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We propose a scheme to generate macroscopic superposition states (MSSs) in spin ensembles,
where a coherent driving field is applied to accelerate the generation of macroscopic superposition
states. The numerical calculation demonstrates that this approach allows us to generate a superpo-
sition of two classically distinct states of the spin ensemble with a high fidelity above 0.97 for 300
spins. For a larger spin ensemble, though the fidelity slightly declines, it maintains above 0.84 for
an ensemble of 500 spins. The time to generate an MSS is also estimated, which shows that the
significantly shortened generation time allows us to achieve such MSSs within a typical coherence
time of the system.

I. INTRODUCTION

For a long time quantum mechanics has been con-
sidered as the theory to describe physical behaviour in
the microscopic scale, and the quantum theory has pro-
vided the framework for the development of the tech-
nologies, which clearly characterise the twenties century.
Semiconductor-based computer technology and laser are
typical examples which require quantum-mechanical un-
derstanding in the underlying physics. Our effort to ma-
nipulate quantum coherence did not however stop there,
and in the recent years it has continued to realize a longer
coherence time and a higher fidelity. As one of the con-
sequences of this development, we began to manipulate
quantum coherence in macroscopic states of matter [1].
To further penetrate this new quantum regime, it is

necessary, however, to circumvent experimental obsta-
cles for a system to behave quantum mechanically in an
even large scale. For instance, the non-classical genera-
tion of states, such as squeezed states [2] and the N00N
states [3], has its limitation in reality: squeezing becomes
too noisy when squeezing gets too large, and the suc-
cess probability or the fidelity of N00N states is plum-
meted when N gets larger. Superposition states of two
or several coherent states progressively become difficult
to generate as the coherent states approach to be orthog-
onal. These non-classical states are not only interesting
as a promising candidate for quantum technology such as
high precision measurements, but the macroscopic non-
classical states are also a route to novel quantum phe-
nomena never achievable before. To realise these states,
as the attainable precision has its own limitation even
with the best technology, it is essential to introduce a new
mechanism for quantum properties to win over its deco-
herence. In this paper, we focus on collective spin sys-
tems and show how such macroscopic non-classical states
can be generated.
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Collective spin states have been investigated in cold
atom systems such as Bose-Einstein condensates and
solid-state systems, where spins are abundant and its
inhomogeneous broadening is well suppressed. When a
state forms a superposition of two or more macroscopi-
cally distinguishable states, such as large coherent states,
it is called macroscopic superposition states (MSSs) [9].
They are also known as N -particle Greenberger-Horne-
Zeilinger (GHZ) states [7, 8], N00N states [3], or macro-
scopic quantum superposition states [4–6], depending on
what macroscopic nature we are interested in. These
states are not only interesting for their macroscopic quan-
tum behaviour, but they are also potentially applicable
to Heisenberg-limited spectroscopy [8, 10–17], quantum
computation with coherent states [18–20], and quantum
repeaters [21], as we see them playing the central role
in the implementation of quantum technology. Our pri-
mary interest in this Letter is a superposition state of two
macroscopically distinguishable spin coherent state [22],
which we refer to as a spin cat state.

In an ensemble ofN identical 1/2-spins, a spin cat state
can be generated from a separable coherent spin state
(CSS) [22] via a number of ways. A quadratic interac-
tion between spins [4–6, 15, 17, 23, 24, 26–29], the QND
interaction [30, 31], and the dispersive Tavis-Cummings
interaction [32, 33] generate these spin cat states, whereas
a series of controlled-NOT gates [10, 16, 34], or a se-
quence of spin measurements [35–37] have been proposed.
The quadratic interaction, essentially equivalent to the
sequence of the controlled-NOT gates [39, 40], shows bet-
ter scalability with respect to the number of spins. This
interaction is often called the one-axis twisting interac-
tion and is given by ĤOAT = ~χĴ2

z , where χ represents
the interaction energy and the collective spin operator is

defined as Ĵµ ≡ 1
2

∑N
j=1 σ̂

(j)
µ (µ = x, y, z) with the Pauli

operator σ̂
(j)
µ of the jth spin [41]. The Hamiltonian ĤOAT

has been implemented in ultracold 87Rb atomic gases and
trapped 9Be+ ions with N ∼ O(102−4) spins to create
squeezed spin states [42–46].

Spin cat states have been experimentally created in
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two-level systems of trapped ions [47], high-symmetry
molecules in NMR [16], and circularly polarized light [34].
These cat stats are comprised of 4-14 spins and do not
scale up to larger spin ensembles. One of the main diffi-
culties is that the cat-state preparation via the one-axis
twisting interaction ĤOAT requires an evolution time of
t = π/2χ [4–6, 15, 23, 24, 28] which is comparable to at
best or longer than the coherence time of the spin en-
semble [42–46, 49] for the number of spins larger than
N ∼ O(102). To create a macroscopic spin cat state,
one has to maintain its coherence beyond this interac-
tion time, which remains challenging.
One strategy to shorten the evolution time to cre-

ate the cat state is to utilize the transverse magnetic
field [50–52], that is, ĤLMG = ~(χĴ2

z + ΩĴx). This
Hamiltonian has been known as the Lipkin-Meshkov-
Glick Hamiltonian [53] and implemented in a cold-atomic
system to generate squeezed spin states [45, 54]. Not
only squeezed spin states but spin cat states can be ex-
pected to be created via ĤLMG within the evolution time
of t ∼ O(logN/χN); however, the fidelity to the cat state
degrades to be 0.4 ∼ 0.6 as the number of spins increases
to ∼ O(102) [52].
We here propose a scheme to apply a coherent driving

field to the spin ensemble in order to speed up the cat-
state creation via ĤOAT. We numerically demonstrate
that this scheme can generate a macroscopic superposi-
tion state with the fidelity to the ideal cat state above
0.84 for the number of spins up to 500. The time scale
to generate a cat state can be made shorter than or com-
parable to the coherence time of atomic gases.

