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Topological and strongly correlated materials are exciting frontiers in condensed matter physics,
married prominently in studies of the fractional quantum hall effect [1]. There is an active effort
to develop synthetic materials where the microscopic dynamics and ordering arising from the in-
terplay of topology and interaction may be directly explored. In this work we demonstrate a novel
architecture for exploration of topological matter constructed from tunnel-coupled, time-reversal-
broken microwave cavities that are both low loss and compatible with Josephson junction-mediated
interactions [2]. Following our proposed protocol [3] we implement a square lattice Hofstadter
model at a quarter flux per plaquette (α = 1/4), with time-reversal symmetry broken through
the chiral Wannier-orbital of resonators coupled to Yttrium-Iron-Garnet spheres. We demonstrate
site-resolved spectroscopy of the lattice, time-resolved dynamics of its edge channels, and a direct
measurement of the dispersion of the edge channels. Finally, we demonstrate the flexibility of the
approach by erecting a tunnel barrier and investigating dynamics across it. With the introduction
of Josephson junctions to mediate interactions between photons, this platform is poised to explore
strongly correlated topological quantum science for the first time in a synthetic system.

I. INTRODUCTION

Initial interest in the quantum Hall effect arose from
the unexpected observation of quantized transport in
electronic heterostructures [4]. In the intervening years,
we have come to understand that this property is the di-
rect result of a topological winding number of the Bloch
wave function in the Brillioun zone: physics which is ro-
bust not only to disorder but also to inter-particle col-
lisions [1]. In this interacting case, the lowest-lying ex-
citations, “anyons,” are of particular interest, as they
are quasi-particles of fractional charge [5], believed to
have fractional statistics [6]. To date, definitive proof
of fractional statistics remain elusive, though transport
measurements in anyon interferometers [7, 8] are highly
suggestive [9].

With new material platforms come new measure-
ment techniques and new perspectives on the under-
lying physics; both particle-by-particle construction of
topological fluids [10] and impurity interferometry [11]
promise direct experimental signatures of the geometric
phase acquired when anyons are transported around one
another [12], but require either the ability to construct
a small Laughlin puddle one particle at a time, or the
binding of an anyon to a mobile impurity that is itself
transported through an interferometer. While it is un-
clear how to achieve this in electronic materials, synthetic
material platforms have begun to emerge where such mi-
croscopic control is feasible.

Synthetic topological materials fall into two principal
categories: those made of ultracold atoms [13] and those
made of light. In both cases the challenges are (1) to
engineer a synthetic gauge field for the (charge neutral)
particles; and (2) to mediate interactions between them.
In the case of ultracold atoms, s-wave contact interac-
tions arise naturally [14], while inducing gauge fields re-
quires rotation of the atomic gas [15, 16], Raman cou-
plings [17, 18], or lattice modulation [19–21], at the cost

of reduced energy scales and challenges in state prepara-
tion [22]. For materials made of light, synthetic magnetic
fields have been realized across the electromagnetic spec-
trum, from the optical [23–25] domain, to microwave [26]
and even RF [27] photons. Because photons do not nat-
urally interact with one another, the principal challenge
is to realize a topological meta-material which is com-
patible with strong interactions. In the optical domain,
Rydberg electromagnetically induced transparency is a
possibility [28]; in the microwave, circuit quantum elec-
trodynamics (cQED) tools offer a viable solution [2, 29].

In this work we engineer a synthetic time-reversal sym-
metry breaking magnetic field for microwave photons
in a square lattice, where the magnetic length is twice
the lattice vector. Importantly, we employ seamless 3D
microwave cavities all machined from a single block of
aluminum, so our meta-material is scalable and directly
compatible with the cQED toolbox [3] for entering the
fractional Chern regime, as it is composed only of Alu-
minum for the cavities, plus Yttrium-Iron-Garnet (YIG)
spheres and Neodymium magnets to produce the syn-
thetic magnetic field. Circumnavigating a single plaque-
tte induces a π

2 geometric phase, making the material
equivalent to a quarter flux Hofstadter model.

