This is the accepted manuscript made available via CHORUS. The article has been published as:

Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems

Thomas E. Skinner
Phys. Rev. A 97, 013815 - Published 12 January 2018
DOI: 10.1103/PhysRevA.97.013815

Comprehensive solutions of the Bloch equations and dynamical models of open two-level systems

Thomas E. Skinner*
Physics Department, Wright State University, Dayton, OH 45435

(Dated: December 11, 2017)

Abstract

The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the seventy years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here, the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. The Bloch equation also describes a system of three coupled harmonic oscillators, providing additional perpsective on dissipative systems.

I. INTRODUCTION

The Bloch equation needs little formal introduction. It was proposed originally as a classical, phenomenological model for the dissipative dynamics observed in magnetic resonance [1]. However, its impact has been more widespread. It is applicable to general quantum twolevel systems, which can be modeled [2] by the classical torque equations that underpin Bloch's analysis. As a result, the Bloch equation is employed in such diverse fields as quantum optics, spin models, atomic collisions, condensed matter, and quantum computing. Quantum control theory (see, for example, reviews in $[3-5]$) is another field for which the Bloch equation is increasingly relevant. Dissipation must be minimized to meet its ambitious goal of manipulating quantum systems to desired ends. Dissipative processes are of special topical interest for quantum computing, where coherence must be preserved.
The dynamics of this fundamental model for arbitrary, dissipative two-level quantum systems is therefore a topic of more than passing interest. One might well expect the landscape of the Bloch equation to be fully explored after seventy years. However, existing solutions [6-9] share some or all of the following limitations, leaving room for further development. They (i) are not sufficiently gen-

[^0]eral to allow for arbitrary fields and relaxation models; (ii) depend on roots of a cubic polynomial that are not specified or related in any meaningful way to the physical parameters of the problem; (iii) divide by zero when the roots are degenerate, which occurs at values of the system parameters that are not specified; (iv) are cumbersome, conflated with the initial conditions and/or linked to tables of multiply nested variables with obscure connection to the physical parameters of the problem; (v) provide only a small measure of the physical insight that might be expected from an analytical solution.

In some respects, the complexity of the solutions make them only marginally better than a recipe for a numerical solution, which, in addition, is not completely general. As a separate issue, there are currently no intuitive visual models of system dynamics. Such models assist in the physical interpretation of the phenomena and often inspire further development in the field. Addressing the preceding matters might stimulate further advances towards understanding dissipative systems and controlling them for a desired outcome.

The paper proceeds as follows to address the aforementioned issues. A theoretical overview is provided in Sec. II. The intent is to give a fairly complete general understanding of the problem and the formal simplicity of the solution for arbitrary Bloch equation models. A benchmark for a more complete solution is defined at the outset by comparing previous Bloch equation solutions to the well-known solution for the damped harmonic oscillator. In addition, most previous treatments embed
the initial conditions in the solution. The focus of the ${ }_{11}$ current solution is the propagator for the time evolution of the system. The initial conditions are disentangled from the dynamics. The physics does not depend on the initial conditions, so neither can the dynamics. Different initial conditions merely generate different trajectories for the system evolution, all driven by the same physics. The clarity provided in emphasizing the propagator contributed significant insight towards developing the intuitive dynamical models in the paper.

Section III is devoted to the explicit form of the propagator obtained formally in the previous section. A compact, complete solution to the Bloch equation is derived which is simpler than previous solutions, yet valid for arbitrary constant input parameters. The solutions are therefore applicable to more general but previously unsolved modified equations [10-22] proposed to address the failure of the original, conventional Bloch equation (OBE) to fully explain experimental data [23-25]. Moreover, the exact solutions are sufficiently simple that approximate limiting solutions [6-8] no longer provide any significant simplification. Conditions that result in division by zero in previous solutions are fully identified and addressed in the complete solution obtained here. A streamlined framework for obtaining and evaluating the roots of a cubic polynomial is developed that greatly facilitates the analysis. The roots required in the solution, i.e., system eigenvalues, are reduced to one real root obtained as a straightforward function of the physical parameters. Knowing this basic real root is sufficient to determine the others, simply and immediately. As is well known, the real parts of the roots are the dynamical relaxation rates, and the imaginary part, when it exists, is an oscillation frequency.
Section IV then focuses on the OBE. There, the dependence of the solutions on the physical parameters is characterized simply and in detail, neither of which have been done to date. The arithmetic difference between the spin-spin (transverse) and spin-lattice (longitudinal) relaxation rates provides a convenient and particularly useful frequency scale for representing system parameters in the analysis of the OBE. Quantitative bounds for oscillatory (underdamped) and non-oscillatory (critically damped and under damped) dynamics are derived. A simple graphical representation is obtained for the fundamental root as a function of the system parameters.

