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For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal 
emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been 
experimentally observed. There are at least two reasons for this: 1) relationships to describe the thermal radiation 
noise for an arbitrary mode structure have yet to be set forth, and 2) the mode and detector constraints necessary 
for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise 
relationships are developed for systems with any number of modes and couplings to an observing space. The 
results are shown to reproduce existing special cases of thermal emission and are then applied to resonator 
systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be 
observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low 
mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has 
particular significance because of recent advances in perfect absorption and subwavelength structures both in the 
long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few 
modes, a regime where the current theory of thermal emission fluctuations and background noise, which was 
developed decades ago for free space or single-mode cavities, has no derived solutions. 
 
PACS numbers: 44.40.+a, 42.50.Ar, 05.30.Jp, 02.50.Cw 
 

 
I. INTRODUCTION 

 
Fundamental treatments of photon noise indicate 

that thermal emission noise follows Bose-Einstein 
(BE) statistics rather than Poisson. It is often pointed 
out that BE behavior is lost or reduced in systems 
where the thermal emission interacts with many 
modes, which is a feature of almost every practical 
implementation. However, even after decades of 
advances in thermal emitters and photon and thermal 
detectors, it is still not clear that BE-like noise for 
thermal light has ever been observed [1–4]. One 
difficulty with making such an observation is that a 
thermally emitting (or detecting) cavity almost never 
perfectly couples to just one single mode. Even the 
highest finesse cavities typically interact with a large 
number of free-space or external cavity modes, which 
introduce loss and/or averaging that creates a more 
Poisson-like statistical behavior. A second difficulty is 
that systems with few interacting modes are difficult to 
treat mathematically, and a general solution for thermal 
statistics in a cavity with an arbitrary mode structure 
and coupling has only been developed recently. In this 
paper, we develop relationships describing radiation 
noise for free space and internal to microcavities. We 
further analyze in detail the possibility of observing 
BE-like photon statistics in micro-cavities and 
resonators coupled to thermal emission or detection 
systems with any arbitrary mode structure and 
coupling. 
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The quantum thermal emission law developed by 
Planck is one of the pillars of modern physics; 
however, it must be modified when applied to micro- 
and nano-systems, where the emitting or absorbing 
object has a size comparable to or less than that of a 
wavelength [5,6]. For many devices on this scale, such 
as detectors, fluctuations are even more important than 
the base level of the emission, since fluctuations set the 
ultimate ability of the device to distinguish a signal 
from the thermal radiation background. The early work 
on fluctuations [7–13] was performed decades ago on 
objects and devices interacting with either idealized 
single modes or the many modes of free space. For the 
former, photon number fluctuations appear Poisson-
like for wavelengths near to and shorter than the 
thermal emission maximum, while they follow BE-like 
statistics at very long wavelengths. As discussed 
above, the presence of many modes averages the BE 
contribution of each individual mode, resulting in 
Poisson-like fluctuations. 

A fraction of the early work on energy fluctuations 
and background noise ignored the randomizing nature 
of many mode systems and contained errors [7,9,11] 
that have propagated into later treatments and 
textbooks down to the present day [14–16]. Later 
treatments of photon statistics and radiation noise [17–
19] have handled thermal emission fluctuations for a 
few additional special cases, most notably that of a 
system with a number of uniform modes [11,12]. This 
work discussed the difficulty of a obtaining a general 
solution for a system with an arbitrary mode structure. 



Olson, et. al. [20] developed a solution for photon 
number fluctuations for an idealized arbitrary cavity 
mode structure, but did not analyze the radiation 
background noise or the conditions under which BE-
like statistics might be observed. 

Despite the progress of these many authors, there 
remains no general treatment of thermal emission 
energy fluctuations and radiation noise for objects 
interacting with an arbitrary mode structure. In 
previous decades, this was an acceptable situation 
since nearly all existing devices interacted with many 
modes. However, there are currently many structures 
and devices that have both high spectral selectivity and 
volumes comparable to or smaller than 3λ , where λ  is 
the wavelength of light. This combination of properties 
drives the number of cavity modes downward and 
makes the relative coupling of each mode to free space 
(or external cavity) modes of paramount importance. 
Recent devices with both narrow spectrum and small 
volume include microresonators [21,22], microcavity 
detectors [23,24], microcavity emitters and lasers 
[25,26], perfect absorbers [27,28], and others. Perhaps 
the most classic example is a narrow spectrum thermal 
emitter. This is shown conceptually in Fig. 1 coupled 
to a detector in (a) the same cavity, and (b) an external 
cavity, to measure the fluctuations. While the physical 
devices shown in Fig. 1 ostensibly apply to infrared 
systems, the physical treatment that we discuss applies 
equally well to terahertz (THz) systems, and the Fabry-
Perot cavity in the diagram could be replaced with an 
appropriate THz resonator. Indeed, BE noise becomes 
most clearly dominant in the single-mode thermal THz 
regime. We now turn to an analysis the nature of the 
radiation background noise that would be observed for 
a general system. 
 