In Section II, we describe and characterize the essen-
tial components of the Chern insulator, and explain how
these elements are combined to realize a quarter flux Hof-
stadter model. Section III investigates the spectral prop-
erties of the realized model, observing four bulk bands
and topologically protected edge channels living within
the gaps between the top and bottom bands; using our
single-site spatial resolution we are able to directly mea-
sure the dispersion of the edge channels. In Section IV
we measure edge transport around the Chern insulator,
observing chiral, backscatter free dynamics. In Section
V, we demonstrate that the system may be reconfigured
as a microwave tunnel junction, and explore the dynam-
ics across the tunnel-barrier, and Section VI concludes.
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II. EXPERIMENTAL SETUP

To implement a quarter-flux Hofstadter lattice, we
build upon the design described in [3]. The central inno-
vation of this work is that while the Peierl’s phase which
encodes the synthetic gauge field is typically encoded in
the tunnel coupling between lattice sites, in practice the
phase can arise from the spatial structure of the sites
themselves rather than manipulation of the tunnel cou-
plers [29, 30]. Engineering the on-site Wannier function
of every fourth lattice site to exhibit a 2π phase winding
ensures that every plaquette contains a phase-engineered
site, as shown in Fig. 1a, and thereby induces a flux per
plaquette of α = 1

4 .
The metamaterial is milled into a block of aluminum

(see Fig. 1b) and is composed of three components: (i)
fundamental mode cavities; (ii) chiral cavities; and (iii)
evanescent couplers. The cavity design (Fig. 1c) en-
ables machining of the structure from only two sides,
and completely removes seam-loss as a source of Q re-
duction [31]. Lattice sites are either single post coaxial
resonators oscillating in their fundamental mode with a
spatially uniform phase profile, or are three post coaxial
resonators with a chiral phase profile designed to produce
a synthetic gauge field. The final ingredient is the cou-
plers, which induce the tunneling term in the Hofstadter
Hamiltonian (Fig. 1c). The chiral cavities are designed
so that a photon tunneling into and subsequently out of
the cavity acquires a phase equal to the angle between
input and output arms. When the lattice is arranged as
shown in Fig. 1, a photon traveling in the smallest closed
loop (plaquette) acquires a π

2 geometric phase.
In the fundamental mode cavities, a single post pro-

trudes into an otherwise empty rectangular box. The
length of the post sets the frequency of the resonator’s
fundamental mode to 9.560 GHz (to within 1 MHz), with
the next mode at approximately at twice this frequency
(see Appendix A). The side lengths of the box ensures
that its cutoff frequency is higher than the post mode,
resulting in localization of the post mode even without a
lid on the resonator, with a mode Q determined by the
length of the cylinder, until surface losses dominate.

The second type of cavity exhibits modes whose phase
depends on the location in the cavity. This chiral cavity is
structurally similar to the fundamental coaxial cavity but
with three equal length posts arranged in an equilateral
triangle at the center of the cavity, instead of a single post
(Fig. 1c). These three closely spaced posts constitute
three coupled degenerate resonators, and hence behave as
a three-site tight-binding model with periodic boundary
conditions. The result is one (quasi-momentum q = 0)
mode in which all posts oscillate with the same phase,
and two degenerate modes at a higher frequency (1 GHz
higher in this lattice), at q = ± 2π

3 ; the electric charge
accumulation in these latter two modes travels from post-
to-post clockwise or anti-clockwise, respectively.

To break the time-reversal symmetry of the lattice and
thereby induce a chirality in the system, it is essential

FIG. 1. Schematic and photograph of microwave Chern insu-
lator lattice. (a) Schematic of the cavity layout. The white
circles denote cavities that do not shift the phase of a pho-
ton passing through them, while the cavities with the arrows
shift the phase depending on the physical angle between the
couplers. This layout guarantees phase of π

2
per plaquette.