New models developed in Sec. V reveal the underlying simplicity of the dynamics. The Bloch equation is shown to represent a system of three mutually coupled damped harmonic oscillators. This model can also be cast in the form of frictionless coupled oscillators that are, nonetheless, damped. Both models provide new perspective on dissipative systems. The harmonic oscillator models are particular and explicit implementations of a more general result, namely, any quantum N-level system can be represented as a system of coupled harmonic oscillators [26, 27]. Although the dynamics are the same in either case, "there is a pleasure in recogniz-

9 ing old things from a new point of view" [28]. A differ${ }_{120}$ ent perspective can open the door to new insights. This 121 treatment sets the stage for a simple vector model of Bloch equation dynamics. The trajectory of a system state in the model coordinates is simply a rotation followed by relaxation, which is easily visualized without recourse to the detailed analytical solution. A modified system of relaxation rates that emerges from the dynamics plays a role analogous to standard longitudinal and transverse relaxation effects. The modified rates result from the interaction/coupling between the fields and the phenomenological relaxation parameters of the particular Bloch model under consideration. Additionally, and incidentally, a method for finding eigenvectors emerges that does not appear to be widely known or utilized.

Details of the results and calculations in the text are deferred to appendices. The concluding appendix checks the solutions by applying them to a representative set of cases whose solutions can be straightforwardly obtained by other methods. Finally, the acronym OBE used henceforth also includes the optical Bloch equation (e.g., [29]).

II. THEORETICAL OVERVIEW

We first summarize the basic framework of the Bloch equation to recollect and define the fundamental parameters of the problem. The equation describes the dynamics of a magnetization \boldsymbol{M} subjected to a static polarizing magnetic field $\boldsymbol{H}_{0}=H_{0} \hat{\boldsymbol{z}}$ and a sinusoidal alternating field $2 H_{a} \cos \omega_{a} t$ applied orthogonal to \boldsymbol{H}_{0}. For $H_{a} \ll H_{0}$, the equilibrium magnetization is not appreciably affected by the applied field and is therefore, to a good approximation, the time-independent value $\boldsymbol{M}_{0}=\chi H_{0} \hat{\boldsymbol{z}}$ produced by the polarizing field.

One then considers a reference frame rotating about \boldsymbol{H}_{0} at an angular frequency ω_{a} equal to the frequency of the applied field [30]. In this frame, the resulting effective field \boldsymbol{H}_{e} is also time-independent. The evolution of the magnetization in this frame, neglecting dissipative effects, is simply a rotation about the field at the Larmor frequency $\boldsymbol{\omega}_{e}=-\gamma \boldsymbol{H}_{e}$ due to the torque $\gamma \boldsymbol{M} \times \boldsymbol{H}_{e}$ on \boldsymbol{M}, with $\boldsymbol{H}_{e}=\left(H_{a} \cos \phi, H_{a} \sin \phi, H_{0}-\omega_{a} / \gamma\right)$. Here, γ is the gyromagnetic moment. An exact representation of the linearly polarized field $2 H_{a} \cos \omega_{a} t$ also requires a counter rotating component. The rotating frame (NMR) or rotating wave (optics) approximation safely neglects this other frame when $H_{a} \ll H_{0}$, since then $\boldsymbol{H}_{e} \approx H_{e} \hat{\boldsymbol{z}}$ in the counter rotating frame and has negligible effect on the initial magnetization $M_{0} \hat{\boldsymbol{z}}$. The phase ϕ relative to the x-axis in the rotating frame is arbitrary in the context of a single applied field and has typically been set equal to zero in previous analyses of the Bloch equation. However, the relative phase is required for problems involving sequentially applied fields.

Relaxation rates R_{i} are then assigned to each component M_{i} to include dissipative processes. The torque can be written as a matrix-vector product [31], which,

174 together with relaxation, gives the matrix

$$
\Gamma=\left(\begin{array}{ccc}
R_{1} & \omega_{3} & -\omega_{2} \tag{1}\\
-\omega_{3} & R_{2} & \omega_{1} \\
\omega_{2} & -\omega_{1} & R_{3}
\end{array}\right)
$$

$$
182
$$

$$
\begin{align*}
\omega_{12}^{2} & =\omega_{1}^{2}+\omega_{2}^{2} \\
\omega_{e}^{2} & =\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2} \tag{3}
\end{align*}
$$

$$
\begin{equation*}
M_{i}(t)=A_{i} e^{-a t}+e^{-b t}\left[B_{i} \cos s t+\frac{C_{i}}{s} \sin s t\right]+D_{i} \tag{4}
\end{equation*}
$$

In the optical Bloch equation, the preceding fields become electric fields, magnetic moments are atomic dipole moments, ω_{1} and ω_{2} are proportional to the corresponding components of the applied electric field, and the resonance offset ω_{3} is the difference between the atomic transition frequency and the frequency of the applied electric field.

