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We give a derivation for the indirect interaction between two magnetic dipoles induced by the quantized
electromagnetic field. It turns out that the interaction between permanent dipoles directly returns to the classical
form; the interaction between transition dipoles does not directly return to the classical result, yet returns in
the short-distance limit. In a finite volume, the field modes are highly discrete, and both the permanent and
transition dipole-dipole interactions are changed. For transition dipoles, the changing mechanism is similar with
the Purcell effect, since only a few number of nearly resonant modes take effect in the interaction mediation;
for permanent dipoles, the correction comes from the boundary effect: if the dipoles are placed close to the
boundary, the influence is strong, otherwise, their interaction does not change too much from the free space
case.

I. INTRODUCTION

The interaction between particles is induced by their local
interaction with the field. This is a basic understanding in
modern physics, and should also applies for the interaction be-
tween two electric/magnetic dipoles. Thus, by controlling the
property of the electromagnetic (EM) field, one can artificially
engineer the dipole-dipole interaction [1–11], which widely
appears in many different microscopic systems, such as the
interaction between the Josephson qubit and the dielectric de-
fects [12–15], the interaction between the nitrogen-vacancy
and the nuclear spins around [16, 17], as well as the dipoles in
chemical and biology molecular [18–20].

In classical electrodynamics, the interactions between two
electric/magnetic dipoles are given by [21]

Ve =
1

4πε0

~p1 · ~p2 − 3(~p1 · êr)(~p2 · êr)
r3

,

Vm =
µ0

4π

~m1 · ~m2 − 3(~m1 · êr)(~m2 · êr)
r3

. (1)

Thus it is natural to expect such interaction can be derived
using quantum mechanics, based on the idea of the mediation
of the quantized EM field.

The field induced interaction between two electric dipoles
has been studied based on both the Heisenberg equation [22–
24] and the master equation [25, 26]. In these studies, two res-
onant electric dipoles with the same transition frequency are
concerned, and an interaction Hamiltonian Ĥe = ξ(σ̂+

1 σ̂
−
2 +

σ̂−1 σ̂
+
2 ) is derived from the mediation of the field. The interac-

tion strength ξ does not directly return to the above classical
result, but returns in the short-distance limit r/λ � 1 [27],
where r is the distance between the two dipoles, and λ is the
wavelength of the transition frequency.

Notice that there is also some conceptual difficulty when
studying the electric dipole interaction induced by the EM
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field, i.e., the static electric interaction is induced by the lon-
gitudinal modes of the EM field, which are not quantized in
the Coulomb gauge [25, 28]. If the Lorenz gauge is adopted,
some other conceptual difficulties, e.g., the negative probabil-
ity problem, also arise [29], which makes it uneasy to get a
clear picture on this problem.

On the contrast, the magnetic interaction only involves the
transverse modes of the EM field, which can be well quantized
under the Coulomb gauge, thus it could be clear to study the
magnetic dipole-dipole interaction [3, 4]. In this paper, we
give a simple derivation for this indirect interaction between
two magnetic dipoles induced by the EM field. Our derivation
goes through the following procedure:

1) First, only dipole-1 is put in the EM field, and that gen-
erates a dipole field.

2) The magnetic field contains both the vacuum field and
the dipole field, and the interaction between dipole-2 and the
dipole field leads to the dipole-dipole interaction.

Based on this idea, we obtain an interaction Hamiltonian
for the two magnetic dipoles, which is formally exact and nat-
urally has a retarded structure. After proper Markovian ap-
proximation and rotating-wave approximation (RWA), the in-
teraction reduces to a time-local one.

Here we concern both the permanent dipole and transition
dipole, which correspond to the diagonal and off-diagonal el-
ements of the dipole operator respectively. Our result shows
that, in free space, the interaction between the permanent
dipoles directly returns to the classical interaction; the inter-
action between transition dipoles has the same form with the
previous studies on electric dipole interaction [23–25], and it
does not directly return to the classical result, but returns in
the limit r/λ� 1.

We also study the dipole-dipole interaction in a finite vol-
ume, where the field modes are highly discrete. Both the per-
manent and transition dipole-dipole interactions are changed
from the free space case, but by different mechanisms. For
transition dipoles, this changing mechanism is similar with
the Purcell effect [30, 31], since only a few number of nearly
resonant modes take effect in the mediation of the interaction;
for permanent dipoles, still all the field modes take effect for
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the interaction mediation, and the correction comes from the
boundary effect: if the dipoles are placed close to the bound-
ary, the influence is strong, if they are both placed far away
from the boundary, their interaction does not change too much
from the free space case, and this is also similar with the situ-
ation in classical electrodynamics.