 

 

 
FIG. 1 (color online). Conceptual diagram of a resonator-based 
thermal emitter that couples to a detector in (a) the same cavity and 
(b) an external cavity. 
 

II. DERIVATION AND ANALYSIS OF 
THERMAL EMISSION ENERGY FLUCTUATIONS 

WITH A SPECTRALLY DEPENDENT MODE 
STRUCTURE 

 
Thermal emission energy fluctuations result from 

time dependent variations in the number of photons 
emitted from or absorbed by a physical object at a 
temperature above absolute zero. Over a small 
frequency range, the square of the thermal emission 
energy fluctuations of an object can be expressed by 
multiplying the density of states, square of the photon 
energy, photon number variance, and volume. For a 

blackbody in free space, the mode density is νπν d
c3

28  

and the resulting equation is: 
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where 2EΔ  represents the mean squared energy 

fluctuation (variance),ν  is the photon frequency,  c  is 
the speed of light, h  is Planck’s constant, Ω  is solid 

angle, and 2nΔ  represents the total photon number 

variance. At this point, the only restriction on the 
volume, V, is that it is very large with respect to 
wavelength. Also note that 2nΔ  can be (and is) 

temperature and frequency dependent. 



At very small volumes, where V ~ 3λ , the 
distribution of cavity modes deviates substantially 
from that of free space. The exact mathematical 
treatment of the mode structure of a microcavity will 
be highly geometry dependent, but in principle one 
merely counts the number of modes of the cavity in the 
spectral range of interest and sums the product of 
energy squared and photon number variance over each 
one: 
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Since energy fluctuations increase linearly with 
volume, plots of 2EΔ  will usually be normalized by 

this factor for easier comparison across size scales. 
For an object interacting with a single optical mode, 

the photon number fluctuations satisfy Bose-Einstein 
statistics [29], such that 22

m m mn n nΔ = + , where 

mn is the average photon number in the single mode, 
m, in the volume of the system. At the opposite 
extreme is a system with many modes, where thermal 
emission photons populate the system so that the 
combined photon statistics become Poisson-like, i.e.

2n nΔ = , where 2nΔ  and n  are the photon 

number variance and average number, respectively, for 
all modes combined. Between these extremes is the 
general case of an arbitrary number of modes, most 
commonly seen in micro- and nano-cavities.  

Note that the variance represents the second 
statistical moment. Two distribution functions could 
have identical variances but differ in higher-order 
moments, such as skewness or kurtosis [29]. Therefore, 
we will use the terms, “Poisson-like” and “BE-like” in 
this paper to discuss systems with a variance near n  

or 2n n+  respectively.  
To see how this develops, we note that the average 

total number of photons must be equal to the sum of 
the averages for all of the modes, ∑=

m
mnn . This 

is true for any general emitter/absorber (not necessarily 
a blackbody). For thermal emission of a blackbody in 
equilibrium, we can use the standard equation for the 
average number of photons in a mode found in many 
thermodynamics texts [30,31]: 
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If a thermal emitter (or, equivalently, absorber) is not a 
blackbody, then this equation will be modified by the 
emissivity, i.e. the coupling strength of the graybody to 
a specific mode. The expression then becomes: 
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or equivalently, mm m BB

n nε= . If we use these 
expressions of photon number in a Bose-Einstein 
probability distribution, the photon number variance 
for a system with an arbitrary mode structure takes the 
form [20], 
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 Here Meff is the effective number of modes. As one 
would expect, Meff is a parameter that describes the 
number of modes interacting with a thermal system, 
but it differs from the simple mode number because it 
incorporates different strengths of coupling between 
the thermal emitter/absorber and each mode. For 
example, consider the discrete distribution of modes in 
Fig. 2. In Fig. 2, the interaction strength of each mode 
differs from the others. This means that the population 
of thermally emitted photons into of these modes will 
be less than predicted from Planck’s Law for that 
frequency and temperature. However, if it has a 
uniform set of modes, each mode has identical strength 
(for example, each mode with strength equal to blue 
dash line) and Meff is obtained merely by counting each 
one. 
 



 
FIG. 2 (color online). Conceptual diagram of a system of modes 
with different couplings to a thermal emitter for each mode. The 
effective mode number, Meff, must be calculated using an average 
photon number that is weighted by the coupling, or emissivity, of 
each mode (see Eqns (4) and (6)), or else theory will underestimate 
the magnitude of BE noise. Blue dash line shows a uniform 
coupling for each mode with identical strength. 
 

We can draw several critical conclusions about 
thermal emission from this analysis: 
1) As stated previously, a single mode system will 

have Bose-Einstein photon statistics while a many 
mode system in aggregate will have Poisson-like 
photon number fluctuations. However, each 
individual mode of a multiple mode system will 
have Bose-Einstein statistics, regardless of the 
system statistics in aggregate. 

2) Any random sample of the photons of a system 
with Bose Einstein statistics will also have Bose-
Einstein statistics. For example, consider a single 
mode microresonator that randomly scatters a 
small fraction of the photons propagating within it 
out into free space. These scattered photons in 
aggregate will also have BE statistics (but as will 
be discussed, a low number density may make the 
distinction between Poisson-like and BE-like 
photon number fluctuations difficult to see). 