A. An instructive analogy

The damped harmonic oscillator can be used to illustrate how the OBE solutions might be viewed as incomplete, notwithstanding the need for a more generally applicable solution. Consider first the original Torrey [6] solution. All other solutions to date are similar in content. As mentioned in the Introduction, any solution will depend on the roots of a cubic polynomial. The formula for these roots is well-known, if somewhat unwieldy, giving three roots of the form a and $b \pm i s$, in Torrey's notation, with a, b real and s either real or imaginary. No further details of the roots are given. The magnetization components, M_{i}, can then be obtained as

The coefficients $A_{i}, B_{i}, C_{i}, D_{i}$ are complicated functions of the physical parameters and the initial magnetization
comprised of the rates and the components of $\boldsymbol{\omega}_{e}$. In the original Bloch equation, the rates governing relaxation of the transverse magnetization components are equal, $R_{1}=R_{2}$. More generally, modified Bloch equations can be considered in which the R_{i} are not equal, and, moreover, $\Gamma_{i j} \neq-\Gamma_{j i}$, as occurs for sufficiently strong fields and intensity-dependent damping[10-22]. Including the initial polarization M_{0} or analogous equilibrium state relevant to a given application then gives a general Bloch equation of the form

$$
\begin{equation*}
\dot{\boldsymbol{M}}(t)+\Gamma \boldsymbol{M}(t)=\boldsymbol{M}_{0} R_{3} \tag{2}
\end{equation*}
$$

The matrix Γ that drives the dynamics is completely general in what follows, within the context of timeindependent fields and relaxation rates. Both \boldsymbol{H}_{e} and $\boldsymbol{\omega}_{e}$ are referred to as fields in the OBE, since they are proportional. We further define the transverse field $\boldsymbol{\omega}_{12}$ as a component of the total field $\boldsymbol{\omega}_{e}$, with respective mag-

$$
214
$$

215
\qquad
217 218

B. Bloch equation solution
 295

A standard approach to solving a system of inhomo297 geneous equations such as Eq. (2) is to transform it to a 298 homogeneous form [33] by appending the inhomogeneous 99 term $\boldsymbol{M}_{0} R_{3}$ as a column to the right of Γ and then adding 300 a correspondingly expanded row of zeros at the bottom. The vector \boldsymbol{M} would then be augmented by including a 2 last element equal to one. Increasing the dimensionality ${ }^{303}$ of the problem in this way can be rather trivially avoided 304 by defining

$$
\begin{equation*}
\mathcal{M}(t) \equiv \boldsymbol{M}(t)-M_{\infty} \tag{8}
\end{equation*}
$$

where $\boldsymbol{M}_{\infty}=\Gamma^{-1} \boldsymbol{M}_{0} R_{3}$. This is the same shift in coordinates to the equilibrium (steady-state) position that is commonly employed for the harmonic oscillator example of Eq. (5). There, the result of a constant force is a shifted equilibrium position $x \rightarrow\left(\omega_{0}^{2}\right)^{-1} g$, which gives a homogeneous equation in the shifted coordinates. Since \boldsymbol{M}_{∞} is constant, we have

$$
\begin{equation*}
\dot{\mathcal{M}}(t)=-\Gamma \mathcal{M}(t) \tag{9}
\end{equation*}
$$

312 with solution

$$
\begin{align*}
\mathcal{M}(t) & =e^{-\Gamma t} \mathcal{M}(0) \tag{10a}\\
\boldsymbol{M}(t) & =e^{-\Gamma t}\left[\boldsymbol{M}(0)-\boldsymbol{M}_{\infty}\right]+\boldsymbol{M}_{\infty} \tag{10b}\\
& =e^{-\Gamma t} \boldsymbol{M}(0)+\left(1-e^{-\Gamma t}\right) \boldsymbol{M}_{\infty} \tag{10c}
\end{align*}
$$

The failure of the OBE solutions to match the completeness of the damped oscillator solution is not particularly surprising. The OBE appears to have five independent parameters (the elements of Γ in Eq. (1) with $R_{1}=R_{2}$). Analysis of the system is far more complex, appearing perhaps too complex for a more illuminating result. However, a simpler realization of cubic roots developed here and more detailed investigation of the roots resulting from the OBE shows only three independent parameters, two of which can be scaled in terms of the third to give a two-parameter problem similar to the damped oscillator.

One might also be intrigued by the similarity of the solutions for the damped oscillator and the Bloch equation. This correspondence is not accidental, and will be pursued further in Sec. V, where the Bloch equation is modeled exactly by a system of three coupled, damped harmonic oscillators. In addition, the dynamics of a single damped oscillator is known to be simple in the (x, \dot{x}) phase plane (see, for example, Marion [32]). The underdamped trajectory is related to a logarithmic spiral, while the overdamped trajectory traces out a non-oscillatory asymptotic decay to zero. The analogous visual model for Bloch equation dynamics is developed in Sec. V C.

But first, we extend the Bloch equation solution to arbitrary (constant) parameter models. The new solution is simpler and more convenient to use than existing OBE solutions, which, in addition, are problematic for particular configurations of the parameter space.
${ }_{3}$ as a function of the steady-state \boldsymbol{M}_{∞} and transient $\boldsymbol{M}(0)$ 34 responses. The crux of the problem, then, is a solution for the propagator $e^{-\Gamma t}$. Framing the problem most generally to include arbitrary Γ might be expected to complicate the solution compared to previous treatments. However, emphasizing the solution for the propagator results 19 in a compact and relatively simple solution.

C. The propagator $e^{-\Gamma t}$

There are numerous methods, both analytical and numerical, for calculating a matrix exponential [Moler and van Loan [34] and references therein]. The Laplace transform will be employed here, both for historical reasons (it has been utilized in previous Bloch equation solutions) 6 and because most of the other analytical methods can be derived from it. This is a topic worth developing in its own right that is beyond the scope of the present article.