(b)Photograph of a 5x5 section of the lattice measured in
the data presented in the paper. The lattice sites are each
tuned to 9.560 GHz ±1 MHz, and coupled evanescently tun-
nel coupled with hopping rate 30 MHz ±1 MHz. The typical
resonator quality factor for fundamental cavities is Q = 3000
and for the YIG cavities is Q = 1500. The lattice spacing
is 1.96 cm, resulting in a total edge-to-edge (including outer
walls) lattice dimension of 24.0 cm. (c) Side profile of a 5x5
lattice cut so that both types of cavities are visible. The 2nd
and 4th cavities are the phase shifting YIG cavities, while the
1st, 3rd and 5th cavities are the fundamental cavities. The
couplers are visible in between the cavities as gaps in the cav-
ity walls. They are milled from the opposite side of the lattice
as the cavities.

that only one of the two degenerate modes at |q| = 2π
3

couples to the lattice bands. To achieve this, a 1mm
YIG sphere is inserted between the three posts (Fig.
1c). When a DC magnetic field BDC is applied to the
YIG, it behaves as a macroscopic electron spin whose
the magnetic moment precesses at the Larmor frequency
ωl = µBBDC , and with a handedness set by the direction
of the magnetic field (µB = 28MHz/mT is the Bohr Mag-
neton). When the YIG sphere is installed between the
three posts of the cavity, where the microwave magnetic
field is strongest, the precessing magnetic moment cou-
ples strongly to cavity mode which co-rotates (q = 2π

3 ),

and weakly to the one which counter-rotates (q = − 2π
3 ).

Figure 2 shows the observed behavior of the q = ± 2π
3

modes as the DC magnetic field is varied, tuning the YIG
frequency through the bare |q| = 2π

3 mode frequency:
the YIG induces a large avoided crossing with the co-
rotating “bright” mode, a smaller asymmetry-induced
avoided crossing in the counter-rotating “dark mode”.
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FIG. 2. S12-S21 Transmission between two antennas 45◦ apart
in a single YIG cavity as a function of magnetic field. There
is stronger coupling between the cavity mode with the same
chirality as the YIG sphere. The largest frequency splitting
is 446 MHz. The color indicates the phase shift a photon
acquires in transmission. After subtracting the two different
directions of transmission to eliminate phase noise from cables
and impedance mismatches, one chiral mode has a phase shift
of 90◦ while the other has a phase shift of −90◦, indicating
the modes are of opposite chirality.

Fine adjustment of the magnetic field strength can fur-
ther be used to tune the frequency of the YIG cavities.

To probe the spatial structure of the chiral modes, we
insert two antennae into one of the chiral cavities, sepa-
rated by 45◦. Figure 2 shows the observed phase differ-
ence between exciting one and measuring the other, and
the reverse, indicating that the “dark” mode exhibits a
phase difference of 90◦, while the “bright” mode exhibits
a difference of -90◦, consistent with their opposite chiral-
ities.

To build a T-broken model, our engineered Hamilto-
nian must employ only one of these two chiral modes; ac-
cordingly, the “dark”-“bright” mode splitting of 350−450
MHz (depending on BDC) sets the spectral domain into
which the engineered Chern-band structure must fit.
While the “dark” mode is the better choice in a super-
conducting resonator because YIG loss is larger than the
bare resonator loss, in our case technical concerns make
the “bright” mode preferable for lattice engineering (see
Appendix A).

The lattice-sites are tunnel coupled by milling out slots
between them. Because the lowest mode of these slots is
above the cutoff of the lattice, these slots couple sites
together without inducing radiative loss. The width and
depth of the couplers set the tunneling energy, which we
tune with a screw (see Appendix A) to 30 MHz with pre-
cision ±1 MHz, in accordance with the requirement that

a) b)