3) Emissivity must be considered per mode prior to 
the calculation of 2nΔ . Often in the literature, 

one sees photon number fluctuations calculated 
using a modified Eqn (5), where 2nΔ  for a 

blackbody is directly multiplied by ( )Ω,νε , but 
this calculation is not correct. Granted, it has 
negligible errors at wavelengths equal to or shorter 
than the peak thermal emission wavelength, but it 
can have significant errors for individual (or few) 
modes at wavelengths significantly longer than the 
thermal emission peak. The proper expression is: 

 

22

m

2

m
         

1 1

m m

m m
hv hv
kT kT

n n n

e e

ε ε

Δ = +

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= +⎢ ⎥⎜ ⎟

− −⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑
 (7)

 
4) The frequency spacing between modes does not 

affect the photon number fluctuations except 
through the emissivity (i.e. coupling) of each mode 
and the natural frequency dependence of Planck’s 
Law. In other words, two modes separated by 1nm 
in wavelength would have the same number 
fluctuations as two separated by 2nm unless the 
emissivity or population significantly changed over 
that wavelength range. 

5) The BE-like statistics of a single mode of a many 
mode system may be difficult to distinguish from 
Poisson-like statistics. First, the spectral resolution 
necessary to see a single mode is extremely high. 
Second, since mn  is only a small fraction of n , 

the magnitude of the 
2

mn  term will be extremely 

small compared to 
2n . This is particularly true 

for common visible wavelength ranges, where the 
average population of photons in a mode as given 
by Eqn (4) is much less than 1 and distinguishing 

2
mm nn +  from mn  could be impractical. 

Conversely, a few mode system working at long 
wavelengths and elevated temperatures could 
allow BE-like statistics to be seen by sampling a 
fraction of the spectral range of the overall thermal 
system. 

6) The numbers of modes are not determined solely 
by the isolated detector or emitter volumes (if they 
are separated into different cavities), but rather by 
the total mode structure of the coupled emitter-
detector system. For example, a heated single 
mode cavity emitting toward a detector in free 
space would not be single mode for purposes of 
photon statistics and radiation noise since multiple 
free space modes will couple with the emitting 
cavity mode. 

7) Quantum vacuum fluctuations will contribute a 
large part of the overall electric field at low 
temperatures since the number of thermal photons 
will be very small. This is seen in numerous cavity 
effects, such as the Jaynes-Cummings line 
splitting[31]. However, an analysis of the thermal 
photon statistics, by necessity, utilizes the 
fluctuations in detected photon number. Since the 
vacuum fluctuations are virtual, they cannot 
themselves contribute to the number of directly 



detected photons. However, along with radiation 
reaction[32], these same vacuum fluctuations play 
a major role in stimulating thermal spontaneous 
emission transitions, which represent the n  term 

in the photon number variance 2n n+ . The 
2n term represents stimulated thermal emission. 
 

III. OBSERVING BOSE-EINSTEIN STATISTICS 
IN THERMAL EMISSION 

 
From the previous discussion, it is clear that only 

thermal systems with a single mode or few modes will 
ever be observed to have BE-like. This condition is 
usually extremely difficult to produce in practice. 
Recall the simple case of a spectrally narrow heated 
device emitting into free space, where the radiation 
noise is measured by an ideal detector. The number of 
modes in a spectral region in free space is given by 

dv
c

Vv
3

28π
. For a typical-size laboratory, where 

3(3 )V m= , and an emission wavelength and frequency 
of 5 mλ μ=  and 60THz, respectively, the spectral 
resolution of an emitting cavity would have to be 
narrower than about 2.3 x 10-5 Hz in order for the 
emitted photons to be confined to a single free space 
mode. This corresponds to a microcavity finesse on the 
order of or exceeding 1018, which is many orders of 
magnitude beyond experimentally achievable values 
[33–35]. 

Therefore, in order to have few modes, not only 
must the emitter be confined to a small volume, but the 
detector interactions with its enclosing volume, 
whether large or small, must be considered as well. 
The emitter and detector can either be confined to the 
same cavity (volume), or they can be separated into 
two coupled volumes. We will consider each case in 
turn below. 

 
A. Observing Bose Einstein radiation background 

noise within a single cavity 
 
A single cavity containing an emitter and detector 

was shown in Fig. 1(a). The diagram is of an infrared 
Fabry-Perot cavity, but for generality, it could be 
replaced with a THz resonator also containing a 
detector and emitter. This cavity is ideal, one-
dimensional, and lossless, having mirrors of 100% 
reflectivity, and the space in which it resides has 
perfectly absorbing walls and is held at absolute zero. 
This space can have any volume but to place a lower 
bound on the observability of BE-like noise, it will be 
considered infinitely large. Smaller volumes will 

confine the lateral dimensions and, because of the 
smaller mode density with create fewer interactions 
with non-cavity axis modes. With perfectly reflective 
mirrors, the finesse of the cavity is defined by the 
absorption of the emitter and detector. The detector and 
emitter have been placed between the two mirrors, for 
example, each at a different intensity peak in the 
standing wave patterns within the cavity for maximum 
coupling. Other positions within the cavity or as part of 
the mirrors are possible with appropriate adjustments 
of the coupling calculations. It is important to note that 
the cavity system may have many modes in total; 
however, the emitter and detector will interact most 
strongly through the cavity modes defined along the 
cavity axis because radiation emitted in other 
directions will be immediately absorbed by the walls of 
the already-mentioned enclosing space held at absolute 
zero. 