The Laplace transform \mathcal{L} of $e^{-a t}$ is equal to $(s+a)^{-1}$ for constant a. The matrix exponential $e^{-\Gamma t}$ for constant Γ is then the inverse Laplace transform $\mathcal{L}^{-1}\left[(s \mathbb{1}+\Gamma)^{-1}\right]$, 3 where $\mathbb{1}$ is the identity element. The inverse Laplace transform of a function $f(s)$ can be written in terms of the Bromwich integral as [see, for example, Arfken [35]]

$$
\begin{align*}
\mathcal{L}^{-1}[f(s)] & =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} f(s) e^{s t} d s \\
& =F(t) \tag{11}
\end{align*}
$$

where the real constant γ is chosen such that $\operatorname{Re}(s)<\gamma$ for all singularities of $f(s)$. Closing the contour by an infinite semicircle in the left half plane ensures convergence of the integral for $t>0$. The desired $F(t)$ is then the sum of the residues of the integrand.

For $f(s)=(s \mathbb{1}+\Gamma)^{-1}$, recall the textbook theorem for the inverse of a matrix A, with terms defined as follows:
(i) $A(i \mid j)$ is the matrix obtained by deleting row i and column j of A.
(ii) The cofactor of $A_{i j}$ is $C_{i j}=(-1)^{i+j}$ times the determinant $\operatorname{det} A(i \mid j)$.
(iii) The adjugate of A is the matrix $(\operatorname{adj} A)_{i j}=C_{j i}$, i.e., the transpose of the cofactor matrix for A, which is the same as the cofactors of A transpose.

Then

$$
\begin{equation*}
A^{-1}=\operatorname{adj} A / \operatorname{det} A \tag{12}
\end{equation*}
$$

The matrix

$$
\begin{equation*}
A(s)=s \mathbb{1}+\Gamma \tag{13}
\end{equation*}
$$

${ }_{351}$ gives

$$
\begin{equation*}
\operatorname{det} A(s)=p(s) \tag{14}
\end{equation*}
$$

${ }_{353}$ The desired solution for $F(t)=e^{-\Gamma t}$ is then the sum ${ }_{377}$ As is well known, the substitution $s=z-c_{2} / 3$ reduces ${ }_{354}$ of the residues of the integrand in Eq. (11), with $f(s) \rightarrow{ }_{378}$ Eq. (17) to the standard canonical form ${ }_{355}(s \mathbb{1}+\Gamma)^{-1}=\operatorname{adj} A(s) / p(s)$ giving

$$
\begin{equation*}
e^{-\Gamma t}=\sum_{\text {res }} \frac{\operatorname{adj} A(s)}{p(s)} e^{s t} \tag{15}
\end{equation*}
$$

${ }_{356}$ for any Γ. The poles clearly occur at the roots of $p(s)$, ${ }_{357}$ i.e., the eigenvalues of $-\Gamma$. The propagator is therefore 358 constructed fairly simply from Γ and its eigenvalues.
359
Recall for reference in what follows that for a function ${ }_{360} g(s)$ with a pole of order k at $s=s_{0}$, the coefficient of ${ }_{361}\left(s-s_{0}\right)^{-1}$ in the Laurent series expansion of $g(s)$ about ${ }_{362} s=s_{0}$, i.e., the residue at s_{0}, is

$$
\begin{equation*}
\operatorname{res}\left(s_{0}\right)=\frac{1}{(k-1)!} \lim _{s \rightarrow s_{0}} \frac{d^{k-1}}{d s^{k-1}}\left[\left(s-s_{0}\right)^{k} g(s)\right] \tag{16}
\end{equation*}
$$

III. SOLUTIONS FOR THE PROPAGATOR

364 365
366
367

368

369 370 solutions, are fully addressed in the form of the solution ${ }_{371}$ given in Eq. (15).

A. Roots of the characteristic polynomial

${ }^{373}$ The solution for $e^{-\Gamma t}$ given in Eq. (15) requires the 374 375 roots of $p(s)$ in Eq. (14). The resulting third degree poly5 nomial is

$$
\begin{equation*}
p(s)=c_{0}+c_{1} s+c_{2} s^{2}+s^{3} \tag{17}
\end{equation*}
$$

376 with coefficients

$$
\begin{align*}
c_{0} & =\prod_{j} R_{j}-\frac{1}{2} \sum_{j \neq k \neq l} R_{j} \Gamma_{k l} \Gamma_{l k}+ \\
& \xrightarrow{\mathrm{OBE}} \Gamma_{12} \Gamma_{23} \Gamma_{31}+\Gamma_{21} \Gamma_{32} \Gamma_{13} \\
c_{1} & =-\sum_{j} R_{j} \omega_{j}^{2} \\
& \xrightarrow[\substack{j \neq k \\
j<k}]{ } \Gamma_{j k} \Gamma_{k j}+\sum_{j<k} R_{j} R_{k} \\
& =\omega_{e}^{2}+\sum_{j<k}^{2} R_{j} R_{k}+R_{1} R_{3}+R_{2} R_{3} \\
c_{2} & =\sum_{i} R_{i} .
\end{align*}
$$

$$
\begin{align*}
p\left(z-c_{2} / 3\right) & =z^{3}+\tilde{c}_{1} z+\tilde{c}_{0} \\
& =q(z) \tag{19}
\end{align*}
$$