II. MODEL AND METHOD

We consider a collective spin system consisting of N
identical 1/2 spins with two degrees of freedom | ↑〉
and | ↓〉. A single-spin state can be parametrized as

|α, β〉 ≡ cos β
2 | ↑〉 + eiα sin β

2 | ↓〉 in terms of the polar
and azimuth angles (α, β) (α ∈ (−π, π] and β ∈ [0, π]).
A CSS of the N -spin ensemble can also be expressed

in terms of α and β as |ΦCSS(J ;α, β)〉 = |α, β〉⊗2J
=

∑2J
n=0

√
2JCn cos2J−n β

2 sinn β
2 einα|J, J − n〉, where J =

N/2 represents the total spin, mCn represents the num-
ber of n combinations out of m elements, and |J,M〉 de-
notes the eigenstate of the collective spin operator Ĵz cor-
responding to the eigenvalue M . Setting |ΦCSS(J ; 0,

π
2 )〉

as the initial state, we consider the time evolution by the
Hamiltonian composed of the one-axis twisting Hamilto-
nian and the coherent driving field,

Ĥ(J ; t) = ~[χĴ2
z +ΩĴx cos (ωt+ φ)], (1)

where Ω, ω, and φ denote the driving energy, the driving
frequency, and the phase of the driving field, respectively.
Here, we define λ ≡ 2χJ and rescale the elapsed time,
the driving energy, and the driving frequency as τ ≡ λt,
r ≡ Ω/λ, and ω̃ ≡ ω/λ. Throughout the paper, r is fixed
at r = 1, while J , ω, and φ are left to be tunable. Under
the Hamiltonian (1), the initial state evolves as

|Ψ(J ; ω̃, φ; τ)〉 ≡ e−i
∫

τ

τ′=0
dτ ′h̃(τ ′) |ΦCSS(J ; 0, π/2)〉, (2)

where h̃(τ) ≡ 1
2J Ĵ

2
z + Ĵx cos (ω̃τ + φ). When ω̃ is mod-

erately slow and φ ≃ 0, we can expect the initial x-
polarized CSS to become a superposition of two CSSs,
via the highest-energy eigenstate transfer and the preser-
vation of the relative phase γ′

M between |J,±M〉 by the
time-dependent Hamiltonian in Eq. (1). The initial state
is close to the highest energy eigenstate of the Hamil-
tonian Eq. (1) for a small φ at τ = 0 and the initial
state evolves, following the highest energy eigenstate of
Eq. (1), which ends up to be a superposition of two coher-
ent spin states at a certain τ satisfying 0 < ωτ+φ . π/2.
Although the gap between the highest and the second
highest energy eigenstates closes during the process, the
relative phases γ′

M ’s are robust against the breakdown
of the adiabatic condition for the time-dependent Hamil-
tonian. This is because Eq. (1) is preserves γ′

M ’s, and
∀γ′

M = 0 for the highest energy eigenstate and the initial
state, whereas ∀γ′

M = π for the second highest energy
eigenstate, as detailed in Appendix A.
An MSS can be parametrized in terms of the super-

position phase γ in addition to α and β characterizing a
CSS as in Ref. [6]:

|ΦMSS(J ;α, β, γ)〉 ≡
1

A(J ;α, β, γ)

(

|ΦCSS(J ;α, β)〉 + eiγ |ΦCSS(J ;−α, π − β)〉
)

=
1

A(J ;α, β, γ)

2J
∑

n=0

√

2JCn cos2J−nβ

2
sinn

β

2
einα

(

|J, J − n〉+ eiγ
′ |J,−J + n〉

)

, (3)

where γ ∈ (−π, π] and (α, β, γ) 6= (0, π
2 , γ), (π, π

2 , γ).
Here, the normalisation constant A(J ;α, β, γ) is defined

as

A(J ;α, β, γ) ≡
√

2[1 + cos2Jα sin2Jβ cos (γ − 2Jα)]
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FIG. 1. (Color Online) (i) Plots of time evolution of the fidelity F (J ; ω̃, φ; τ ), the relative phase γ′
0, and the displacement

angle δ0 and (ii) the Q-functions Q(α, β) ≡ 2J+1

4π
|〈ΦCSS(J ;α, β)|Ψ(J ; ω̃, φ; τ )〉|2 corresponding to the initial state and the first

local maximum of the fidelity for J = 50, ω̃ = 0.0204π and φ = 0.024π. (i) Time dependences of F (J ; ω̃, φ; τ ), γ′
0, and δ0 are

indicated by the black solid curve, the red dashed curve, and the green dots, respectively. The yellow and red shaded regions
represent the intervals F (J ; ω̃, φ; τ ) ≥ 0.99 and δ0 ≥ 0.95π, respectively. (ii) The color at the point indicated by the polar
and azimuthal angles of (α, β) represents 4π

2J+1
Q(α,β) according to the right gauge. The time evolution of the fidelity and the

Q-functions for J = 74.5 and J = 200 are shown in Figs. 9 and 10, respectively.

FIG. 2. Total spin dependences of (i) the set of the rescaled driving frequency and the driving phase, (ii) the fidelity, (iii) the
displacement angle, and (iv) the rescaled evolution time. In the plots (i)-(iv), there are discontinuity between J = 150 and
174.5.
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=

√

2[1 + cos2Jα sin2Jβ cos γ′]. (4)

In the second expression above, we introduce a new rel-
ative phase γ′ ≡ γ − 2Jα (γ′ ∈ (−π, π]) between two Ĵz
eigenstates |J,M〉 and |J,−M〉 to characterize the MSS,
since this relative phase is the parameter relevant to in-
terferometry as shown later and detailed in Appendix C.
The displacement angle δ between two superposed CSSs
can be expressed in terms of α and β as

δ(α, β)

=π − arccos

{

1

2
[1− cos 2α+ (1 + cos 2α) cos 2β]

}

. (5)

The fidelity of the state |Ψ(J ; ω̃, φ; τ)〉 to the MSS in
Eq. (3) is obtained by

F (J ; ω̃, φ; τ)

≡ max
α,β,γ′

[|〈ΦMSS(J ;α, β, γ
′)|Ψ(J ; ω̃, φ; τ)〉|2], (6)

(α0(J ; ω̃, φ; τ), β0(J ; ω̃, φ; τ), γ
′
0(J ; ω̃, φ; τ))

≡argmax
α,β,γ′

[|〈ΦMSS(J ;α, β, γ
′)|Ψ(J ; ω̃, φ; τ)〉|2], (7)

where F (J ; ω̃, φ; τ) is numerically maximised with re-
spect to α, β, and γ′ by the basin-hopping method [56,
57]. The fidelity in F (J ; ω̃, φ; τ) in Eq. (6) for fixed ω̃
and φ has a local maximum at the rescaled elapsed time
τ = τmax as shown in Fig. 1 (i). At τmax, the Q-function
becomes a superposition of two CSSs as shown in Figs. 1
(ii). We numerically obtain τmax and the fidelity of the
first local maximum F (J ; ω̃, φ; τmax) ≡ Fmax(J ; ω̃, φ).
After τ = τmax(J ; ω̃, φ), the state maintains high fidelity
for quite a while as shown in Fig. 1 (i), which implies that
the fidelity is rather insensitive to timing in creating an
MSS via this method (see also Appendix B and Figs. 9).
We also note that γ′

0 is time-independent during the time
evolution given by Eq. (1) as shown in Fig. 1 (i), which
implies that the phase γ′

M between |J,M〉 and |J,−M〉
is preserved under the Hamiltonian in Eq. (1).