Let the emitter have a single-pass absorption, Α/2, 
and a temperature TE and the detector have the same 
absorption but temperature, TD. The finesse of this 

cavity can be calculated [36] to be 
A

AF −= 1π
. 

(Note that equal absorptions are merely a 
simplification and not a necessary condition for the 
analysis below.) In order to best identify energy 
fluctuations of the emitter, the detector temperature 
must be low, assisted by cryogenically cooling the 
entire cavity system to near absolute zero. The emitter 
temperature must be raised to a high value by, say, 
joule or inductive heating. We note that in reality for a 
fully confined, lossless cavity, it would be impossible 
to raise the emitter temperature by external means 
because no connection to the outside world would be 
allowed; however, for purposes of this example we will 
assume that heating takes place, for example, 
inductively via a frequency far from the resonance or 
via joule heating with wires aligned away from the 
cavity axis, so that the system can be considered 
lossless along the cavity axis over the (narrow) spectral 
absorption range of the detector. 

Some sort of external attachment to the detector is 
also necessary for both the logical reason that there 
must be some means to hold it in place and read out the 
signal and the fundamental reason that the detector 
must be cooled because in a system solely limited by 
radiation heat transfer, radiation coupling along the 
cavity axis will raise the temperature of the detector to 
levels that would make seeing the energy fluctuations 
of a single emitter mode impossible. Let us examine 
this latter point in more detail. 

The temperatures TE and TD are not independent 
because they are coupled via thermal radiation emitted 
within the cavity resonance, and the detector must 
absorb light of this frequency and direction or else the 



noise characteristics cannot be determined. If the 
cavity heat transfer is completely radiation-limited, the 
temperature of the detector can be written as a function 
of the background and emitter temperatures as: 
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where TB is the background temperature, probably 0K, 

Dε  is the emissivity of the detector into free space 
which can be a function of ν  and Ω , EDε  is the 
coupling between emitter and detector in the cavity, 
and spaceΩ  represents the solid angle distribution of 

detector emission outside the cavity, (i.e. 4 cavπ − Ω , 
where cavΩ  represents the solid angle distribution of 
the cavity modes). Note that we do not need to include 
the emitter fluctuations to the background in the 
equation because it is only the detector that is 
observing the fluctuations, so only interactions that 
couple directly to the detector are relevant. See Fig. 3 
for a conceptual diagram of the cavity geometry. The 
first term on the left hand side represents the energy 
emitted from the emitter to detector, the second term 
on the left side represents the energy emitted from the 
background to the detector, the first term on the right 
represents the energy emitted from detector to emitter, 
and the second term on the right side represents the 
emission from detector to background. Of these terms, 
the emission from detector to emitter (TD<<TE) and the 
emission from the background (TB~0K) to the detector 
can be neglected in an idealized analysis, in which case 
we can rewrite the above as: 
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We have assumed that the volume surrounding the 
open-sided cavity is large enough to be considered free 
space. This is not a necessary condition, but it does 
allow us to maximize the peripheral mode number and 
therefore minimize the equilibrium detector 
temperature in a radiation-limited system. 
 

 
FIG. 3 (color online). Diagram of the solid angles used in noise 
and radiation heat transfer calculations of a single cavity containing 
a coupled emitter and detector. 
 
 From the above equation, if we select a temperature, 
TE, for the emitter, say by introducing a joule heating 
current into the emitter plate, then we can calculate the 
steady-state detector temperature. Once we have 
determined this, we can estimate the energy 
fluctuations and radiation noise of the system. The 
detector will have two dominant sources of radiation 
noise: absorbed radiation from the emitter via the 
fundamental cavity mode, and emitted radiation from 
the detector itself due to its finite temperature, TD. This 
latter noise is emitted to all available modes, not 
merely those aligned along the cavity axis, and since 
the number of peripheral modes can be very high, they 
will usually dominate the detector emission 
fluctuations. In order to measure only the radiation 
noise in the few (or one) modes along the cavity axis, 
the emitter radiation fluctuations must greatly exceed 
the detector emitted fluctuations, 

ectoremitter
EE

det

22 Δ>>Δ . Calculating this 

condition involves integrating the energy fluctuations 
for the detector (right hand side) over all modes and 
space and then solving for TD for a given TE such that 