379 where

$$
\begin{align*}
& \tilde{c}_{0}=2\left(\frac{c_{2}}{3}\right)^{3}-c_{1}\left(\frac{c_{2}}{3}\right)+c_{0} \\
& \tilde{c}_{1}=c_{1}-c_{2}^{2} / 3 \tag{20}
\end{align*}
$$

${ }_{380}$ Solutions for the roots z_{i} are then available as functions 381 of \tilde{c}_{0} and \tilde{c}_{1} from standard formulas. However, these for382 mulas are relatively complicated functions of the polyno383 mial coefficients (and hence, the physical parameters in 384 the Bloch equation), which hinders physical insight. In 385 Appendix C, simpler expressions are derived for the roots 386 that reduce their complexity compared to previous treat${ }_{387}$ ments. The fundamental results are summarized below.
388 Any polynomial with real coefficients has at least one ${ }_{389}$ real root, assigned here to z_{1}. The solutions can then be 390 consolidated in a convenient form that does not appear 391 to have been employed before. The other two roots are 392 written as a function of z_{1},

$$
\begin{align*}
z_{2,3} & \equiv z_{ \pm} \\
& =-\frac{1}{2} z_{1} \pm i \varpi \tag{21}
\end{align*}
$$

393 in terms of a discriminant

$$
\begin{equation*}
\varpi^{2}=3\left[\left(z_{1} / 2\right)^{2}+\tilde{c}_{1} / 3\right] \tag{22}
\end{equation*}
$$

394 which will be positive, negative, or zero depending on the ${ }_{395}$ value of z_{1}, the sign of \tilde{c}_{1}, and their relative magnitudes.

The roots are further characterized here in terms of 397 the positive parameter

$$
\begin{equation*}
\gamma=\frac{\left|\tilde{c}_{0} / 2\right|}{\left|\tilde{c}_{1} / 3\right|^{3 / 2}} \tag{23}
\end{equation*}
$$

398 leading to the following delineation of the roots:
${ }_{399}$ (i) $\tilde{c}_{1}>0$, or, $\tilde{c}_{1}<0$ and $\gamma>1$
$400 \quad 3$ distinct roots (1 real, 2 complex conjugate)
${ }_{401}$ (ii) $\tilde{c}_{1}<0$ and $\gamma<1$
4023 distinct real roots
${ }_{403}$ (iii) $\tilde{c}_{1}<0$ and $\gamma=1$
$404 \quad$ 2-fold degenerate roots $z_{+}=z_{-}=-\frac{1}{2} z_{1}$
${ }_{405}(\mathrm{iv}) \tilde{c}_{0}=0=\tilde{c}_{1}$
${ }_{406} \quad 3$-fold degenerate roots $z_{i}=0$
${ }_{407}$ The physical parameters that define these effective do408 mains for the roots are derived for the OBE in Sec. IV.
409 In addition, we will find that the sign of \tilde{c}_{0} determines ${ }_{410}$ the sign of z_{1}. Thus, in all cases, the set of three roots for ${ }_{411}$ a given $\tilde{c}_{0}<0$ is equal and opposite to the set obtained
${ }_{412}$ for parameters that flip the sign of \tilde{c}_{0}. The case $\tilde{c}_{0}=0$

413

414

 415 inThe roots of $p\left(s=z-c_{2} / 3\right)$ are then

$$
\begin{equation*}
s_{i}=z_{i}-c_{2} / 3 \tag{24}
\end{equation*}
$$

${ }_{17}$ where, referring to Eq. (18),

$$
\begin{equation*}
\frac{c_{2}}{3}=\frac{1}{3} \sum_{i} R_{i} \equiv \bar{R} \tag{25}
\end{equation*}
$$

${ }_{418}$ is the average of the relaxation rates.

B. Cayley-Hamilton Theorem

The expression for $e^{-\Gamma t}$ in Eq. (15) also depends on ${ }^{448}$ ${ }_{421} \operatorname{adj} A(s)$. The elements of adj $A(s)$, are simple $(2 \times 2){ }^{44}$ ${ }_{422}$ determinants, giving

$$
\begin{equation*}
\operatorname{adj} A(s)=A_{0}+A_{1} s+\mathbb{1} s^{2} \tag{26}
\end{equation*}
$$

${ }_{423}$ a polynomial in s with coefficient matrices

$$
\begin{equation*}
A_{0}=c_{1} \mathbb{1}-c_{2} \Gamma+\Gamma^{2}, \quad A_{1}=c_{2} \mathbb{1}-\Gamma \tag{27}
\end{equation*}
$$

