of the supplementary material that a
graph G is 3-colorable if and only if a graph ∆(G′) (a
transformation of G) can be fitted by a Gram matrix A
with matrix rank ≤ 3.
Subsequently, we show in Lemma 6 (↔ reduction A2)

that this Gram matrix A exists if and only if there ex-
ist 3-dimensional vectors ψj such that the matrix with
elements pij := |ψ̄T

i ψj |
2 fits ∆(G′).

The transformation ∆(G′) of G is chosen such that
these vectors ψj exist if and only if there exists a 3-
dimensional quantum model with the following property:
the matrix

(

tr(ρxEyz)
)

x;yz
fits ∆(G′). This is observa-

tion forms the content of Lemma 7 (↔ reduction A3).
Checking whether or not there exists a 3-dimensional
quantummodel fitting ∆(G′) is a special instance ofDim-

3.
We thus conclude that a polynomial-time algorithm

for Dim-3 can be used for checking (in polynomial time)
whether or not a graph G is 3-colorable. The proof of
Theorem 2 proceeds along the same lines. We only need
to modify the reduction A3.
Conclusions. We have shown that optimal quantum

models cannot be computed efficiently from measured
data. We proved this claim in both the natural 1-party
(cf. Theorem 1) and the natural 2-party setting (cf. The-
orem 2). We proved NP -hardness by reducing 3-coloring
to the inference of quantum models.
What other questions remain in this field? In both

Theorem 1 and Theorem 2 we search for a quantum
model which reproduces the measured probabilities ex-
actly. Does the hardness result extend to situations
where we are satisfied with only approximating the
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measured probabilities? And which classes of data
(pxyz)(xyz)∈Ω admit efficient inference? In regard of the
latter question, it appears important to illuminate the
tradeoff between

• the relevance of the class of considered datasets
{(pxyz)(xyz)∈Ω} and

• the computational hardness of inference associated
to those datasets.

The hardness of the classical analog ofMinDim turns out
to be easier to prove as it directly reduces from the prob-
lem of computing the so called nonnegative rank which
is known to be NP -hard [38].
Added Note. After we uploaded this paper to the

arXiv, Yaroslav Shitov uploaded the independent sem-
inal preprint [39]. Yaroslav Shitov’s paper proves NP -
hardness of the real psd rank (i.e., the psd factors have
real matrix entries). If Yaroslav Shitov’s proof can be
generalized to the complex setting then Theorem 1 can
be derived as simple corollary; see Lemma 17 in [40].
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Figures

FIG. 1: Successive reduction from problems in NP to Dim-3.
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