this is much less than the energy fluctuations of the 
emitter (left hand side) in the relevant cavity mode(s): 
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In the above expression, we have again neglected the 
background emission everywhere and detector 
emission in the main cavity modes because any 
practical solution to the above condition will require TB 
to be small and TE >> TD; therefore, the detector 
fluctuations in the cavity and the background 
fluctuations elsewhere will be negligible.  Note that the 
above expression is a conservative estimate for 
measurability because we have assumed that any 
emission outside the main cavity axis occurs into free 
space; emission into a more limited volume will 
involve a smaller mode density and thus a smaller 
contribution to energy fluctuations, improving our 
prospects of detecting BE-like noise. 
 In Fig. 4, we show solutions for Eqns (9) and (10) 
for a single mode half-wave cavity at various 
resonance wavelengths, using the condition that the 
“much greater than” symbol refers to exactly one order 
of magnitude. In this plot, we have changed the emitter 
temperature, TE, in the single mode cavity by, for 
example, introducing a controlled current to induce 
joule heating. The detector temperature is forced to a 
finite value by radiation transfer from the emitter. For 
simplicity, the background has been assumed to be at 
T=0K. At this point, we know the temperature of both 
the emitter and detector for purely radiation-limited 
heat transfer. We can now calculate from the maximum 
detector temperature that will allow the radiation 
background noise measured by the detector to be 
dominated by received radiation from the emitter, as 
predicted by Eqn (10). Domination by the emitter is 
crucial since, at a given wavelength, higher 
temperature objects will have a stronger BE component 
to their photon statistics and the emitter-detector 
coupling only covers one or a small number of modes, 
making BE statistics observable. From this data, we 
can see that at almost all elevated temperatures, the 
maximum acceptable detector temperature is lower 
than can be achieved in a radiation-limited system, 
which means that we must have some degree of 
detector cooling via heat conduction. Note that this 
conclusion is relatively independent of cavity finesse.  

In addition to the above analysis, the solutions of 
Eqns. (9) and (10) in Fig. 4 actually meet at ultra-low 
temperatures. Since the number of thermal photons in 
this regime becomes negligibly small, vacuum 
fluctuations would dominate. However, the variance 
due to virtual photons can only be considered if 
detector sampling period is within the order of lifetime 
of virtual photons [37]. Their lifetime is upper limited 
by the uncertainty principle [38] 
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where h is Planck’s constant, EΔ is the energy of 
virtual photons and tΔ  is the existing period of those 
photons. EΔ is around 0.248eV if 5 mλ μ=  , so the 
effective photon “lifetime” tΔ  is around  0.25fs. We 
will discuss this point in relation to cavity lifetime later. 

 
FIG. 4 (color online). Plots of (E) the detector temperature versus 
emitter temperature for a single isolated cavity and (ΔE2) the 
maximum detector temperature such that overall detector energy 
fluctuations are dominated by received power from the emitter (an 
order of magnitude greater than other sources). When the emitter is 
heated, it gives off radiation, some of which is absorbed by the 
detector. This raises the temperature of the detector to an 
equilibrium temperature, TD. The detector then has a radiation 
noise with contributions from fluctuations in the received emitter 
energy and the fluctuations of its own emitted energy. To observe 
BE noise, the former should dominate, and in these plots, that is not 
the case if radiation heat transfer is the only mechanism 
determining TD. Some external cooling mechanism must be used to 
meet the condition of Eqn (10). The curves are solutions for Eqns. 
(9) and (10) for a single mode half-wave cavity at various 
resonance wavelengths with AE=0.005 and AD=0.005. The cavity 
can be considered as similar to that in Fig. 1(a). 
 

Figures 6-9 quantify the radiation background 
fluctuations for a single cavity system as a function of 
emitter temperature, finesse, cavity resonant 
wavelength, and number of longitudinal modes. In 
each case, the actual energy fluctuations are compared 
to the case of a perfect Poisson system and an extreme 
BE system (where 

22 ~ nnΔ ). The data above 



establishes that, for a cavity with total isolation in one 
dimension, the primary criteria for observability for BE 
background noise in a single cavity are 1) a high 
emitter temperature, 2) an extremely long observation 
wavelength, and 3) a sufficiently low detector 
temperature relative to the emitter. 
 

 
FIG. 5 (color online). Conceptual diagram of the modes of a single 
cavity containing an emitter and detector of the type shown in Fig. 
1 (a). The simulations of Figs. 6-9 are based on variations around 
this basic cavity. TABLE I describes the layer structure in detail. 
The layers include 5.5 pairs of  3 mμ  n=2.5 and 6 mμ  n=1.25, 
135 mμ  n=1, 60nm n=2-2i, 750 mμ  n=1 (A), another 60nm n=2-2i, 
15.75 mμ  n=1, and 9.5 pairs of 3 mμ  n=2.5 and 6μm n=1.25. Here, 
a non-dispersive (constant) refractive index has been assumed for 
both the emitter and detector. A frequency-dependent refractive 
index may change the heights and/or spacings of the peaks slightly. 
 
TABLE I. Layer structure for the 5-mode single cavity of Fig. 5 at 
30 mμ . 