${ }_{424}$ as shown in Appendix A. The result can be readily gen${ }_{425}$ eralized to higher dimensional matrices, but this exceeds ${ }_{426}$ the scope of the present work.
${ }_{427}$ Substituting Eq. (27) into Eq. (26) and rearranging ${ }_{428}$ terms gives

$$
\begin{align*}
\operatorname{adj} A(s) & =\left(c_{1}+c_{2} s+s^{2}\right) \mathbb{1}+\left(c_{2}+s\right)(-\Gamma)+\Gamma^{2} \\
& =\sum_{j=0}^{2} p_{j}(s)(-\Gamma)^{j} \tag{28}
\end{align*}
$$

${ }_{429}$ which defines the polynomial coefficients $p_{j}(s)$. Further ${ }_{430}$ defining

$$
\begin{equation*}
a_{j}(t)=\sum_{\text {res }} \frac{p_{j}(s)}{p(s)} e^{s t}, \quad j=0,1,2 \tag{29}
\end{equation*}
$$

${ }_{431}$ then yields a solution for the propagator in the form

$$
\begin{align*}
e^{-\Gamma t} & =\sum_{j=0}^{2} a_{j}(t)(-\Gamma)^{j} \\
& =(\mathbb{1},-\Gamma, \Gamma)\left[\begin{array}{l}
a_{0}(t) \\
a_{1}(t) \\
a_{2}(t)
\end{array}\right] \tag{30}
\end{align*}
$$

432 where the sum has been expressed as multiplication of ${ }^{465}$ ${ }_{457}-\Gamma_{p}$ are obtained from Eq (18) with $R_{i} \rightarrow R_{\text {ip }}$. Then ${ }_{458} c_{2 \mathrm{p}}=\sum_{i} R_{i \mathrm{p}}=0$, and $p(s)$ is in the standard canonical ${ }^{459}$ form $q(z)$ of Eq. (19), with coefficients $c_{i \mathrm{p}} \equiv \tilde{c}_{i}$. We then 460 have

$$
\begin{equation*}
e^{-\Gamma t}=e^{-\bar{R} t} e^{-\Gamma_{\mathrm{p}} t} \tag{34}
\end{equation*}
$$

461 The focus henceforth will be the solution for $e^{-\Gamma_{\mathrm{p}} t}$ 462 using Eq. (30), with the obvious substitutions $\Gamma \rightarrow \Gamma_{\mathrm{p}}$, ${ }_{463} p_{j} \rightarrow q_{j}$, and $c_{j} \rightarrow \tilde{c}_{j}$. The roots $s_{i}=z_{i}$ are given in ${ }_{464}$ Eq. (C6).
${ }_{433}$ a row and column matrix. We therefore have a concise 434 implementation of the Cayley-Hamilton theorem, which ${ }_{46}$ 35 states that every square matrix is a solution to its char ${ }^{435}$ states that every square matrix is a solution to its char- 467 are due to simple first-order poles, z_{n}. Factor $q(z)$ as ${ }_{436}$ acteristic equation. As a consequence, $-\Gamma$ is a solution of ${ }_{468} \prod_{i}\left(z-z_{i}\right)$. Then $\left(z-z_{n}\right) / q(z)=\prod_{i \neq n}\left(z-z_{i}\right)$, as ${ }_{437}$ Eq. (17). One can solve for Γ^{3}, and subsequently for all ${ }_{469}$ needed to evaluate the residue at z_{n}. The derivative ${ }_{438}$ higher powers of Γ, in terms of the set $\left\{\mathbb{1},-\Gamma, \Gamma^{2}\right\}$. The ${ }_{470} q^{\prime}(z)=\sum_{j} \prod_{i \neq j}\left(z-z_{i}\right)$ evaluated at z_{n} is also equal

471 ${ }_{472}$ ish at $z=z_{n}$. Summing the residues in Eq. (29) at the 473 three roots gives

$$
\begin{equation*}
a_{j}(t)=\sum_{i=1}^{3} \frac{q_{j}\left(\left(z_{i}\right)\right.}{q^{\prime}\left(z_{i}\right)} e^{z_{i} t} \tag{35}
\end{equation*}
$$

474 The derivative of the characteristic polynomial can be ${ }_{475}$ calculated from either the factored form involving the ${ }_{476}$ roots or the polynomial form in Eq. (17). Each provides ${ }_{47}$ information that might be useful for different applica${ }_{478}$ tions. The matrix exponential $e^{-\Gamma_{\mathrm{p}} t}$ can then be written 479 compactly as matrix multiplication in the form

$$
\begin{align*}
e^{-\Gamma_{\mathrm{p}} t} & =\left(\mathbb{1},-\Gamma_{\mathrm{p}}, \Gamma_{\mathrm{p}}^{2}\right)\left[\begin{array}{l}
a_{0}(t) \\
a_{1}(t) \\
a_{2}(t)
\end{array}\right] \\
& =\left(\mathbb{1},-\Gamma_{\mathrm{p}}, \Gamma_{\mathrm{p}}^{2}\right)\left[W_{1}\left(z_{1}\right) \boldsymbol{u}_{1}(t)\right], \\
W_{1}\left(z_{1}\right) & =\left(\begin{array}{ccc}
z_{1}^{2}+\tilde{c}_{1} & z_{2}^{2}+\tilde{c}_{1} & z_{3}^{2}+\tilde{c}_{1} \\
z_{1} & z_{2} & z_{3} \\
1 & 1 & 1
\end{array}\right) \\
\boldsymbol{u}_{1}(t) & =\left(\begin{array}{c}
e^{z_{1} t} / q^{\prime}\left(z_{1}\right) \\
e^{z_{2} t} / q^{\prime}\left(z_{2}\right) \\
e^{z_{2} t} / q^{\prime}\left(z_{2}\right)
\end{array}\right) . \tag{36}
\end{align*}
$$