Next, in order to investigate the driving frequency
and its phase optimising the fidelity and the displace-
ment angle at τmax, we plot Fmax(J ; ω̃, φ) and dis-
placement angle δmax(J ; ω̃, φ) with respect to ω̃ and
φ for J = 50 − 250 in Appendix B. We esti-
mate ω̃ = ω̃opt(J) and φ = φopt(J) maximising
Fmax(J ; ω̃, φ) under the condition δmax(J ; ω̃, φ) > 0.4π
and plot Fopt(J) ≡ Fmax(J ; ω̃max, φmax), δopt(J) ≡
δmax(J ; ω̃opt, φopt), ω̃opt(J), φopt(J), and τopt(J) ≡
τmax(J ; ω̃opt, φopt) against the total spin J in Figs. 2.
The maximum fidelity jumps in the regime 150 ≤ J ≤
174.5, which is caused by a finite probability distribu-
tion around α = 0 and β = π/2 at τmax as shown in the
Q-functions in Figs. 10 of Appendix B.

III. NONCLASSICALITY WITNESS AND
PRECISION MEASUREMENTS

To witness the nonclassicality of the generated MSS
|Ψopt(J)〉 ≡ |Ψ(J ; ω̃opt, φopt; τopt)〉 in experiments, we
measure the parity of the spins in the x direction,
σ̂⊗N
x after rotating |Ψopt(J)〉 along the z axis by a

small angle θ, which is the same protocol as the
Heisenberg-limited measurement using maximally entan-
gled states [8]. If the state |Ψopt(J)〉 is a perfect MSS,

i.e., |ΦMSS(J ;αopt, βopt, γ
′
opt)〉, the quantum fluctuation

in the parity, 〈(∆σ̂⊗N
x )2〉 ≡ 〈(σ̂⊗N

x )2〉 − 〈σ̂⊗N
x 〉2, exhibits

fringes with respect to θ as

〈(∆σ̂⊗N
x )2〉 = 1− e−2Jθ2sin2βoptcos2(2Jθ cosβopt + γ′

opt),
(8)

whose derivation is detailed in Appendix C. On the
other hand, when the state is a mixed state of two CSSs,
〈(∆σ̂⊗N

x )2〉 = 1, i.e., no fringe can be observed as shown
in Appendix C.
We compare the fringes produced by perfect MSSs,

MSSs |Ψopt(J)〉 without spin number fluctuations,

|Ψopt(J)〉 with Gaussian number fluctuations of σ =

5% × N spins, and |Ψopt(J)〉 with uniform fluctuations

in the driving field magnitude (1 ± σ)Ω, where σ = 5%
for N = 149 and N = 400 as shown in Figs 3. In the
cold-atom experiments, the number fluctuations and the
fluctuations in Ω due to magnetic-field fluctuations may
fluctuate respectively by . 5% [45] and a few percent at
least, and they are the major noise sources that degrade
fringe visibility, while the preparation time τ , the driving
frequency ω̃, and the driving phase φ can be controlled
precisely enough. We also numerically show robustness of
fringes against the nonlinear interaction energy λ, which
is equivalent to robustness against τ , in Appendix C.
Figures 3 imply that the major noise source is the num-
ber fluctuation rather than the driving-field fluctuation;
nonetheless we still can expect to observe the nonclas-
sicality of the state even with 10% fluctuations in the
number of spins as shown in Figs. 13 of Appendix C.
The other major noise source would be the magnetic

field Bz in the z direction. The magnetic field Bz gives
rise to a linear Zeeman term pĴz in the Hamiltonian in
Eq. (1), where the linear Zeeman energy p ≡ g|µB|B with
the Landé g-factor and the Bohr magneton µB. The term
pĴz harms the preservation of the relative phases γ′

M ’s

between the two Ĵz eigenstates |J,±M〉 during the time
evolution. The linear Zeeman energy can be well con-
trolled in experiments when the driving field is switched
off; however, once it is turned on, it may be an experi-
mentally challenging to cancel the linear Zeeman energy.
The analysis of the effects of the linear Zeeman energy
and its fluctuation and how it can be circumvented are
left as future problems.
In addition to these noises, to detect the interferomet-

ric characteristics, we typically measure the spin parity
in the x direction in the single-spin resolution. In such



5

FIG. 3. (Color Online) Interference fringes of the quantum fluctuations in σ̂⊗N

x . The red solid curves and the blue dashed
curves indicate the interference fringes produced by the perfect MSS given in Eq. (8) and pure MSSs |Ψopt(J)〉, respectively.
The black dots with error bars represent the mean values and the standard variances of the quantum fluctuations in σ̂⊗N

x and
τopt of |Ψ(J ; τopt)〉 represents the optimised evolution time for J̄ . (i) (ii) The fringes produced by the MSSs with 5% of the
Gaussian fluctuations in the number of spins for N = 149 and 200. (iii) (iv) The fringes produced by the MSSs with 5% of the
uniform distribution in the magnitude of the driving field Ω.

a scenario, trapped ion systems have a clear advantage
over BECs.
The states created via our method can also be applied

to precision measurements of the rotation angle θ around
the z axis. Let us consider a frequency measurement of
fringes given by 〈(∆σ̂⊗N

x )2〉 − 1 in Eq. (8). If a perfect
MSS is created, the spectrum of the fringes are given by

TF(J ;ωθ) =
1√
2π

∫ ∞

−∞

dt(〈(∆σ̂⊗N
x )2〉 − 1)e−iωθt

=− σ

4

[

2e−
ω
2
θ

2σ2 + e−
σ
2

2 (ωθ−ω̄θ)
2

+ e−
σ
2

2 (ωθ+ω̄θ)
2

]