The paper is arranged as follows: in Sec. II, we derive the
retarded dipole-dipole interaction which is formally exact. In
Sec. III, proper approximations are made and the time-local
interaction is obtained. In Sec. IV, we study the dipole-dipole
interaction in a finite volume. Finally, we draw summary in
Sec. V. Some calculation details are presented in the Appen-
dices.

II. RETARDED INTERACTION BETWEEN TWO
MAGNETIC DIPOLES

We first consider there are two magnetic dipoles fixed in
the EM field, and the total Hamiltonian is Ĥ = Ĥ1 + Ĥ2 +
ĤEM + Ĥint. Here Ĥ1,2 are self-Hamiltonians of the two
dipoles, which are modeled as two-level systems (|gi〉, |ei〉),
and Ĥi = ~Ωi|ei〉〈ei| for i = 1, 2. ĤEM represents the Hamil-
tonian of the EM field. And Ĥint is the interaction Hamilto-
nian between the magnetic dipoles and the field (Appendix A)
[32]

Ĥint = −m̂1 · B̂(x1)− m̂2 · B̂(x2), (2)

where m̂i is the magnetic dipole operator, and xi is the po-
sition of dipole-i. The magnetic field operator, B̂(x) =

∇× Â(x), reads as

B̂(x) =
∑
k,σ

iêkσ̌Zk(âkσe
ik·x − â†kσe

−ik·x), (3)

where Zk :=
√
µ0~ωk/2V , and êkσ̌ := êk × êkσ . The index

σ̌ means the polarization direction orthogonal to êkσ .
The magnetic dipole operator should be treated more care-

fully. Generally, the dipole operator can be written as

m̂ =
(
~mee|e〉〈e|+ ~mgg|g〉〈g|

)
+
(
~meg|e〉〈g|+ h.c.

)
,

where ~mxy := 〈x|m̂|y〉 for x, y = e, g. The diagonal part
should be regarded as the permanent dipole, since it means
the expectation value of the dipole moment on each level; the
off-diagonal part is the transition dipole, which is widely dis-
cussed in radiation problems.

Therefore, for the above two dipoles, we denote m̂i =
(m̂e

i + m̂
g
i ) + m̂

T
i , where

m̂
T
i = ~mT

i (|ei〉〈gi|+ |ei〉〈gi|) := ~mT
i τ̂

T
i ,

m̂
e
i = ~me

i |ei〉〈ei| := ~me
i τ̂

e
i , (4)

m̂
g
i = ~mg

i |gi〉〈gi| := ~mg
i τ̂

g
i .

Here τ̂ T
i := |ei〉〈gi| + |ei〉〈gi| and τ̂ e(g)

i := |ei(gi)〉〈ei(gi)|
are unitless operators. A certain phase is chosen to make sure
~mT
i = 〈ei|m̂T

i |gi〉 is real. m̂
e,g
i are the permanent dipole op-

erators, where ~me
i := 〈ei|m̂|ei〉 and ~mg

i := 〈gi|m̂|gi〉 are
the permanent dipole moments on |ei〉, |gi〉 correspondingly,
and they do not have to be equal to each other. Later we will
see that the permanent and transition dipole operators indeed
show quite different behaviors in dynamics, as well as the field
induced interaction.

With these notation, the interaction Hamiltonian is rewrit-
ten as Ĥint =

∑
i,µ τ̂

µ
i B̂

µ
i for i = 1, 2 and µ = T, e, g, where

B̂µi =
∑
kσ

gµi,kσâkσ + (gµi,kσ)∗â†kσ,

gµi,kσ = −i(~mµ
i · êkσ̌)Zke

ik·xi . (5)

The coefficients gµi,kσ enclose contributions from the EM
field, the dipole moments (~mµ

i ), and the positions (xi).

Now we derive the dipole-dipole interaction induced by
field. First, considering only dipole-1 is placed in the field,
due to the interaction with dipole-1, the field dynamics is
given by the Heisenberg equation as

∂tâkσ = −iωkâkσ −
T,e,g∑
µ

i

~
(gµ1,kσ)∗ τ̂µ1 , (6)

âkσ(t) = âkσ(0)e–iωkt −
T,e,g∑
µ

i(gµ1,kσ)∗

~

∫ t

0

ds e–iωk(t–s)τ̂µ1 (s).

The first term in âkσ(t) comes from the free evolution of the
EM field, and the second term comes from the interaction with
dipole-1.

Then we put this âkσ(t) into the field operator Eq. (3), and
the magnetic field can be arranged as B̂(x, t) = B̂0(x, t) +

B̂1(x, t), where

B̂0 =
∑
kσ

iêkσ̌Zk
[
âkσ(0)eik·x−iωkt − h.c.

]
, (7)

B̂1 =
∑
kσ,µ

êkσ̌Zke
ik·x

~
(gµ1,kσ)∗

∫ t

0

ds e−iωk(t−s)τ̂µ1 (s) + h.c.

are the vacuum field and the dipole field correspondingly.