${ }_{480}$ For parameter values
481 (i) $\tilde{c}_{1}>0$ or $\tilde{c}_{1}<0$ and $\gamma>1$,
${ }_{482} \varpi$ is real from Eqs. (C6a) and (C6b), so two of the roots 483 are complex conjugates. Although Eq. (36)) is the most ${ }_{484}$ straightforward form of the solution and readily used in ${ }_{485}$ numerical calculations, individual terms are complex. A ${ }_{486}$ more transparently real-valued expression is obtained by ${ }_{487}$ performing the sum in Eq. (35) after rationalizing com${ }_{488}$ plex denominators and writing the roots $z_{2,3}$ in terms of ${ }_{489} z_{1}$ using Eqs. (21) and (22), as detailed in Appendix D. ${ }_{400}$ The result is of the form in Eq. (36) with

$$
\begin{align*}
W_{1}\left(z_{1}\right) & \rightarrow \frac{1}{3 z_{1}^{2}+\tilde{c}_{1}}\left(\begin{array}{ccc}
z_{1}^{2} & 2 z_{1}^{2} & -\tilde{c}_{1} z_{1} \\
z_{1} & -z_{1} & \frac{3}{2} z_{1}^{2}+\tilde{c}_{1} \\
1 & -1 & -\frac{3}{2} z_{1}
\end{array}\right) \\
\boldsymbol{u}_{1}(t) & \rightarrow\left(\begin{array}{c}
e^{z_{1} t} \\
e^{-z_{1} t / 2} \cos \varpi t \\
e^{-z_{1} t / 2} \frac{\sin \varpi t}{\varpi}
\end{array}\right) . \tag{37}
\end{align*}
$$

${ }^{019}$ The coefficient \tilde{c}_{1} can be found in terms of the roots z_{i}

492 l ${ }_{493} z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}$. The solution for the matrix exponential 494 is thus separable into a term that depends directly on the ${ }^{495}$ physic ${ }^{495}$ physical parameters of the problem through Γ_{p}, a term ${ }_{496}$ that depends on the roots z_{i}, and a term that gives the ${ }_{497}$ time dependence, which in turn is solely a function of the 498 roots. 499 upon expanding the factored form for $q(z)$ to obtain $\tilde{c}_{1}=$ roots.
For the case

500(ii) $\tilde{c}_{1}<0$ and $\gamma<1$,
${ }_{501} \varpi$ is imaginary, as given by Eq. (C6c), so there are 502 three real roots. There is no oscillatory behavior in ${ }_{503}$ the straightforward result given in Eq. (36). The solu504 tion can be written alternatively in terms of $\mu=|\varpi|$ ${ }_{505}$ using Eq. (37), with $\varpi=i \mu$ giving $\cos \varpi t \rightarrow \cosh \mu t$ 506 and $\sin \varpi t / \varpi \rightarrow \sinh \mu t / \mu$.

E. Second-order pole solution

508 For
${ }_{509}$ (iii) $\tilde{c}_{1}<0$ and $\gamma=1$,
510 we have $\varpi=0$ in either Eq. (C6b) or Eq. (C6c), which ${ }_{511}$ implies $\tilde{c}_{1} \rightarrow-3\left(z_{1} / 2\right)^{2}$ according to Eq. (22). Then two 512 of the three real roots are equal, giving a doubly degen${ }_{513}$ erate root $z_{2}=z_{3}=-z_{1} / 2$. The characteristic polyno$514 \mathrm{mial} q(z) \rightarrow\left(z-z_{1}\right)\left(z-z_{2}\right)^{2}$. The contribution from 515 the first-order pole at z_{1} is obtained as before, i.e., the 516 first column of $W_{1}\left(z_{1}\right)$ and the first element of $u_{1}(t)$ in ${ }_{517}$ Eq. (37) remain the same. The residue at z_{2} is calculated ${ }_{518}$ in Appendix D, leading to a solution

$$
\left.\begin{array}{rl}
e^{-\Gamma_{\mathrm{p}} t} & =\left(\mathbb{1},-\Gamma_{\mathrm{p}}, \Gamma_{\mathrm{p}}^{2}\right)\left[W_{2}\left(z_{1}\right) \boldsymbol{u}_{2}(t)\right], \\
W_{2}\left(z_{1}\right) & =\left(\begin{array}{ccc}
\frac{1}{9} & \frac{8}{9} & \frac{1}{3} z_{1} \\
\frac{4}{9} z_{1}^{-1} & -\frac{4}{9} z_{1}^{-1} & \frac{1}{3} \\
\frac{4}{9} z_{1}^{-2} & -\frac{4}{9} z_{1}^{-2} & -\frac{2}{3} z_{1}^{-1}
\end{array}\right) \\
\boldsymbol{u}_{2}(t) & =\left(\begin{array}{c}
e^{e^{z_{1} t}} \\
t e^{-z_{1} t / 2} \\
z_{1} t / 2
\end{array}\right. \tag{38}
\end{array}\right) .
$$