FIG. 3. (a) Measured transmission spectrum between two
bulk (purple) and two edge (orange) sites. The purple trace
is the transmission between adjacent cavities in the bulk of
the lattice ((5,6) and (6,6) defined from the upper-left lattice
corner), while the orange trace is the transmission between
cavities on the edge of the lattice (sites (1,1) and (1,11)). The
differential response between upper and lower gaps arises from
the distance difference for clockwise and anti-clockwise edge
propagation between probe and measurement sites. (b) Pro-
jected band structure of both the bulk (blue/white density
plot, with spatial Fourier limited resolution) and edge (red
points) of the system, compared with theory for a α = 1/4
Hofstadter strip (purple/orange/gray-dashed). The bulk data
results from a site-by-site measurement of the system re-
sponse. The dispersion of the edge channel (explained in the
Appendix) is extracted from the measured cavity-to-cavity
phase shift. Within the bulk bands, this phase is sensitive
to disorder and overall geometry, resulting in a near-random
signal which we omit from the plot. The bulk-bulk transmis-
sion exhibits four distinct bands which arise from the four
site magnetic unit cell. Gaps are apparent between the first
and second bands as well as the third and fourth bands. The
magnetic unit cell has two sites in each direction, compressing
the Brillioun zone to

[
−π

2
, π
2

]
.

the total band structure be narrower than the minimum
350 MHz “dark”-“bright” splitting.

III. SPECTRAL PROPERTIES OF A
MICROWAVE CHERN INSULATOR

A defining characteristic of a topologically nontriv-
ial band structure is an insulating bulk and conducting
edges [32]. To demonstrate that our microwave lattice
exhibits these properties, we probe it spectroscopically
by placing a dipole antenna into each cavity. Figure 3a
shows a typical transmission spectrum between bulk lat-
tice sites. We observe energy gaps in the bulk response,
within which the edge-localized channels reside, consis-
tent with the computed band structure [3] shown in Fig.
3b. The chirality of the edge channels results in an asym-
metric edge-edge response in the band gaps: the edge
modes in the lower and upper gaps have opposite group
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FIG. 4. (a) The lattice’s response to an edge-excitation (red
arrow), at the a frequency of 9.622 GHz which is within the
band gap. The presence of an edge channel at this frequency
results in a delocalized chiral response along the system edge,
decaying due to the finite resonator Q’s. (b) The response of
the lattice when a bulk site (red arrow) is excited continuously
at a frequency of 9.569 GHz within the upper band gap. The
absence of bulk modes at the excitation frequency results in
exponential localization of the response to the edge.

velocities and finite damping, so the accrued decay is
smaller when the excitation travels the “short way” ver-
sus the “long way”.

When the system is excited in the bulk within the bulk
band gap, we observe a localized response as shown in
Fig. 4a, resulting from vanishing density of states in the
bulk at energies within the band gap. On the other hand,
when the system is excited on its edge within the bulk
band gap, we observe the delocalized response shown in
Fig. 4b, resulting from the presence of a chiral edge
channel within the bulk energy gap. Decay in the lat-
tice allows us to observe the chirality of the edge mode
in the steady state response. At 9.6 GHz, the channel
travels counterclockwise, as anticipated from the band
structure in Fig. 3b. By taking a Fourier transform
of the spatially-resolved (complex) transmission, we are
able to reconstruct the bulk band structure of the lattice.
For simplicity, we project out a transverse spatial coor-
dinate, and plot the resulting 1D band structure in blue
in figure 3b.

The site-resolved probes accessible in our system en-
able us to directly access, for the first time, the dispersion
of the edge channel, which we achieve by probing the sys-
tem edge within the bulk energy gap and measuring the
phase accrued per lattice site as a function of frequency
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FIG. 5. Spatio-temporal response of the edge cavities to a 50
ns pulse centered on 9.6 GHz. The x-axis is the indexed cavity
number of each of the 40 edge sites, and the y-axis is time.
The brightness reflects the relative normalized transmission
between the excited cavity and the measured cavity. The
grid on the right illustrates the mapping used by the x-axis
of the plot on the left. The solid cavities are the indexed sites
while the white bulk cavities are not indexed in the plot. The
chirality of the edge channel is reflected in the unidirectional
travel of the pulse. The weak stationary response results from
a small Fourier-broadened excitation of bulk modes.