Now we consider dipole-2 is put into the field, and interacts
with the EM field via −m̂2 · B̂(x2). The dipole-dipole in-
teraction is induced by the dipole field B̂1(x, t), which gives
(denoting s′ := t− s)
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Ĥ12 = −m̂2 · B̂1(x2) =
∑
kσ,µν

− i
~

(gµ1,kσ)∗gν2,kσ

∫ t

0

ds e−iωk(t−s)τ̂µ1 (s)τ̂ν2 (t) + h.c.

=

P,T∑
µν

− i
~

∫ t

0

ds′
(∫ ∞

0

dω

2π

[
Jµν12 (ω)e−iωs

′
− Jµν21 (ω)eiωs

′])
τ̂µ1 (t− s′)τ̂ν2 (t). (8)

Here Jµνij (ω) := 2π
∑

kσ(gµi,kσ)∗gνj,kσδ(ω − ωk) is the cou-
pling spectral density (i, j = 1, 2, and µ, ν = T, e, g) [33, 34],
which is adopted to convert the summation into an integral.

We should also consider the reverse procedure, i.e., first put
dipole-2 in the field, then consider the interaction between
dipole-1 and the field generated by dipole-2. That gives a
Hamiltonian Ĥ21, and the complete dipole-dipole interaction
should be (Ĥ12 + Ĥ21)/2.

Up to now, Ĥ12 [Eq. (8)] is an exact result, and quite nat-
urally, it has a retarded form, which indicates the interaction
between the two dipoles is not instantaneous. This Hamilto-
nian contains interaction of both the permanent and transition
dipoles, and the transition frequencies do not have to be reso-
nant with each other.

III. TIME-LOCAL INTERACTION

Here we further adopt several approximations to get a time-
local interaction. Since Eq. (8) is already in the 2nd order of
the interaction strength gµi,kσ , approximately we only keep the
0-th order of τ̂ T,e,g

i (t) which is governed by Ĥi = ~Ωi|ei〉〈ei|,
and that is (considering the resonance case Ω1 = Ω2 := Ω)
[23]

τ̂
e(g)
i (t) ' τ̂ e(g)

i , τ̂ T
i (t) ' τ̂−i e

−iΩt + τ̂+
i e

iΩt, (9)

where τ̂−i := |gi〉〈ei| and τ̂+
i := |ei〉〈gi|.

Clearly, the permanent and transition dipoles show quite
different behaviors in dynamics. The transition dipole con-
tains a rotation with frequency Ω, but the permanent dipoles
τ̂ e,gi (t) are “static” and independent of time, since they only
contains diagonal elements. Or we can also regard them as
rotating with zero frequency. Below we will see such a dis-
tinction in their dynamics also influences the behavior when
they exchange interactions through the field.

We apply RWA to the term τ̂µ1 (t − s′)τ̂ν2 (t) [33–35],
and omit the fast-oscillating terms with coefficients e±iΩt or
e±2iΩt, then the remaining terms are τ̂+

2 τ̂
−
1 e

iΩs′ , τ̂−2 τ̂
+
1 e
−iΩs′

and τ̂x1 τ̂
y
2 (x, y = e, g). The first two terms describe the tran-

sition dipole interaction, and the third one describes the per-
manent dipole interaction. Again we see they contains the
oscillating frequency of Ω and 0 respectively.

Transition dipole: We first look at the interaction between
transition dipoles. Put τ̂+

2 τ̂
−
1 e

iΩs′ , τ̂−2 τ̂
+
1 e
−iΩs′ into Eq. (8),

and that gives

ĤT
12 = − i

~

∫ t

0

ds′
∫ ∞

0

dω

2π

[
J TT

12(ω)e−iωs
′
− J TT

21(ω)eiωs
′]

× (τ̂+
2 τ̂
−
1 e

iΩs′ + τ̂−2 τ̂
+
1 e
−iΩs′). (10)

Usually the dipole-dipole interaction is established after very
short time, thus the upper limit of the above time integral can
be extended to∞ (Markovian approximation) [36, 37]. After
the time integration, we obtain ĤT

12 = ξT(τ̂+
2 τ̂
−
1 + τ̂−2 τ̂

+
1 ) 1,

where the interaction strength ξT is obtained by substituting
the coupling spectral density for the EM field into the above
integral, and that gives [here we have J TT

12(−ω) = −J TT
12(ω),

and J TT
12(ω) = J TT

21(ω), see Appendix B]

ξT = −
∫ ∞
−∞

dω

2π~
J TT

12(ω)

ω − Ω
(11)

=
µ0

4πr3

{
−
[
~mT

1 · ~mT
2 − (~mT

1 · êr)(~mT
2 · êr)

]
x2

Ω cosxΩ

+
[
~mT

1 · ~mT
2 − 3(~mT

1 · êr)(~mT
2 · êr)

]
(cosxΩ − xΩ sinxΩ)

}
.