, (9)

where ωθ is the frequency, the standard variation σ2 ≡
1/4Jsin2β, and the mean value ω̄θ ≡ 4J cosβ. In re-
ality, however, a deterioration in the fidelity and spin-
number fluctuations cannot be ignored, and they might
wipe out the spectrum. We numerically calculate the
spectra for the optimized state |Ψopt(J)〉 without spin-
number fluctuations and the state |Ψ(J ; τopt)〉 with Gaus-

sian number fluctuations of σ = 5% × N spins for 149
spins and 400 spins. Here, we assume that the states
are rotated by θn = n∆θ, where ∆θ = 1/10ωθ and
n = 1, 2, · · · , nmax such that nmax is the maximum inte-
ger satisfying θnmax ≤ 10/σ. For each n, we perform ten
rotation-and-measurement procedures and the number of
spins varies according to the normal distribution though-
out the procedures. The mean values of 〈(∆σ̂⊗N

x )2〉 − 1
are discrete-Fourier-transformed to obtain spectra, which
are shown in Figs. 4. The discrete Fourier transform is
defined as

TF,discrete(J ;ωθ) =

nmax
∑

n=0

(〈(∆σ̂⊗N
x )2〉 − 1)e−iωθ

θn

N , (10)

which relates to Eq. (9) as

TF(J ;ωθ) ≃
√

2

π
∆θ Re [Fdiscrete(J ;ωθ)]. (11)
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FIG. 4. (Color Online) Discrete Fourier transformation of σ̂⊗N

x −1. The red solid curves and the blue dashed curves indicate the
spectra produced by the perfect MSS given in Eq. (8) and pure MSSs |Ψopt(J)〉. The black dots represent the mean values of
the spectra and τopt of |Ψ(J ; τopt)〉 represents the optimised evolution time for J̄ . The black solid lines indicate the frequencies
of the interference fringes for the perfect MSS, i.e., ω = ±4J cos β in Eq. (8). (i) (ii) The spectra produced by the MSSs with
5% of the Gaussian fluctuations in the number of spins for N = 149 and 200 at each step of rotation.

In Figs. 4, we plot
√

2/π ∆θ Re [Fdiscrete(J ;ωθ)] of the
optimized states without spin-number fluctuations and
the states |Ψ(J ; τopt)〉 with Gaussian number fluctuations
of σ = 5% × N spins and compare them with those of
the ideal MSSs given in Eq. (9). When the number of
spins is relatively small, i.e., N = 149, the state is al-
most a perfect MSS in the case without a spin-number
fluctuations, and we can expect to observe clear dips at
ωθ = ±ω̄θ. When the number of spins increases to be
N = 400, the decrease in fidelity makes the dips shal-
lower; however, they are still clearly seen. The Gaussian
number fluctuations of σ = 5%×N spins halve the depth
of dips, while their positions remain almost unchanged,
which indicates that the states created via our method
can be applied to probes of precision measurements and
sensing.

IV. DISCUSSION AND CONCLUSION

Finally we evaluate the time to generate a MSS state
and compare the generation time with the coherence
times reported in Refs. [45, 46]. First, we consider the
case of the two-level system consisting of spin up and
down states of 9Be+ ions in a two-dimensional triangular
lattice [46]. The interaction energy and the coherence
time are respectively estimated to be 26[Hz] and 11[ms]
for ∼ 130 ions. Here, the major source of decoherence
is spontaneous emission from an off-resonant laser beam
creating uniform z-z coupling between spins. For 149
spins, we can estimate the generation time for an MSS
to be ∼ 3.9[ms], which is two order of magnitude shorter
than that for the OAT interaction given by ∼ 120[ms]
and sufficiently smaller than the coherence time.

Next, we consider the two-level system consisting of
|F = 1,mF = 1〉 and |F = 2,mF = −1〉 of cold 87Rb
atoms [45]. The major source of decoherence is the atom-
number decay caused by the 1/e decay of the |2,−1〉
state, inelastic scattering, and three-body recombination.
The interaction energy and the coherence time are re-
spectively assumed to be χ ∼ 0.44[Hz] and 110[ms] for
∼ 400 atoms, whereas the coherence time for 500 spins
can be estimated as ∼ 81[ms]. In this case, the coherence
time is comparable to the MSS evolution time, which is
again two order of magnitude faster than the evolution
time t = π/χ ∼ 7.1[s] to obtain an MSS via the OAT
interaction. A stronger interaction between atoms could
make a cold atom system to be a better candidate which
shortens the MSS creation time.
The speedup on the MSS generation time tends to be

more prominent when the ensemble size gets larger, and
it can be a significant advantage of this scheme to exper-
imentally generate and test these states. These numbers
are promising for relatively large spin ensembles to form
a MSS with the current technology.
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FIG. 5. (Color Online) Dependence of the gap ∆̃(J ; τ ) between |ε1(J ; τ )〉 and |ε2(J ; τ )〉 on the phase of the driving field

ω̃optτ + φopt. (i) The gap ∆̃(J ; τ ) with respect to ω̃optτ + φopt for J = 50-250. The dots, the triangles, and the thin diamonds

mark τ = 0, τ = 0.2τopt, τ = 0.4τopt, τ = 0.6τopt, τ = 0.8τopt, τ = τopt on the curves representing ∆̃(J ; τ ). (ii) The gap

functions ∆̃(J ; τ ) for J = 50-250 coincide with each other by shifts in the phase of the driving field and enlargements (or
shrinks) of the magnitude of the gap energy.

Appendix A: Mechanism of
Macroscopic-superposition-state Creation

We discuss the time evolution of |Ψ(J ; ω̃opt, φopt; τ)〉
by the rescaled Hamiltonian to obtain the optimum MSS
|Ψopt(J)〉 given by

h̃opt(J ; τ) ≡ h̃(J ; ω̃opt, φopt; τ)

=
1

2J
Ĵ2
z + Ĵx cos (ω̃optτ + φopt), (A1)

from τ = 0 to τ = τopt at which |Ψopt(J)〉 is cre-
ated. Here, we define the highest energy eigenstate
and the second-highest energy eigenstate of h̃opt(J ; τ) as
|ε1(J ; τ)〉 and |ε2(J ; τ)〉 with the eigenenvalues ε1(J ; τ)

and ε2(J ; τ), respectively. We plot the gap ∆̃(J ; τ) ≡
ε1(J ; τ) − ε2(J ; τ) between |ε1(J ; τ)〉 and |ε2(J ; τ)〉 in
Figs. 5 and the Q-functions of these two eigenstates in
Figs. 6. The gap ∆̃(J ; τ) closes at a certain τ and the two

highest eigenstates ε1(J ; τ) and ε2(J ; τ) become states
similar to two coherent spin states (CSSs) and the phase
between them cannot be determined.
The initial state follows |ε1(J ; τ)〉 until the gap closes,

since the initial state, i.e., |ΦCSS(J ; 0,
π
2 )〉, has relatively

high population on |ε1(J ; 0)〉, whereas it does not popu-
late on |ε2(J ; 0)〉 as shown in Fig. 7. In such time evo-
lution under a gap-closing Hamiltonian, in general, the
state becomes a mixed state of the highest and the sec-
ond highest energy eigenstates after the gap closes, be-
cause the phase between these two states cannot be de-
termined. In the case of the time evolution by h̃opt(J ; τ),
however, the generated state is robust against the phase
uncertainty. The reason can be explained as follows: The
relative phases γ′