 Thickness (μm) Index  
5.5 pairs 3/6 2.5/1.25  

1 135 1  
1 0.06 2-2i Detector 
1 750 1 A 
1 0.06 2-2i Emitter 
1 15.75 1  

9.5 pairs 3/6 2.5/1.25  
 

 
FIG. 6 (color online). Radiation background fluctuations as a 
function of emitter temperature for an isolated single cavity 

containing an emitter and detector. The plots for n  and 
2n  

are merely to show the relative importance of each term in the 

overall noise of the system, which is based on 
2n n+ . 

TABLE I describes the layer structure. Also, adjust length of A in 
TABLE I to obtain 2

nλ  and volume. 

 

 
FIG. 7 (color online). Radiation background fluctuations as a 
function of finesse for an isolated single-mode cavity containing an 
emitter and detector. Since there is only one mode regardless of 
spectral width and the detector is at a low enough temperature that 
it does not emit significant radiation to the peripheral background, 

the fluctuations are constant. The plots for n  and 
2n  are 

merely to show the relative importance of each term in the overall 

noise of the system, which is based on 
2n n+ . TABLE I 

describes the layer structure. Also, adjust length of A in TABLE I 
to obtain 2

nλ  and volume. 

 



 
FIG. 8 (color online). Radiation background fluctuations for a 
single cavity system as a function of cavity resonant wavelength. 

Note that the actual fluctuations (
2n n+ ) are 

indistinguishable from Poisson statistics for wavelengths less than 
about 10 mμ  and only become clearly differentiated above 20 mμ . 
TABLE I describes the layer structure. Also, adjust length of A in 
TABLE I to obtain 2

nλ  and volume. 
 

 
FIG. 9 (color online). Radiation background fluctuations for a 
single cavity system as a function of longitudinal modes. In this 
plot, we have taken the same cavity system from Figs. 6-8, except 
that the length has been increased to introduce additional modes 
into the detector absorption pass band. The “Non-Uniform” curve 
represents the data of interest, while “Uniform” curve refers to a 
hypothetical system where all modes couple equally to the emitter 
and is included for comparison. TABLE I describes the layer 
structure. Also, adjust length of A in TABLE I to obtain 2

nλ  and 

volume. 
 
 Interestingly, cavity finesse is essentially irrelevant 
in the case of the isolated resonator because the 
average number of photons is determined by the 
number of modes, not the spectral width of any mode 
resonance. Spectral width is only involved when there 
is another space with modes with which the cavity 
could couple. However, cavity finesse plays a very 
important role in determining the photon lifetime of a 
system. This is important because any fluctuation in 

the mode energy is by its nature very transient. A 
deviation of the number of photons from average will 
exist on average for only a photon lifetime. This means 
that any detector hoping to see these fluctuations must 
operate with a response time on the order of the photon 
lifetime or faster. Otherwise, the noise will be observed 
as an average over many photon lifetimes, which will 
revert the statistics to Poisson-like behavior. Additional 
discussion of detectors will be delayed to later.  

On a related note, vacuum fluctuations have a 
lifetime with an upper bound given by the uncertainty 
principle, which makes their “lifetime” enormously 
shorter than the lifetime of real photons. This would 
make the vacuum variance in a thermal cavity 
essentially impossible to see. However, if one 
dispenses with low energy microsystems (i.e. thermal 
cavities as in this paper), and instead turns to an ultra-
fast, high energy system: a femtosecond laser, then one 
can actually see the effects of the vacuum field 
variance. An interesting recent work, Reference [37], 
shows that the effects of the vacuum field variance can 
be observed through the extreme nonlinearities 
produced by a high brightness femtosecond laser. Here, 
enormous electric fields are produced in a tiny volume 
for a time period much less than a single cycle of the 
emission wavelength. 
 We note that the wavelength needed to observe BE-
like noise is longer than would be expected from a 
simple calculation using Eqn (3). Instead, Eqn (4) 
must be used because of the imperfect coupling 
between the emitter and detector, EDε . The required 
long wavelengths make the isolated single cavity case 
most compatible with a THz resonator, although 
differences between Poisson and BE will be visible in 
the long-wavelength infrared as well. 

One additional question that deserves discussion is 
whether it would be possible to see BE-like noise using 
outcoupled light from a high finesse resonator via a 
coupled waveguide or scattering defect without the 
need to include a detector inside the resonator. This is 
definitely possible, but will run into the issue raised in 
conclusion 2 from our thermal emission discussion 
earlier in the paper. As one samples a photon 
population, one is reducing the number of observed 
photons to well below the actual number in a mode. 
Since the BE component of noise relies on 2n , our 
ability to distinguish BE from Poisson becomes much 
more difficult. On the other hand, a large sample 
cannot be outcoupled (at least in steady-state) from the 
primary resonator mode because this loss will then 
limit the isolation of the resonator, causing it to interact 
more strongly with the modes of the environment. 
Truly a conundrum! 



Another issue with waveguide outcoupling is that 
an extremely long length waveguide introduces many 
modes onto the propagation axis, while a shorter 
waveguide develops tunneling modes as the length 
decreases, eventually approaching near-free-space 
densities as the length becomes very short. 
 