Here we denote xΩ := 2πr/λ, r := |x2 − x1| is the dis-
tance between the two dipoles, and λ is the wavelength of the
transition frequency Ω. In the short-distance limit r/λ → 0,
this interaction strength ξT returns to the same form with the
classical result [Eq. (1)]. This is the same with the situation
in previous studies about the field induced dipole-dipole in-
teraction where two resonant electric transition dipoles were
concerned [23–26].

Permanent dipole: Now we consider the remaining terms
τ̂x1 τ̂

y
2 (x, y = e, g) of RWA, which indicate the permanent

dipole interactions. Following the same approach as above,
the interaction Hamiltonian gives Ĥxy

12 = ξxy τ̂x1 τ̂
y
2 , where the

interaction strength ξxy is (x, y = e, g)

ξxy =−
∫ ∞
−∞

dω

2π~
Jxy12 (ω)

ω

=
µ0

4πr3

[
~mx

1 · ~m
y
2 − 3(~mx

1 · êr)(~m
y
2 · êr)

]
. (12)

This integral can be also regarded as setting Ω = 0 in Eq. (11),
since the permanent dipoles are “static” and do not oscillate,
as we mentioned before (the rotating frequency is 0).

1 Here we need the formula
∫∞
0 dt ei(ω−Ω)t = πδ(ω − Ω) + iP 1

ω−Ω
.
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Therefore, the interaction between the two permanent
dipoles is

Ĥxy
12 =

µ0

4πr3

[
m̂
x
1 · m̂

y
2 − 3(m̂x

1 · êr)(m̂
y
2 · êr)

]
, (13)

for x, y = e, g. Remember m̂
e
i = ~me

i |ei〉〈ei| and m̂
g
i =

~mg
i |gi〉〈gi| are the dipole operators for |ei〉 and |gi〉 respec-

tively, and the values ~me
i and ~mg

i do not have to equal to each
other. Ĥxy

12 describes the permanent dipole-dipole interaction
when the two dipoles stay in states |x〉 and |y〉 respectively,
and it has exactly the same form with the classical magnetic
dipole-dipole interaction [Eq. (1)].

Notice that the above derivation process also implies that
this interaction does not relies on the state of the EM field,
e.g., whether it is in a thermal state or squeezed state. The gen-
eralization to multilevel systems is straightforward. This re-
sult indicates that the diagonal part of the dipole operator cor-
responds to classical physics, and the off-diagonal part con-
tains quantum corrections.

IV. INTERACTION IN A FINITE PERIODIC BOX

We have shown that the interaction between two remote
dipoles can be derived through their interaction with the EM
field. Especially, the interaction between permanent dipoles
exactly returns to the classical result. Then an intriguing ques-
tion arises: if the property of the EM field is changed, whether
the dipole-dipole interaction can be changed.

Here we consider that the two dipoles are confined in a box
with a finite volume V = L3, and the modes of the EM field
are highly discrete. This can be realized by 3D metal cav-
ity in experiments [13, 14]. For simplicity, here we consider
a box geometry with periodic boundary condition, thus, the
coupling strengths gµi,kσ are the same with the above calcula-
tions.

The derivation for the dipole-dipole interaction follows the
same way as the above procedure, but we should pause at the
first line of Eq. (8), where the summation cannot be turned into
integral now. After RWA and Markovian approximation as
before, we still obtain permanent/transition dipole-dipole in-
teractions as Ĥxy

12 = ξxy τ̂x1 τ̂
y
2 and ĤT

12 = ξT(τ̂+
2 τ̂
−
1 + τ̂−2 τ̂

+
1 ),

except the coupling strengths should be recalculated.

Permanent dipole: We first look at the interaction of perma-
nent dipoles Ĥxy

12 = ξxy τ̂x1 τ̂
y
2 (x, y = e, g). After the time

integration as above, the interaction strength ξxy is given by
(r := x2 − x1)

ξxy =
∑
k,σ

−
(gx1,kσ)∗gy2,kσ

~ωk
+ h.c. (14)

=
∑
k6=0

− µ0

2V

[
~mx

1 · ~m
y
2 + (~mx

1 · ∇r)(~m
y
2 · ∇r)

1

k2

]
eik·r + h.c.