M between |J,±M〉 of both the initial
state and |ε1(J ; τ)〉 before the gap closes are 0, while γ′

M ’s
of |ε2(J ; τ)〉 are π as shown in Fig. 8. The Hamiltonian

h̃opt(J ; τ) preserves γ
′
M for all τ , since after an infinites-

imally small time evolution by ∆τ under h̃opt(J ; τ), the

phases |J,±M〉 of a state
∑J

M ′=−J aM ′ |J,M ′〉 become

〈J,M |h̃opt(J ; τ)

J
∑

M ′=−J

aM ′ |J,M ′〉 = aM

{

1− i∆τ

{

M2

2J
+

r

2

[

√

(J +M)(J −M + 1)

+
√

(J −M)(J +M + 1)
]

cos (ω̃optτ + φopt)

}}

, (A2)

〈J,−M |h̃opt(J ; τ)

J
∑

M ′=−J

aM ′ |J,M ′〉 = a−M

{

1− i∆τ

{

M2

2J
+

r

2

[

√

(J +M)(J −M + 1)
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FIG. 6. (Color Online) Time evolution of the Q-functions of |ε1(J ; τ )〉 and |ε2(J ; τ )〉 for J = 74.5 and J = 200. The color hue

represents 4π

2J+1
Q(α,β) whose gauge is the same as Figs. 1 (ii). The dotted white curves indicate the contours of h̃opt(J ; τ ) in the

mean-field limit, which is given by Ẽopt(J ;α, β; τ ) = J( 1
2
cos2β+ r cosα sin β cos (ω̃optτ + φopt)), and the values on the contours

represent 2

J
Ẽopt(J ;α, β; τ ). The solid white curves represent the energy contours Ẽopt(J ;α, β; τ ) = rJ cos (ω̃optτ + φopt).

+
√

(J −M)(J +M + 1)
]

cos (ω̃optτ + φopt)

}}

,

(A3)

so the phase between aM and a−M is preserved. There-
fore, after the gap closes, the state becomes the super-
position state of |ε1(J ; τ)〉 and |ε2(J ; τ)〉 so that γ′

M = 0
regardless of the value of the number of spin and other
parameters in the Hamiltonian in Eq. (1), and we can ex-
pect creation of an MSS via the Hamiltonian in Eq. (1)

even though the gap between the highest and the second
highest energy eigenstates closes during the time evolu-
tion.
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FIG. 7. (Color Online) The J dependence of the probability distribution of the initial state |ΦCSS(J ; 0,
π

2
)〉 on the highest

energy eigenstate |ε1(J ; 0)〉 (black solid curve with dots) and the second-highest energy eigenstate |ε2(J ; 0)〉 (red dashed curve

with triangles) of the Hamiltonian h̃(J ; 0) and the other eigenstates (blue dotted curve with thin diamonds). The probability on
|ε1(J ; 0)〉 monotonically and slowly decreases with respect to J and converges toward ∼ 0.5, while the probability on |ε2(J ; 0)〉
stays at 0. The probability distributing on the other eigenstates monotonically and slowly increases and converges toward
∼ 0.5.

FIG. 8. (Color Online) Plots of the relative phases γ′
M ’s of |ε1(J ; τ )〉 and |ε2(J ; τ )〉 as functions of τ and M

J
for (i) J = 74.5

and (ii) J = 200. The red dots and the blue triangles represent γ′
M ’s for |ε1(J ; τ )〉 and |ε2(J ; τ )〉, respectively. The righthand

sides of blue shaded planes parallel to the M

J
− γ′

M planes are the time regions where ∆̃(J ; τ ) < O(10−6), i.e., the region where
the gaps can be regarded to be closed. We note that we plot γ′

M ’s for every 5 points for J = 74.5 and for every 20 points for
J = 200 with respect to M/J for the sake of visibility of the points. For both J = 74.5 and 200, γ′

M = 0 for |ε1(J ; τ )〉 and
γ′
M = π for |ε2(J ; τ )〉 when the gaps are open. When J = 200 and the gap closes, γ′

M can be considered to be indefinite, since
the Q-functions of |ε1(J = 200; τ = τopt)〉 and |ε2(J = 200; τopt)〉 in Figs 6 imply that they are close to coherent spin states,
which are separable, and the probabilities either on |J ;±M〉 become ∼ 0.

Appendix B: MSS generation via the Hamiltonian in
Eq. (1) and parameter optimization

1. Time dependence of fidelity, relative phase, and
displacement angle

Starting from the initial state |Ψ(J ; ω̃, φ; τ = 0)〉 =
|ΦCSS(J ; 0,

π
2 )〉, the state |Ψ(J ; ω̃, φ; τ)〉 evolves under

the Hamiltonian in Eq. (1) and an MSS is formed.
We plot the fidelity F (J ; ω̃, φ; τ), the relative phase γ′

0,
and the displacement angle δ0(α0, β0), which are re-
spectively defined in Eqs. (5), (6), and (4), as func-
tions of the rescaled evolution time τ for J = 50,
J = 74.5, and J = 200 in Figs. 9. Here, in order
to obtain F (J ; ω̃, φ; τ), γ′

0, and δ0(α0, β0), the probabil-
ity |〈ΦMSS(J ;α, β, γ)|Ψ(J ; ω̃, φ; τ)〉|2 is numerically max-
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FIG. 9. (Color Online) Rescaled-time dependences of fidelity F (J ; ω̃, φ; τ ), relative phase γ′
0, and displacement angle δ0(α0, β0)

for (i) J = 74.5, and (ii) J = 200. The vertical scales on the left-hand sides and the right-hand sides are for F (J ; ω̃, φ; τ ) and
the two angles, γ′

0 and δ0(α0, β0), respectively. The black solid curves, the green dots, and the red dashed curves represent
F (J ; ω̃, φ; τ ), γ′

0, and δ0(α0, β0), respectively. The yellow shaded regions and the red shaded region with a left-right arrow
express the intervals satisfying F (J ; ω̃, φ; τ ) ≥ 0.99 and the interval where an almost perfect cat state 1√

2
(|J, J〉 + |J,−J〉) is

generated, i.e., the region with F (J ; ω̃, φ; τ ) ≥ 0.99 and δ0(α0, β0) ≥ 0.95. The Q-functions at which the black and thin dotted
lines, (a)-(e), are illustrated in Figs. 10 and τ = τmax, at which the first local maximum of the fidelity Fmax(J ; ω̃, φ) is achieved,
is indicated by the black and thin dashed line. The driving-field parameters are set to be ω̃ = 0.0204π and φ = 0.024π for
J = 50, ω̃ = 0.0174π and φ = 0.012π for J = 74.5, and ω̃ = 0.0151π and φ = −0.0128π for J = 200.