B. Observing Bose Einstein radiation background 
noise in coupled spaces 

 
It is also possible to observe BE-like noise in two 

coupled cavities as we will now argue. Consider, the 
configuration of Fig. 1(b). Here a single mode cavity 
containing a heated emitter is coupled to an external 
observing space containing a cryogenically cooled 
detector. This detector will be assumed to cold shielded 
and filtered so that it is only responsive to the spectral 
emission of the fundamental mode of the emitter cavity. 
The detector cavity will contain many modes, the 
number of which will be determined by the size of the 
cavity, which is a variable that we will control. For 
simplicity, we will assume a cavity that has lateral 
dimensions of 2

λ  by 2
λ , but with a length of 2

nλ , 

where n is an integer that we can control to alter the 
volume of the cavity. In this system, the walls of the 
detector cavity have perfect reflectivity, Rd=1, but the 
detector itself has an absorption and is positioned as 
shown in the inset of Fig. 10 and described in TABLE 
II. The emitter cavity has a perfectly reflecting back 
mirror, Rb = 1, but a front mirror, that is, the mirror 
that couples the emitter and detector cavities, that has a 
reflectivity, Rf < 1. In this way, the two cavities are 
coupled to one another but completely isolated from 
the outside world. The single mode version of this 
coupled cavity system has a photon lifetime of 0.14ns. 

The volume (determined by length in our specific 
example) of the detector plays a dominant role in how 
many modes interact with the emitted photons and thus 
the amount of BE behavior that will be seen in the 
noise. However, Rf and the absorptions of the detector 
and emitter also have a large effect since they help 
determine the width of the resonances within the 
emission envelope, as shown in Fig. 10. In this figure, 
a system is shown where approximately five detector 
cavity modes couple at some level with the emitter 
resonance. In Fig. 10, the resonances are shown as 
extremely narrow, but these would widen if the single-
pass absorption of the detector, Ad, could be 
hypothetically increased without affecting the other 
parameters of the cavity. This concept is shown in Fig. 
11. As Ad increases, coherent interactions decrease, and 
the resonances widen. In the case of extremely high 
detector absorption, where Ad approaches 1, the width 
of the resonances that originate with the detector widen 
towards infinity and the coupling peak-to-valley 

difference (frequency dependence of coupling) 
decreases as the valley minima move towards perfect 
absorption. This effectively creates a uniform mode 
structure in the cavity system. When the detector 
resonances are very narrow compared to the emitter 
resonance, each mode couples differently, and we must 
turn to the effective mode calculation discussed 
previously in order to calculate the noise fluctuations, 
as shown in Fig. 12. Figure 13 shows the noise 
fluctuations as a function of cavity volume for the ideal 
cases of Poisson statistics, BE statistics, and uniform 
modes, and the actual case of coupled modes. Figure 
13 shows the plot for TE = 1500K at 50 mλ μ= . As 
with the single cavity case, we can see that 
distinguishing BE from Poisson statistics is still 
difficult at short infrared wavelengths. At 5 mμ , a 
difference of less than 3% is seen in a single mode 
system. At longer infrared wavelengths, however, as 
shown in Fig. 13, and into the THz range, the 
distinction between BE and Poisson is very clear if a 
single or few mode system can be created. 
 

 
FIG. 10 (color online). Conceptual diagram of the modes of two 
coupled cavities as shown in the inset. The short cavity contains the 
emitter at elevated temperature and the second cavity the detector. 
The photon lifetime of this coupled cavity system is 0.14ns. 
TABLE II describes the layer structure in detail. The layers include 
4.5 pairs of  2 mμ  n=2.5 and 4 mμ  n=1.25, 600 mμ  n=1 (A), 
40nm n=2-2i, another 600 mμ  n=1 (B), 2.5 pairs of  2 mμ  n=2.5 
and 4 mμ  n=1.25, 8 mμ  n=1.25, 1.5 pairs of  2 mμ  n=2.5 and 
4 mμ  n=1.25, 5 mμ  n=1, 20 nm n=2-2i, another 5 mμ  n=1, and 
9.5 pairs of 2 mμ  n=2.5 and 4 mμ  n=1.25. Here, a constant 
refractive index with frequency for both the emitter and detector is 
assumed. A dispersive refractive index would alter the heights 
and/or spacing of the peaks slightly. 
 
TABLE II. Layer structure for the 5-mode coupled cavity at 
20 mμ . 

 Thickness ( mμ ) Index  
4.5 pairs 2/4 2.5/1.25  

1 600 1 A



1 0.4 2-2i Detector
1 600 1 B

2.5 pairs 2/4 2.5/1.25  
1 8 1.25  

1.5 pairs 2/4 2.5/1.25  
1 5 1  
1 0.02 2-2i Emitter
1 5 1  

9.5 pairs 2/4 2.5/1.25  
 

 
FIG. 11 (color online). Plot of energy fluctuations versus detector 
absorption for a basic coupled-cavity system in the case where 5 
modes have been coupled to the detector.  The emitter cavity 
parameters are: R1=0.999, R2=1, A=0.001, 10L mμ= , and 
T=1500K. As the detector absorption increases, the coupled 
resonances become broader, effectively becoming uniform as Ad 
approaches one. 
 