Utilizing the normalization relation of eik·r inside the periodic

Figure 1. (Color online) Demonstration for the boundary condition
of Eq. (17). The influence of the periodic boundary condition can
be equivalently replaced by the point “charge” lattice in free space,
which is similar like the method of image charges.

box 2, the first term in the above summation leads to

−µ0 ~m
x
1 · ~m

y
2

[∑
k6=0

eik·r

V

]
=
µ0

V
~mx

1 · ~m
y
2

[
1−V δ(3)(r)

]
. (15)

The second summation term can be calculated by−µ0(~mx
1 ·

∇r)(~m
y
2 · ∇r)χP(r), where

χP(r) =
∑
k6=0

1

k2

eik·r

V
(16)

is a generation function. For a finite volume, the field modes
are discrete, still the summation in χP(r) cannot be turned into
integral. Notice that the generation function χP(r) is a peri-
odic function χP(r) = χP(r+rn), where rn := L(nx, ny, nz)
is a periodicity vector (ni are integers), and it satisfies the fol-
lowing differential equation

∇2χP(r) = −
∑
k6=0

eik·r

V
= −

∑
n

δ(3)(r− rn) +
1

V
. (17)

Here χP(r) can be regarded as an “electric potential” in free
space, with−

∑
δ(3)(r−rn) as negative “charges” at rn, and

1/V as a homogenous positive “background” (Fig. 1). Thus,
the solution of the above equation is

χP(r) =
∑
n

1

4π

−1

|r− rn|
+

r2

2V
. (18)

Therefore, the permanent dipole interaction strength is

ξxy =
µ0 ~m

x
1 · ~m

y
2

V
− µ0(~mx

1 · ∇r)(~m
y
2 · ∇r)χP(r) (19)

=
µ0

4π

∑
n

~mx
1 · ~m

y
2 − 3(~mx

1 · êδrn)(~my
2 · êδrn)

|∆rn|3
,

2 Notice that {ϕk|ϕk(r) = eik·r/
√
V } is an orthonormal set, and the

wavefunction δ(3)(r) can be expanded as δ(3)(r) =
∑

k αkϕk(r) with
αk = 1/

√
V .
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Figure 2. (Color online) Numerical estimation for the dipole-
dipole interaction strength in a finite volume [Eq. (19)] compar-
ing with the free space result. Here as an example, we choose
êr = (1, 2, 3)/

√
14, and set the two dipoles parallel to each other

in the direction ê1,2 = (cosφ, 0, sinφ). When r/L is large, the cor-
rection from the boundary effect is significant. It turns out Eq. (19)
converges quite fast, and only very few “image” terms is needed
(|nx,y,z| . 2) to get a precise enough result, which means only the
nearest “image” dipoles are important.

where ∆rn := r− rn, and êδrn := ∆rn/|∆rn|.
The above result ξxy only depends on the relative distance

r = x2 − x1, but does not depend the absolute positions x1,2.
This is because the box with periodic boundary condition is
translationally symmetric, thus every point can be regarded
as the box center. Without generality, we set the position of
dipole-1 (x1) as the origin, then the position of dipole-2 is
x2 = r.

Notice that, the 0-th term [n = (0, 0, 0)] in the above sum-
mation is exactly the same with the free space result Eq. (12).
The other summation terms can be regarded as contributions
from “image” dipoles of dipole-2 at the positions r − rn re-
flecting the boundary effect, and they are of order ∼ V −1.
Thus, when V → ∞, this result returns to the previous free
space case.

Fig. 2 shows a numerical estimation for this permanent
dipole interaction strength in a finite volume [Eq. (19)] com-
paring with the free space result [Eq. (12)]. In a finite volume,
the dipole-dipole interaction strength can be either enhanced
(ξxy/ξxyfree > 1) or decreased (ξxy/ξxyfree < 1), depending on
the dipole orientations. There are two diverging points shown
in the figure (dashed gray line), this is because around these
dipole orientations, ~mx

1 · ~m
y
2 − 3(~mx

1 · êr)(~m
y
2 · êr) ' 0, thus

the free space result approaches zero, which makes ξxy/ξxyfree
diverge.

If both the two dipoles are placed far away from the bound-
ary, we have r/L � 1, thus only the 0-th term is important,
and that means the dipole interaction is almost the same with
free space case. On the other hand, if they are close to the
boundary, effectively they get close to the “image” dipoles,
thus the correction from the boundary effect becomes signif-
icant. This is also quite similar with the situation in classical
electrodynamics.

Transition dipole: Now we consider the interaction between

two transition dipoles. The interaction strength is

ξT =
∑
k,σ

−
(gT

1,kσ)∗gT
2,kσ

~ωk
[1 +

Ω

ωk − Ω
] + h.c. (20)

= ξT
0 +

µ0 ~m
T
1 · ~mT

2

V
− µ0(~mT

1 · ∇r)(~m
T
2 · ∇r)χT(r).