FIG. 10. (Color Online) Time evolution of the Q-functions Q(α, β) ≡ 2J+1

4π
|〈ΦCSS(J ;α, β)|Ψ(J ; ω̃, φ; τ )〉|2 for J = 50, J = 74.5,

and J = 200. The driving-field parameters are set to be the same as Figs. 9. The color at the point indicated by the polar
and azimuthal angles of (α, β) represents 4π

2J+1
Q(α, β) according to the gauge shown in Fig. 1. For J = 50, the driving field

parameters are set to be ω̃ = 0.0204π and φ = 0.024π and the snapshots are taken at the rescaled elapsed times of (a) τ = 0, (b)
4, (c) 8, (d) 12, and (d) 16. For J = 74.5 and J = 200, the driving field parameters are given by ω̃ = 0.0174π and φ = −0.012π
and ω̃ = 0.0151π and φ = −0.0128π, respectively, and the snapshots are taken at (a) τ = 0, (b) 5, (c) 10, (d) 15, and (d) 20.
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FIG. 11. (Color Online) Fidelity Fmax(J ; ω̃, φ) of the first local maximum and its corresponding displacement angle δmax(J ; ω̃, φ)
as functions of the driving-field frequency and phase, ω̃ and φ, for (i) J = 50, (ii) J = 74.5, (iii) J = 100, (iv) J = 124.5,
(v) J = 150, (vi) J = 174.5, (vii) J = 200, (viii) J = 224.5, (ix) J = 250. The z axis represent Fmax(J ; ω̃, φ) and the color
on the Fmax(J ; ω̃, φ) surface and the plane at the bottom of the plot indicate the magnitude of the displacement angle whose
gauge is shown on the right-hand side of (ix). There are two parameter regions with high fidelity with δmax(J ; ω̃, φ) & 0.4π for
J = 100-150, while δmax(J ; ω̃, φ) decreases to be δmax(J ; ω̃, φ) ∼ 0 in the region with smaller ω̃ for J = 174.5-250.
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FIG. 12. (Color Online) Plots of J dependence of the angles αopt, βopt, and γ′
opt, which are represented by the red dots, the

blue triangles, and the green thin diamonds, respectively. The relative phase γ′
opt = 0 for all J .

imized with respect to α, β, and γ′ by the basin-hopping
method [56], which finds the global minimum or max-
imum of a smooth scalar function with one or more
variables [57]. The first local maximum of the fidelity
Fmax(J ; ω̃, φ) ≡ F (J ; ω̃, φ; τmax) and its corresponding
evolution time τmax are obtained from F (J ; ω̃, φ; τ) in
Figs. 9 by the brute-force search that starts from τ = 0
in the temporal order. The obtained τmax’s are indicated
by the black and thin dashed lines in Figs. 9.

In order to visually display the MSS creation, we plot
the Q-functions of |Ψ(J ; ω̃, φ; τ)〉 at τ ’s indicated by the
black and thin dotted lines (a)-(e) of Figs. 9 in Figs. 10.
As shown in Figs. 9, at the beginning of the time evolu-
tion, the fidelity F (J ; ω̃, φ; τ) decreases, while the dis-
placement angle δ0(α0, β0) increases. In this process,
the state |Ψ(J ; ω̃, φ; τ)〉 is squeezed, which are illustrated
in the Q-functions in Figs. 10 (b). After that, the Q-
function on the Bloch sphere is bent and tore off at α = 0
and β = π

2 as we can see in Figs 10 (b)-(c), and the
two peaks of the Q-function move in the opposite di-
rections as shown in Figs. 10 (c)-(e). For J = 74.5 and
J = 200, finite portions of the probability distribution re-
main around α = 0 and β = π

2 , which causes a decrease
in the fidelity Fmax(J ; ω̃, φ) of the first local maximum.

2. Driving frequency and phase dependence of
fidelity and displacement angle

We optimize the frequency ω̃ and the phase φ of the
driving field with respect to the fidelity Fmax(J ; ω̃, φ) and
the displacement angle δmax(J ; ω̃, φ) and obtain the J

dependences of the optimized fidelity Fopt(J), the dis-
placement angle δopt(J), their corresponding driving-
field parameters ω̃opt and φopt, and the evolution time
τopt. Here, the displacement angle δopt is calculated
from αopt(J) and βopt(J). We plot Fmax(J ; ω̃, φ) and
δmax(J ; ω̃, φ) as functions of ω̃ and φ in Figs. 11 for
J = 50-250 and obtain ω̃opt and φopt by the brute-force
search such that Fopt(J) is the maximum of Fmax(J ; ω̃, φ)
with respect to ω̃ and φ in the parameter region satisfying
δopt(J) > 0.4π. Figures 11 are plotted against 51 × 51
pairs of ω̃ and φ and we do finer calculation with the
precision of ∆ω̃ = π × 10−4 and ∆φ̃ = π × 10−4 around
the peaks obtained from Figs. 11 in order to estimate
ω̃ and φ for J ≥ 150. The J dependence of αopt, βopt,
and γ′

opt are shown in Fig. 12. The plot of γ′
opt indicates

that the MSS creation via the Hamiltonian in Eq. (1) is
robust against the fluctuations in the spin number, the
driving-field frequency, and the evolution time.