(See Appendix C). Figure 3b shows the observed dis-
persion in red, in good agreement with the theoretical
prediction shown in gold in the band gaps.

IV. DYNAMICS OF MICROWAVE CHERN
INSULATOR

A major advantage of using microwave photons is that
time-resolved edge-transport measurements are possible.
Instead of exciting the lattice with a CW signal from a
network analyzer, we can also apply a pulse to single site
on the edge and observe its chiral propagation. In what
follows, we excite the center of the upper band gap (9.6
GHz) with the shortest Gaussian pulse not Fourier broad-
ened into the nearby bulk bands (75 ns), at site (1,1).
We then measure the response at each site as the pulse
propagates. Figure 5 shows the response of the system
edge; the pulse travels in one direction with a well-defined
and constant velocity, exhibiting no backscattering due
to the protection provided by the chirality of the system.
The group velocity is measured to be 0.32± .04 sites/ns,
consistent with the measured dispersion ∂ω

∂k at 9.6 GHz
(0.328±.002 sites/ns). Weak Fourier broadening into the
bulk bands is also apparent in the data as a small exci-
tation fraction over all sites that does not propagate. A
movie showing the pulse propagating through the lattice
is shown in the SI [33]

See Appendix C for a video of the pulse propagating
through the lattice.
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FIG. 6. A wall is built into the lattice by detuning all
but one cavities in the sixth row, separating the lattice into
two 11x5 lattices connected by one cavity. This effectively
makes a beam-splitter for running wave edge modes, as shown
schematically at right. When the lattice is pulsed at 9.6 Ghz
(in the top band gap), the response is shown in the figure on
the left. The pulse splits when it reaches the gap in the wall
(end of the red), transmitting most of the pulse to the green
part of the lattice and some of the pulse into the blue, unex-
cited 11x5 sublattice. The grid on the right shows how the
edge cavities are indexed in the plotted data, where the color
indicates how the edge sites are indexed. Sites are counted
first in the red region, then around the lattice in the blue
region, and then from the blue region into the green region.

V. PHOTONIC TUNNEL JUNCTION

Looking forward to exploration of strongly interact-
ing topological phases [3], it will be essential to fabricate
metamaterial structures which operate as spatial inter-
ferometers [34, 35]. Such devices afford direct sensitivity
to the charge and statistics of edge excitations through
response of the interference fringe to magnetic flux and
enclosed anyons, respectively.

As a first step towards this objective, we harness the
extraordinary flexibility of our platform to realize a pho-
tonic tunnel junction, analogous to half of an solid-state
edge channel interferometer [7]. We realize the tunnel
junction by detuning a single column of lattice sites in
our 11x11 sample, leaving only a single site in the cen-
ter of column at its original frequency; this produces
a “wall” between two subsamples, with a narrow gap
through which photons may tunnel.

Figure 6 shows this arrangement; a propagating
edge excitation may either tunnel across the gap and
stay in the original ring in which it was traveling, or
continue along the edge into the neighboring ring, akin
to a chiral edge beam-splitter. Results are shown in
Fig. 6 for an excitation starting at cavity site (1,1). It
bears mentioning that while a fraction of the excitation
remains in the original ring and a fraction hops to the
other ring, none is back-scattered, illustrating robustness

of the edge channel to disorder. The added disorder
brings edge channels from both sides of the lattice
together, opening a path for photons from one side to
enter a backwards edge mode of the other side of lattice.
However, the photons only travel with one chirality, as
shown in Figure 6.

VI. OUTLOOK

We have demonstrated a complete toolbox for the de-
velopment of low-loss topological microwave lattices, and
harnessed this toolbox to realize a quarter flux Hofstadter
model. The resulting synthetic material is be probed
site-by-site, revealing an insulating bulk and topologi-
cally protected chiral edge channels. We showcase the
flexibility of the approach by reconfiguring the lattice to
act as a tunnel junction, pointing the way to anyon in-
terferometry once circuit quantum electrodynamics tools
provide interactions between lattice photons.