Here ξT
0 has the same form with the permanent dipole inter-

action Eq. (19), except the dipole index should be changed to
“T”, and χT is a generation function:

χT(r) :=
∑
k6=0

Ω

ωk − Ω
· e

ik·r

k2
· 1

V
. (21)

Comparing with the generation function χP in the permanent
dipoles case, here χT contains a sharp envelop Ω/(ωk − Ω)
in the summation. Therefore, only the nearly resonant terms
with ωk ' Ω contribute significantly in the summation, and
they could even dominate over ξT

0. Thus, the interaction
strength can be also approximately recalculated by

ξT =

ωk'Ω∑
k

−
(gT

1,kσ)∗gT
2,kσ

~(ωk − Ω)
+ h.c. (22)

Notice that this result also has a similar form with some
previous studies based on adiabatic elimination (2|g|2/∆) [3].
Thus, the correction mechanism to the transition dipole inter-
action in a finite volume is quite similar with the Purcell effect
[4, 30].

V. SUMMARY

In this paper, we derived the indirect interaction between
two magnetic dipoles induced by the quantized EM field for
both free space and finite volume case. A retarded interaction
is obtained, and it reduces to a time-local one after RWA and
Markovian approximation.

Our result showed that the permanent and transition dipoles
should be treated separately. In free space, the interaction be-
tween the permanent dipoles directly returns to the classical
interaction; the interaction between transition dipoles has the
same form with the previous studies on electric dipole interac-
tion, and it does not return to the classical result directly, yet
returns in the short-distance limit r/λ� 1.

In a finite volume, both the permanent and transition dipole-
dipole interactions are changed, but by different mechanisms.
For transition dipoles, this changing mechanism is similar
with the Purcell effect, since only a few number of nearly res-
onant modes take effect in the interaction mediation; for per-
manent dipoles, still all the field modes take effect for the in-
teraction mediation, but the correction comes from the bound-
ary effect: if the dipoles are placed close to the boundary, the
influence is strong, if they are both placed far away from the
boundary, their interaction does not change too much from the
free space case.
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Appendix A: The interaction between a magnetic dipole and the EM field

Here we derive the interaction between a magnetic dipole and the EM field. We start from the Hamiltonian of a single atom
coupled with the EM field

ĤS =
[p̂− eÂ(x̂)]2

2m
+ ϕ(x̂− x0),

ĤEM =

∫
dV

1

2
[ε0E

2 +
1

µ0
B2] =

∑
k,σ

1

2
~ωk(â†kσâkσ + âkσâ

†
kσ). (A1)

Here ϕ(x) is the electric potential, and Â(x) is the field operator

Â(x) =
∑
k,σ

êkσNk(âkσe
ik·x + â†kσe

−ik·x), Nk :=

√
~

2ε0ωkV
. (A2)

We omit the Â2 term in ĤS , and expand Â(x̂) around the nucleus position x0 by eik·x̂ ' eik·x0
[
1 + ik · r̂ + . . .

]
, where

r̂ := x̂− x0. The zeroth order just gives the interaction of dipole approximation, Ĥ(0)
int = − e

m p̂ · Â(x0) [32].
Now we consider the 1st order in the expansion, which gives

Ĥ
(1)
int =

∑
k,σ

− e

m
·Nk(p̂ · êkσ)(ik · r̂) (âkσe

ik·x0 − â†kσe
−ik·x0). (A3)

With the help of the relation (denoting L̂ := r̂× p̂)

(p̂ · êkσ)(ik · r̂) = (p̂ · ik)(r̂ · êkσ) + (r̂× p̂) · (ik× êkσ)

=
i|k|
2

[(p̂ · êkσ)(r̂ · êk) + (p̂ · êk)(r̂ · êkσ)] +
1

2
L̂ · (ik× êkσ), (A4)

the above interaction Hamiltonian can be written into two terms Ĥ(1)
int = Ĥmd + Ĥeq, where Ĥmd is the interaction between the

magnetic dipole and the EM field (denoting m̂L := e
2m L̂)

Ĥmd =
∑
k,σ

− e

2m
L̂ · (ik)× êkσ Nk(âkσe

ik·x0 − â†kσe
−ik·x0) = − e

2m
L̂ · ∇x0 × Â(x0) = −m̂L · B̂(x0), (A5)

and Ĥeq gives the electric quadrupole interaction (denoting p̂i = p̂ · êi, r̂i = r̂ · êi) [32]

Ĥeq =
∑
k,σ

− i|k|e
2m

(
p̂kr̂σ + p̂σ r̂k

)
Nk(âkσe

ik·x0 − â†kσe
−ik·x0). (A6)

Appendix B: Coupling spectral density in free space

Here we show the derivation of the coupling spectral density Jµν12 (ω) in free space, which is define by

Jµν12 (ω) = 2π
∑
kσ

(gµ1,kσ)∗gν2,kσδ(ω − ωk), gµi,kσ = −i~mµ
i · (êk × êkσ)eik·xi

√
µ0~ωk

2V
. (B1)

Since the index µ only appears on ~mµ
i in Jµν12 (ω) to represent the transition/permanent dipole, hereafter we omit it for simplicity.