Appendix C: Interferometry using MSSs

1. Idealistic case

Suppose we can prepare a perfect MSS given by
Eq. (2). The nonclassicality of the MSS can be ob-
served by the following procedure [8]: First, let an MSS
|ΦMSS(J ;α, β, γ)〉 rotate about the z axis by a small angle
θ, which results in the state |ΦMSS(J ;α, β, γ)〉θ, i.e.,

|ΦMSS(J ;α, β, γ)〉θ = e−iĴzθ|ΦMSS(J ;α, β, γ)〉. (C1)

Then, measure the parity of σ̂x of the spin ensemble:

θ〈ΦMSS(J ;α, β, γ)|σ̂⊗N
x |ΦMSS(J ;α, β, γ)〉θ =

1

A2(J ;α, β, γ)

{

2 cos [2J(θ − α)] cos2J(θ + α)sin2Jβ
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+

2J
∑

n=0

2JCncos
2(2J−n) β

2
sin2n

β

2

[

ei(2Jθ+γ′)e−2imθ + h.c.
]

}

≃1

2

2J
∑

n=0

2JCncos
2(2J−n) β

2
sin2n

β

2

[

ei(2Jθ+γ′)e−2imθ + h.c.
]

, (C2)

where A(J ;α, β, γ) is given in Eq. (4) and we neglect the
terms proportional to sin2Jβ on the right-hand side of
the last equality, since it is as small as ∼ O(10−23) in the
parameter region of N = 2J ∼ O(102) and β ∼ 0.2π that
|Ψopt(J)〉 satisfies for J = 50-250 as we plot in Fig. 12.
The parameter region also verifies another important ap-
proximation: The sum on the right-hand side of Eq. (C2)
can be well approximated by the Gaussian integral, since
the term 2JCncos

2(2J−n) β
2 sin2n β

2 in Eq. (C2) can be con-
sidered as the binomial distribution of the number of suc-
cess in a sequence of N independent trials with the suc-
cess rate of sin2 β

2 and the absolute value of its skewness
is approximately given by

|1− 2sin2 β
2 |

√

1
2 sin

2β
∼ 0.3 <

1

3
, (C3)

which indicates this binomial distribution can be well
approximated by the normal distribution. Therefore, the
expectation value of the parity of σ̂x is approximately
obtained as

θ〈ΦMSS(J ;α, β, γ)|σ̂⊗N
x |ΦMSS(J ;α, β, γ)〉θ

≃1

2

∫ ∞

−∞

dx
√

πJsin2β

{

exp

[

− (x− 2Jsin2 β
2 )

2

Jsin2β

− 2i

(

θx− Jθ − γ′

2

)]

+ h.c.

}

=e−Jθ2sin2β cos (2Jθ cosβ + γ′), (C4)

and the variance of the parity of σ̂x is given by

〈(∆σ̂⊗N
x )2〉 = 1− e−2Jθ2sin2βcos2 (2Jθ cosβ + γ′) .

(C5)

Equation (C5) implies that one can expect to observe
the fringe for the rotation angle θ satisfying |θ| .
(2Jsin2β)−1/2. This range of the rotation angle allows

us to observe about
√
2J cos2β

π sin β ∼ 0.35 ×
√
2J fringes

for β ∼ 0.2π, which implies that we can expect to ob-
serve four fringes for a J = 74.5 spin ensemble and seven
fringes for a J = 200 spin ensemble if a perfect MSS can
be prepared. We also note that the width of the single
fringe ∆θ is given by

∆θ =
π

2Jcos2β
∼ 0.76π × J−1[rad] (C6)

for β ∼ 0.2π, which implies that an MSS can be utilized
as a probe of Heisenberg-limited spectroscopy. On the

other hand, when the state is mixed, i.e.,

ρ̂mix(J ;α, β)

=
1

A2(J ;α, β, γ)
(|ΦCSS(J ;α, β)〉〈ΦCSS(J ;α, β)|

+ |ΦCSS(J ;−α, π − β)〉〈ΦCSS(J ;−α, π − β)|), (C7)

the variance of the parity of σ̂x after the rotation about
the z axis by an angle θ is given by

〈(∆σ̂⊗N
x )2〉 = 1− [cos2J(θ + α) + cos2J(θ − α)]sin2Jβ

2(1 + cos2Jα sin2Jβ cos γ′)

≃ 1, (C8)

and no fringes can be observed.

2. MSSs with spin number fluctuations

As shown in Eq. (C5) in the previous subsection, a per-
fect MSS manifests fringes of 〈(∆σ̂⊗N

x )2〉 whose width is
given by the Heisenberg-limit scaling law ∝ J−1. The
fringes generated by |Ψopt(J)〉; however, are expected to
be degraded by the imperfection of |Ψopt(J)〉. Moreover,
the number of spins in an ensemble may well have fi-
nite fluctuation in experiments, for instance, the num-
ber of atoms is fluctuating as 380 ± 15 in Ref. [45],
and the fringes may fade away, depending on the mag-
nitude of the number fluctuations. In order to investi-
gate the robustness of the fringes generated by |Ψopt(J)〉
against the imperfection of the fidelity to the perfect MSS
|ΦMSS(J ;αopt, βopt, γopt)〉 and the spin-number fluctua-
tion, we numerically calculate the fringes of 〈(∆σ̂⊗N

x )2〉
generated by |Ψopt(J)〉 whose spin number is Gaussian-
fluctuating, i.e., the probability to have N spins can be
expressed as the normal distribution P (N̄ , σ;N) with the
mean value of N̄ and the standard deviation σ given by

P (N̄, σ;N) =
1√
2πσ2

e−
(N−N̄)2

2σ2 . (C9)

In the case of Ref. [45], the mean and the standard devia-
tion of the spin number are given by N̄ = 380 and σ/J <
3.9%, respectively. In our calculation of 〈(∆σ̂⊗N

x )2〉 with
finite spin-number fluctuation, 250 pseudo-random spin
numbers with the probability density given by Eq. (C9)
are generated by the Mersenne Twister method so that
the difference between the mean spin number of Ntrial =
250 traials and N̄ in Eq. (C9) and their respective stan-
dard deviations σtrial and σ satisfy |Ntrial−N̄ | ≤ 0.01×N̄
and |σtrial − σ| ≤ 0.1× σ.
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FIG. 13. (Color Online) Fringes of
√

〈(∆σ̂⊗N
x )2〉 generated by |Ψopt(J)〉 with the spin-number fluctuations of 2% and 10%

for J̄ = 74.5 and J̄ = 200. The red solid curves and the blue dashed curves express the fringes produced by the perfect
MSS |ΦMSS(J ;αopt, βopt, γopt)〉 and |Ψopt(J)〉 without spin-number fluctuation. The black dots with the black-solid error bars
respectively represent the mean values and the standard deviations of 250 trials of fringe experiments, where the spin-number
fluctuation is given by Eq. (C9) and |Ψ(J ; τopt)〉 is prepared after the optimised evolution time τopt for J̄ .