Looking ahead, the next step is to marry these mi-
crowave resonator arrays with the tools of circuit quan-
tum electrodynamics [2], thereby inducing on-site inter-
actions. These interactions correspond to a Hubbard U
in the Hofstadter-Hubbard model, immediately enabling
studies of fractional quantum hall phases of interaction
photons [3]. Because the demonstrated lattice is already
low-loss at room temperature (∼ 3.5 MHz linewidth),
the typical transmon qubit anharmonicity of 200 MHz
[36] is sufficient to induce strong correlations between
lattice photons. To prepare the photons in low entropy
phases of the resulting models, it will be crucial to har-
ness state-of-the-art theoretical tools to populate these
models near their manybody ground states. For small
systems, this will rely upon spectroscopically resolved
excitation of manybody states [12], while for larger sys-
tems engineered dissipation [37–40] will allow for prepa-
ration of incompressible phases. In sum, the platform
opens many exciting prospects at the interface of topol-
ogy, many-body physics, quantum optics, and dissipa-
tion.
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Appendix A: Engineering the Modes in Coaxial
Microwave Cavities

In our prior proposal [3], cylindrical cavities were used
to create the degenerate mode structure necessary from
which the chiral modes are constructed. While the cylin-
drical cavity supports the required modes, it has two
technical limitations. First, the diameter must be of or-
der λ which makes the lattices physically large. More
importantly, it is difficult to construct cylindrical cav-
ities without a seam, introducing associated losses[43].
In typical 3D qubit experiments[44], the seam is cut such
that no current crosses it, which significantly reduces loss.
However, for chiral modes this cannot be done, and qual-
ity factor is limited by this loss mechanism even at room
temperature, especially for larger lattices. A significant
innovation in this work is to use seamless cavities engi-
neered to have appropriate mode structure. This geom-
etry is both compact, and has no seam loss, making it
ideal for current and future studies.

Cavities with a single post support two varieties of mi-
crowave modes:

• A mode whose frequency is dependent primarily
on the length of the post (Fig. A1a). This mode
is analogous to a coaxial cable which is shorted at
one end and open at the other, with the post acting
as the coax center pin and the outer wall acting
as the coax shield. In this quarter-wave resonator,
the mode frequency is approximately four times the
post length, and higher order modes are odd integer
multiples of this fundamental frequency.

• Modes originating from the box in which the post
resides. The lowest frequency of this type of mode
is set by the two smallest dimensions of the box.
We choose a cross-section that is small enough that
the lowest frequency box mode is 1 GHz above the
fundamental mode of the coaxial resonator.

As we reduce the cross section of the box, the surface-
to-volume ratio increases, thereby increasing resistive
surface losses, the dominant loss channel for room tem-
perature resonators. Accordingly, we choose a radius
that maximizes the Q of the post modes while ensur-
ing the cutoff of the box modes is well above the fre-
quency of the fundamental post mode (to avoid res-
onant/evanescent outcoupling of energy from the post
mode to the outside world through the box modes). Since
the frequency of the post mode is strongly dependent on
the length of the post, an aluminum screw (low-loss di-
electric can be used at low temperatures) threaded into
a hole in the post enables fine control of the post mode
frequency to ≤ 0.01% (1 MHz).

The three-post cavities exhibit similar box modes, but
with the addition of two more post modes (one mode
per post). In order to break time reversal symmetry we
first create two degenerate modes with opposite chirality

(thereby preserving time-reversal symmetry) that main-
tain the loss properties of reentrant seamless cavities.
(Single post cavities exhibit an excited manifold com-
posed of two time-reversal symmetric modes, but these
are at approximately twice the frequency of the funda-
mental mode and the position of the maximum magnetic
field moves as a function of time, making these cavities
incompatible with coupling to a ferrite.) The additional
post modes couple to one another through the box modes.
In the case of three posts, the spectrum of fundamental
post modes resolves into a q = 0 mode where all posts res-
onate in phase, and two degenerate higher energy modes
with q = ± 2π

3 , where the field’s maximum hops from
post to post either clockwise or counterclockwise. The
mode structure is shown in Fig. A1b (electric field) and
in Fig. A1c (magnetic field) and animations are available
in the supplemental materials. The magnetic field is not
maximal at cavity center, but exhibits sufficient concen-
tration to couple strongly to the ferrite (YIG sphere); at
resonance, the bright mode to ferrite coupling reaches 1.4
GHz.