The summation over k, σ is changed into integral by∑
k,σ

[...] −→
∑
σ

V

(2π)3

∫
d3k [...] =

∑
σ

V

(2πc)3

∫
ω2dω

∫
dΩ [...] (B2)
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Thus the coupling spectral density J12(ω) is given by (denoting r := x2 − x1)

J12(ω) =
2π

(2πc)3

µ0~ω3

2

∫ 2π

0

dϕ

∫ π

0

sin θdθ eik·(x2−x1)
∑
σ

[~m1 · (êk × êkσ)][~m2 · (êk × êkσ)]

=
1

(2π)2c3
µ0~ω3

2

∫ 2π

0

dϕ

∫ π

0

sin θdθ eik·r
[
~m1 · ~m2 − (~m1 · êk)(~m2 · êk)

]
. (B3)

To calculate the above integral, we use the vector r and ~m1 to span a proper coordinate. We set êz := r/r := êr, and
êy := λ-1r × ~m1, where λ =

√
r2 ~m2

1 + (r · ~m1)2 is a normalization factor, and r := |r|; then we have êx = êy × êz =
λ-1[r~m1 − (r · ~m1)r/r].

With this basis êx,y,z , the vectors in the above integral can be written as

êk = sin θ cosϕ êx + sin θ sinϕ êy + cos θ êz,

~m1 =
λ

r
êx + (~m1 · êr)êz, (B4)

~m2 =
∑
i

(~m2 · êi)êi =
r

λ
[~m2 · ~m1 − (~m1 · êr)(~m2 · êr)]êx +

r

λ
(êr · ~m1 × ~m2)êy + (~m2 · êr)êz.

Thus the products in the integral give

~m1 · êk =
λ

r
sin θ cosϕ+ (~m1 · êr) cos θ,

~m2 · êk =
r

λ
(~m1 × êr) · (~m2 × êr) sin θ cosϕ+

r

λ
(êr · ~m1 × ~m2) sin θ sinϕ+ (~m2 · êr) cos θ. (B5)

In the product (~m1 · êk)(~m2 · êk), if we first integrate over ϕ ∈ [0, 2π], it turns out that most terms vanish directly, and the
remaining terms are

I0 =

∫ 2π

0

dϕ

∫ π

0

sin θdθ eikr cos θ ~m2 · ~m1 = 4π~m2 · ~m1
sin kr

kr
,

I1 =

∫ 2π

0

dϕ

∫ π

0

sin θdθ eikr cos θ(~m1 × êr) · (~m2 × êr) sin2 θ cos2 ϕ = 4π(~m1 × êr) · (~m2 × êr)
[ sin kr

(kr)3
− cos kr

(kr)2

]
,

I2 =

∫ 2π

0

dϕ

∫ π

0

sin θdθ eikr cos θ(m̂1 · êr)(m̂2 · êr) cos2 θ = 4π(~m1 · êr)(~m2 · êr)
[ sin kr
kr

+
2 cos kr

(kr)2
− 2 sin kr

(kr)3

]
. (B6)

Therefore, we have

J12(ω = ck) =
µ0~k3

2π

{
~m1 · ~m2

sin kr

kr
− (~m1 × êr) · (~m2 × êr)

[ sin kr
(kr)3

− cos kr

(kr)2

]
− (~m1 · êr)(~m2 · êr)

[ sin kr
kr

+
2 cos kr

(kr)2
− 2 sin kr

(kr)3

]}
. (B7)

which is an odd function J12(−ω) = −J12(ω), and we also have J12(ω) = J21(ω).
Notice that, using this coupling spectral density (proper indices for T, e, g should be added to ~mi), the interaction strength of

the permanent dipoles is

ξP = −
∫ ∞
−∞

dω

2π~
J12(ω)

ω
=
µ0

r3

∫ ∞
−∞

d(kr)

2π

1

kr
· (kr)3

2π

{
(~m1 × êr) · (~m2 × êr)− 2(~m1 · êr)(~m2 · êr)

} sin kr

(kr)3

=
µ0

4πr3

[
~m1 · ~m2 − 3(~m1 · êr)(~m2 · êr)

]
, (B8)

which has exactly the same form with the classical dipole-dipole interaction.
On the other hand, the interaction strength between the transition dipoles is given by

ξT = −
∫ ∞
−∞

dω

2π~
J12(ω)

ω − Ω
=− µ0

4πr3

∫ ∞
−∞

dx

π

x3

x− xΩ

{
~m1 · ~m2

sinx

x
− (~m1 × êr) · (~m2 × êr)