We show the fringes for J̄ = 74.5 and J̄ = 200 without
and with the spin-number fluctuations of 2% and 10% in
Figs. 13. The fringes for the perfect MSS and |Ψopt(J̄)〉
without the spin-number fluctuation almost coincide with
each other in the case of J̄ = 74.5, when the fidelity to the
perfect MSS exceeds 0.99. On the other hand, the mag-
nitudes of the fringes generated by |Ψopt(J̄)〉 decrease in
comparison with the perfect MSS even without the spin-
number fluctuation in the case of J̄ = 200, when the fi-
delity to the perfect MSS degraded to be∼ 0.86; however,
the magnitude of the fringe created by |Ψopt(J̄)〉 is dimin-
ished more slowly than the perfect MSS with respect to
the rotation angle θ and the positions of the fringe peaks
does not change from those of the perfect MSS. Thus
we can expect to observe the fringes and make use of
it to estimate the rotation angle up to the spin number
of N = 500 at least when the number of spins can be
deterministically prepared. Figure 13 also imply the ro-
bustness against the spin-number fluctuation of . 10%.
The fringes with the spin number fluctuation of 10% is
not suitable for the rotation-angle measurement; how-

ever, they still manifest the nonclassicality, since we can

clearly see the region
√

〈(∆σ̂⊗N
x )2〉 < 1 on either side of

the first peak of
√

〈(∆σ̂⊗N
x )2〉 at θ ∼ 0.38π × J−1 given

in Eq. (C6) as shown in Figs. 13.

3. Other noise sources

The other major noise sources are the fluctuations in
the magnitude of the driving field Ω and the evolution
time topt of an MSS creation during a series of trials to
obtain fringes. Here, topt is well controllable to within
the order of ∼ µs as well as driving-field parameters ω̃
and φ whose fluctuations are negligible when the inter-
action strength is given by ∼ [Hz]; however, it can be a
major source of fluctuations when the achievable inter-
action strength gets larger to be ∼ [kHz].

The fluctuation in Ω can be caused by the fluctuation
in the energy splitting between two internal degrees of
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FIG. 14. (Color Online) Fringes of
√

〈(∆σ̂⊗N
x )2〉 generated by |Ψopt(J)〉 with the fluctuation in the driving-field magnitude

of 2% and 10% for J̄ = 74.5 and J̄ = 200. The red solid curves and the blue dashed curves express the fringes produced by
the perfect MSS |ΦMSS(J ;αopt, βopt, γopt)〉 and |Ψopt(J)〉 without the fluctuation in Ω, i.e., Ω = Ω̄. The black dots with the
black-solid error bars respectively represent the mean values and the standard deviations of 250 trials of fringe experiments
with the Ω distributed randomly between (1± σ)Ω̄.

freedom comprising a pseudo spin. We assume that Ω
uniformly distributes between [(1 − σ)Ω, (1 + σ)Ω] and
simulate the fringes produced by |Ψopt(J̄)〉 with the fluc-
tuation in Ω of 2% and 10% for J = 74.5 and J = 200 as
shown in Figs. 14. Here, we generate 250 pseudo-random
value of Ω’s, each of which are un-correlated, and ensure
that the average of Ω of the 250 trials, Ωtrial, satisfies
|Ωtrial − Ω̄| < 0.01× Ω̄. We can observe the fringes even
when Ω fluctuates 10% of its mean value.

The fluctuation in topt is equivalent to the fluctuation
in the nonlinear interaction energy λ. So, we assume that
λ has a uniform distribution between [(1− σ)λ, (1+ σ)λ]

and obtain the fringes of
√

〈(∆σ̂⊗N
x )2〉 produced by the

MSSs with random λ for N = 149 and N = 400 and for
σ/λ = 2%, 5%, and 10%. As in the case of fluctuating
Ω, we can expect to observe interference fringes when λ
or topt fluctuates 10% of its magnitude.

[1] George C. Knee, Kosuke Kakuyanagi, Mao-Chuang Yeh,
Yuichiro Matsuzaki, Hiraku Toida, Hiroshi Yamaguchi,
Shiro Saito, Anthony J. Leggett, and William J. Munro,
Nature Comm, 7, 13253 (2016).

[2] Horace P. Yuen, Phys. Rev. A 13, pp. 2226-2243 (1976).
[3] Hwang Lee, Pieter Kok, and Jonathan P. Dowling, J.

Mod. Opt. 49, pp. 2325-2338 (2002); Jonathan P. Dowl-
ing, Contemporary Phys. 49, pp. 125-143 (2008).

[4] Klaus Mølmer and Andres Sørensen, Phys. Rev. Lett.

82, pp. 1835-1838 (1999); Andres Sørensen and Klaus
Mølmer, Phys. Rev. A 62, 022311 (2000).

[5] G. J. Milburn, arXiv:9908037 [quant-ph] (1999).
[6] D. D. Bhaktavatsala Rao, Nir Bar-Gill, and Gershon

Kurizki, Phys. Rev. Lett. 106, 010404 (2011).
[7] N. D. Mermin, Phys. Rev. Lett. 65, pp. 1838-1840 (1990).
[8] J. J . Bollinger, Wayne M. Itano, D. J. Wineland, and D.

J. Heinzen, Phys. Rev. A 54, pp. R4649-R4652 (1996).
[9] Christopher C. Gerry and Rainer Grobe, J. Mod. Opt.



16

FIG. 15. (Color Online) Fringes of
√

〈(∆σ̂⊗N
x )2〉 generated by |Ψopt(J)〉 with the fluctuation in the nonlinear interaction energy

λ of 2%, 5%, and 10% for J̄ = 74.5 and J̄ = 200. The red solid curves and the blue dashed curves express the fringes produced
by the perfect MSS |ΦMSS(J ;αopt, βopt, γopt)〉 and |Ψopt(J)〉 without the fluctuation in λ, i.e., λ = λ̄. The black dots with the
black-solid error bars respectively represent the mean values and the standard deviations of 250 trials of fringe experiments
with the λ distributed randomly between (1± σ)λ̄.

44, pp. 44-53 (1997).
[10] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert,

M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, pp.
3865-3868 (1997).

[11] Agedi N. Boto, Pieter Kok, Daniel S. Abrams, Samuel L.
Braunstein, Colin P. Williams, and Jonathan P. Dowling,
Phys. Rev. Lett. 85 pp. 2733-2736 (2000).

[12] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg,
Nature 429, pp. 161-164 (2004).

[13] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J.
Chiaverini, W. M. Itano, J. D. Jost, C. Langer, D. J.
Wineland, Science 304, pp. 1476-1478 (2004)

[14] Vittorio Giovannetti, Seth Lloyd, Lorenzo Maccone, Sci-
ence 306, pp. 1330-1336 (2004).



17
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