In order to break time reversal symmetry, we break the
degeneracy between the two circular modes in the three
post cavities. This gives a linear angular dependence
to the phase of the cavity mode, since a rotating cavity
modes acquires phase as it rotates through the cavity.
For these cavity modes, a photon traveling a full rota-
tion around the cavity shifts it phase by 2π. To break
the degeneracy, we couple the rotating modes of the cav-
ity to a ferrite material called YIG (yttrium iron garnet)
that has its own chiral modes. When a magnetic field is
applied to YIG, it behaves like coherent electron spins.
The magnetic moment precesses at a frequency f = γB,
where γ is the gyromagnetic ratio 28 GHz/T and B is
the DC field strength. This precession has the same chi-
rality as one of the cavity modes and the opposite of the
other mode. Due to what amounts to a rotating wave
approximation in real space, the YIG couples much more
strongly to the cavity mode precessing with the same fre-
quency. In fig 2, we show the magnetic field dependence
of the frequency of the circular modes. One of the modes
shifts in frequency more than the other as we tune the
magnetic field, giving a maximum frequency separation
in the cavities of 400 MHz. The phase shift through the
bright mode is the same and equal to two times the angle
between the antenna (the factor of 2 comes from mea-
suring S12-S21 to eliminate cable and connector phase),
while the phase shift through the dark mode is 2Pi mi-
nus the phase shift in the bright modes since this mode is
orbiting with opposite chirality. The uniform oscillating
mode is also shown on this plot at the lowest frequency.
The phase shift through this mode is 0 since it has no
spatial dependence on phase.

The dark mode does interact to some degree with the
YIG spheres in these types of cavities (as opposed to
perfectly circular cylindrical cavities). This is primar-
ily because the modes of the resonators are not perfectly
circularly polarized and because the bias field is not per-
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(a) (b) (c)

FIG. A1. (a) Fundamental mode cavity electric field. The mode is localized at the bottom of the cavity. (b) Electric field
simulation of one of the chiral YIG cavity modes. A video that shows the rotation as a function of time is available in the SI
[41] (c) Magnetic field of one of the chiral YIG cavity modes viewed from the top. The field at the center of the cavity rotates
in time, coupling to the magnetic moment of the YIG. A video is available in the SI [42].

fectly homogeneous. Additionally, the coupling to the
YIG sphere is quite strong, making these effects easily
observable as additional avoided crossings in Fig. 2. At
low temperatures we will couple the lattice to the dark
mode since it will hybridize less with the YIG modes
(cavity modes are higher Q when the cavity is super-
conducting). At room temperature it is convenient to
couple to the bright, higher frequency YIG mode since it
not only has similar Q to the dark mode, but also only
has the one dark mode nearby in frequency. Also, since
it is higher frequency, it allows the fundamental cavities
to have less screw length protruding into the cavity and
thus somewhat better Q’s.

The couplers can be thought of as higher frequency
resonators between neighboring cavities that couple the

cavities with a strength g2

∆ , where g is the direct coupling
of the cavities to the coupler and ∆ is the detuning. Thus
one way to increase the coupling between cavities is to
bring the posts of the cavities closer together which in-
creases g. Similarly, any method that concentrates the
mode of the coupler closer to the posts will increase the
coupling. To increase ∆, we can either increase the size
of the coupler or add a post in the coupler so that the
coupler has its own post mode. By carefully selecting the
length of this post, we can keep the couplers off-resonant
to the lattice, but decrease ∆ significantly for higher cou-
pling. We use a tapped screw as the post so that we can
tune the coupling between lattice sites. The screws al-
low the frequency of the coupling to be tuned from 20
MHz to 100 MHz, though to keep the band structure of
our lattice comfortably within the 400 MHz splitting be-

tween the chiral YIG cavity mode (so that the YIG mode
with opposite chirality does not hybridize with any lat-
tice modes), we tuned the coupling in this paper to 30
MHz.