[ sinx
x3
− cosx

x2

]
− (~m1 · êr)(~m2 · êr)

[ sinx
x

+
2 cosx

x2
− 2 sinx

x3

]}
=− µ0

4πr3

{
~m1 · ~m2x

2
Ω cosxΩ − (~m1 × êr) · (~m2 × êr)

[
cosxΩ − xΩ sinxΩ

]
− (~m1 · êr)(~m2 · êr)

[
2xΩ sinxΩ + x2

Ω cosxΩ − 2 cosxΩ

]}
, (B9)
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where xΩ := rΩ/c = 2πr/λ, and λ is the wavelength corresponding to the transition frequency Ω. In the short-distance limit
xΩ → 0, the above interaction strength ξT returns to the same form as ξP [Eq. (B8)], which is just the classical result.
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[24] Z. Ficek, R. Tanaś, and S. Kielich, Physica A 146, 452 (1987).
[25] G. S. Agarwal, Quantum statistical theories of spontaneous

emission and their relation to other approaches (Springer,
1974).

[26] Z. Ficek and S. Swain, Quantum Interference and Coherence:
Theory and Experiments, 1st ed. (Springer, Berlin, 2005).

[27] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[28] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Pho-

tons and Atoms: Introduction to Quantum Electrodynamics, 1st
ed. (Wiley-VCH, New York, 1989).

[29] L. H. Ryder, Quantum Field Theory, 2nd ed. (Cambridge Uni-
versity Press, Cambridge ; New York, 1996).

[30] E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37
(1946).

[31] M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge
university press, 1997).

[32] S. Weinberg, Lectures on quantum mechanics (Cambridge Uni-
versity Press, 2012).

[33] H. Breuer and F. Petruccione, The theory of open quantum sys-
tems (Oxford University Press, 2002).

[34] S.-W. Li, C. Y. Cai, and C. P. Sun, Ann. Phys. 360, 19 (2015),
arXiv: 1407.4290.

[35] S.-W. Li, L.-P. Yang, and C.-P. Sun, Eur. Phys. J. D 68, 45
(2014), arXiv:1303.1266.

[36] C. Gardiner and P. Zoller, Quantum noise, Vol. 56 (Springer,
2004).

[37] S.-W. Li, Phys. Rev. E 96, 012139 (2017), arXiv: 1612.03884.

http://dx.doi.org/10.1103/PhysRevA.90.053805
http://dx.doi.org/ 10.1103/PhysRevA.92.023806
http://dx.doi.org/ 10.1103/PhysRevA.92.023806
http://dx.doi.org/ 10.1103/PhysRevA.93.021803
http://arxiv.org/abs/1610.02001
http://dx.doi.org/10.1103/PhysRevA.94.053842
http://dx.doi.org/10.1103/PhysRevA.94.053842
http://dx.doi.org/10.1103/PhysRevA.87.033831
http://dx.doi.org/10.1103/PhysRevA.87.062105
http://dx.doi.org/10.1103/PhysRevA.93.053804
http://dx.doi.org/10.1103/PhysRevA.95.062504
http://dx.doi.org/10.1103/PhysRevA.96.042714
http://dx.doi.org/10.1103/PhysRevA.96.042714
http://dx.doi.org/10.1038/ncomms14144
http://dx.doi.org/10.1103/PhysRevLett.95.210503
http://dx.doi.org/10.1103/PhysRevLett.95.210503
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/ 10.1103/PhysRevB.86.100506
http://dx.doi.org/ 10.1038/srep23786
http://dx.doi.org/ 10.1016/j.physrep.2013.02.001
http://dx.doi.org/ 10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1103/PhysRevB.85.115303
http://dx.doi.org/10.1103/PhysRevB.85.115303
http://dx.doi.org/ doi:10.1063/1.3435213
http://dx.doi.org/ doi:10.1063/1.3435213
http://dx.doi.org/10.1088/1367-2630/15/8/083033
http://arxiv.org/abs/1608.04364
http://dx.doi.org/10.1103/PhysRevA.2.883
http://dx.doi.org/10.1016/0378-4371(87)90280-9
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1016/j.aop.2015.05.004
http://dx.doi.org/10.1140/epjd/e2014-40659-8
http://dx.doi.org/10.1140/epjd/e2014-40659-8
http://dx.doi.org/10.1103/PhysRevE.96.012139

	The magnetic dipole-dipole interaction induced by electromagnetic field
	Abstract
	Introduction
	Retarded interaction between two magnetic dipoles 
	Time-local interaction
	Interaction in a finite periodic box
	Summary
	The interaction between a magnetic dipole and the EM field 
	Coupling spectral density in free space 
	References