 
FIG. 12 (color online). Plot of inverse effective mode number 
versus cavity volume for the basic coupled cavity of Fig.10. For 
comparison, plots of a perfect BE system (M = Meff = 1), a perfect 
Poisson system (M = Meff = ∞  ), and a uniform mode system (Meff 
= M) have been made. TABLE II describes the layer structure. Also, 

adjust length of A and B in TABLE II to obtain 
2

nλ  and 

volume. 
 

 
FIG. 13 (color online). Energy fluctuations versus cavity volume 
for a coupled cavity system with the basic structure of Fig. 10 for a 
center wavelength of 50 mμ  . For comparison, plots of a perfect 
BE system (M = Meff = 1), a perfect Poisson system (M = Meff =
∞ ), and a uniform mode system (Meff = M) have been made. 
TABLE II describes the layer structure. Also, adjust length of A 

and B in TABLE II to obtain 
2

nλ  and volume. 

 
Before concluding, it is useful to speculate on the 

chances of observing BE-like statistics in thermal 
emission. This analysis has shown that such 
observation is possible in theory. The magnitudes of 
the differences between Poisson-like and BE-like noise 
become quite significant under the right conditions. 
However, there are significant practical difficulties. 
The first involves the spectral regime. BE-like noise 
will only dominate over Poisson-like noise for emitters 
at elevated temperatures and systems operating at long 
wavelengths. For example, this paper used λ ~ 30 mμ  
and TE = 1500K, and ranges with temperatures and 
wavelengths scaled appropriately or higher/longer are 
viable. Interestingly, the finesse requirements of 
cavities or resonators are not a major factor in the 
success or failure of BE-like noise detection. 
Unfortunately, though, the materials and device 
technologies for the above wavelength ranges are not 
nearly as advanced as in the visible and near-IR. There 
are few materials that could be fabricated into modally 
isolated far-IR cavities. Possibilities include diamond 
and ionic solids such as KBr, but significant 
technological development would be necessary to 
create low-loss high reflectivity coatings and 
resonators. Metallic or metamaterial resonators in the 
THz perhaps provide a better path forward as they can 
be isolated from external world by the metal of the 
resonator itself. Small metallic losses within the 
resonator are acceptable for mode coupling as the 
finesse needs to be high enough to ensure that the 
coupling of the system is dominated by the emitter and 
detector, but not so high that finesses typical of near-IR 
microresonators are necessary. However, there are 
significant photon lifetime issues introduced by the 



finesse. As mentioned previously, any detector must be 
able to sample the photon number of the system with a 
response lifetime comparable to or faster than the 
photon lifetime. Although the photon lifetime varies 
wildly depending on the cavity design, a value on the 
order of 100ps is a reasonable working number. At 
infrared frequencies, the number of photons in a mode 
dominated by BE-like statistics will be slightly greater 
than one. (There may be several or more photons on 
average for a mode in the THz.) This means that 
detectors must be able to distinguish individual 
photons in the infrared at speeds compatible with the 
photon lifetime. This would be a difficult task even for 
cryogenically cooled telecommunications-grade 
technology; in the far-infrared and THz, such detector 
technology is not currently available. 
 

IV. CONCLUSION 
 

 In this paper, we have developed relationships to 
describe radiation background noise for micro- and 
nano-resonators that applies to any arbitrary cavity 
mode structure, including coupled systems. It is shown 
that the noise analysis of few-mode systems differs 
substantially from ideal treatments in prior art (free 
space coupling, uniform mode structure, and Poisson-
only statistics). With this theory, it has been shown that 
the photon statistics of a system of modes can be 
extracted as a sum over the statistics of the individual 
modes of the systems, weighted by coupling 
coefficients that turn out to the be the emissivities of 
each individual mode, as one would expect from 
Kirchoff’s Law. 
 The theory has been used to quantitatively analyze 
the possibility of seeing Bose-Einstein noise behavior 
in thermal emission, a process that has long been 
predicted for single mode systems but never 
experimentally observed. Both single isolated cavities 
containing an emitter and detector and coupled cavities 
with emitter and detector separated in different cavities 
have been treated. It is concluded that for emission into 
free space, the possibility of observing BE-like noise 
from micro- and nano-resonators is very low because a 
level of spectral purity is required that is far beyond 
anything that has been experimentally demonstrated to 
date. It is shown that BE-like noise can indeed be seen 
at high temperatures and long wavelengths for isolated 
and coupled cavities, but ironically, resonator finesse 
seems to play little role in these cases, as it is primarily 
the mode isolation that enables BE observability. The 
optimal wavelengths for observing BE-like noise in 
isolated and coupled cavities begin in the long-
wavelength infrared towards the transition region to 
THz; BE-like noise should be visible for single mode 

resonators and those with mode numbers less than 
approximately five. 
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