Appendix B: Measuring the Lattice

Every cavity has a microwave antenna weakly coupled
to it from the top, so that the antenna does not add sig-
nificant loss or shift the frequency of the resonator. The
length of all the antennas are kept the same so that the
coupling to each cavity is the same. Each antenna is then
connected to a vector network analyzer through a switch
network so that we can measure the transmission between
any two cavities. We can measure reflection off any site
as well, though reflection measurements are more sensi-
tive to impedance mismatches in the cables and switches.
Effectively, allows us to perform measurements akin to an
scanning tunneling microscope, for microwave metama-
terials.

Using the same network of antennas, we can pulse the
lattice and measure the response as a function of time. To
create the pulse, we mix a 9.6 GHz sine wave signal with a
75 ns long Gaussian pulse (50 ns for the wall experiment).
The pulse must be short enough in the time domain so
that it does not interfere with itself, but long enough so
that the pulse is not so wide in frequency space that it
strongly excites the bulk bands. We use a shorter pulse
for the wall data since the pulse takes less time to come
back to the originally excited cavity. To measure the
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FIG. A2. The lattice is shown on the right. A lid for the lattice is made so that one of the gold-colored antennas is connected
to every lattice site. These antennas are connected through an RF switch to the network analyzer so that arbitrary transmission
between pairs of sites can be measured.

pulse, we first use an IQ mixer to mix the signal coming
out of the measured cavity with the 9.6 GHz oscillator to
make the signal near DC. We then measure the IQ output
on a scope to get both the phase and the amplitude of
the response as a function of time.

Appendix C: Dispersion of the Edge Channel

The dispersion an edge channel can be measured di-
rectly from the evolution of the phase response along an
edge of the lattice, when the system is excited on an
edge within the bulk band-gap. In a square lattice, the
dispersion is constant along a side but changes near the
corners, so we examine the phase response on non-corner
sites along a single side of the lattice (i.e. sites (11,2)
to (11,10)). Plotting the phase shift as function of dis-
tance between the excitation port and the measuring port
yields a line with slope equal to the lattice momentum
(see Fig. A3 for a sample data set). In our measurements,
we subtract the S12 direction from the S21 direction in
order to eliminate the phase shifting from cable length
and connectors. This subtraction means that the slope
of the line is actually twice the lattice momentum. The
S12 excitation moves around the lattice the opposite di-
rection as the S21 excitation, so they travel a different
distance. When S21 is subtracted from S12, this discrep-
ancy manifests itself as a constant offset proportional to
the perimeter of the lattice; the slope of the phase vs dis-
tance plot is unaffected. The phase shift per cavity can

be a significant fraction of 2π, so phase unwrapping is
necessary to recover the slope. Using this technique at a
frequency within the bulk bands resuls in a near random
signal since this phase at that frequency is sensitive to
disorder and overall geometry.

A video of pulse propagation can be found in the online
supplementary materials. In this video, the measured
response is renormalized at each time before plotting, so
that even after decay the pulse can be seen clearly.
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FIG. A3. We measure the difference in phase between an
excited edge cavity and other edge cavities as a function of
distance. The edge cavity number starts at 12 and ends at
18 so that only one edge is fit to a line, do avoid additional
dispersion introduced by the corner. We choose the side fur-
thest from the the excited cavity to minimize the effects of
direct coupling. For the frequency shown here (ω = 2π× 9.61
GHz) the lattice momentum is half the slope, or −54 deg per
cavity.