${ }_{519}$ There is thus a term linear in the time, t. Note that ${ }_{520}$ Eq. (38) is also the limit of Eq.(37) as $\varpi \rightarrow 0$ and ${ }_{521} \tilde{c}_{1} \rightarrow-3\left(z_{1} / 2\right)^{2}$, providing an independent verification of 522 the simple-pole result. One could anticipate on physical ${ }_{523}$ grounds that the separate solutions obtained for distinct 524 and degenerate roots should be continuous in this limit. ${ }_{525}$ However, it is an assumption that is verified by properly 526 calculating the solution for a second-order pole.

F. Third-order pole solution

The case
${ }_{529}$ (iv) $\tilde{c}_{0}=0=\tilde{c}_{1}$
${ }_{530}$ gives a triply degenerate, real root $z_{1}=0$ for $q(z) \rightarrow z^{3}$. ${ }_{531}$ The $a_{j}(t)$ are evaluated in Appendix D, giving $a_{0}(t)=1$, ${ }_{532} a_{1}(t)=t$, and $a_{2}(t)=t^{2} / 2$, so that

$$
\begin{equation*}
e^{-\Gamma_{\mathrm{p}} t}=\mathbb{1}-\Gamma_{\mathrm{p}} t+\frac{1}{2} \Gamma_{\mathrm{p}}^{2} t^{2} . \tag{39}
\end{equation*}
$$

534

$$
\begin{align*}
& \boldsymbol{M}_{\infty}=\frac{M_{0} R_{3}}{c_{0}}\left[\begin{array}{c}
\Gamma_{12} \Gamma_{23}-\Gamma_{13} R_{2} \\
\Gamma_{13} \Gamma_{21}-\Gamma_{23} R_{1} \\
-\Gamma_{12} \Gamma_{21}+R_{1} R_{2}
\end{array}\right] \tag{40a}\\
& \xrightarrow{\text { OBE }} \frac{\chi H_{0} R_{3}}{R_{1} R_{2} R_{3}\left(1+\sum_{i \neq j \neq k} \frac{\omega_{i}^{2}}{R_{j} R_{k}}\right)}\left[\begin{array}{c}
\omega_{1} \omega_{3}+\omega_{2} R_{2} \\
\omega_{2} \omega_{3}-\omega_{1} R_{1} \\
\omega_{3}^{2}+R_{1} R_{2}
\end{array}\right]
\end{align*}
$$

574 575 576

$$
\boldsymbol{M}_{\infty} \xrightarrow{\text { OBE }} \frac{\chi H_{0}}{1+T_{1} T_{2} \omega_{12}^{2}+T_{2}^{2} \omega_{3}^{2}}\left[\begin{array}{c}
T_{2}\left(\omega_{1} \omega_{3} T_{2}+\omega_{2}\right) \tag{41}\\
T_{2}\left(\omega_{2} \omega_{3} T_{2}-\omega_{1}\right) \\
1+T_{2}^{2} \omega_{3}^{2}
\end{array}\right]
$$

$$
\begin{equation*}
\frac{M_{x}^{2}+M_{y}^{2}}{T_{2}}+\frac{\left(M_{z}-1 / 2\right)^{2}}{T_{1}}=\frac{1}{4 T_{1}} \tag{42}
\end{equation*}
$$

We note here that the result is more general. The components of \boldsymbol{M}_{∞} in Eq. (41) for the off resonance OBE also satisfy Eq. (42), as does the result in Eq. (40a) when $\Gamma_{j i}=-\Gamma_{i j}$ and $R_{1}=R_{2}$. The magic plane defined in that work is also independent of resonance offset, ω_{3}.

58 IV. THE CONVENTIONAL BLOCH EQUATION

 ${ }_{568}$ Then$$
\begin{equation*}
R_{1 p}=R_{2 p}=R_{\delta}, \quad R_{3 p}=-2 R_{\delta} \tag{44}
\end{equation*}
$$

${ }_{569}$ The coefficients of the characteristic polynomial for $-\Gamma_{\mathrm{p}}$ 570 then simplify to

$$
\begin{align*}
& \tilde{c}_{0}=R_{\delta}\left[\omega_{e}^{2}-2 R_{\delta}^{2}-3 \omega_{3}^{2}\right] \\
& \tilde{c}_{1}=\omega_{e}^{2}-3 R_{\delta}^{2} \tag{45}
\end{align*}
$$

${ }_{571}$ The rate R_{δ} provides a convenient and simplifying fre572 quency scale for characterizing the solutions in the sec573 tions which follow.

A. Criteria for the existence of degenerate roots

The resulting simpler form for the polynomial coefficients makes possible a straightforward analysis of the conditions for which there are degeneracies in the roots. ${ }_{78}$ As discussed in section III A, there is a two-fold degen${ }_{579}$ eracy in the roots for $\gamma=1$. This is equivalent, using ${ }_{58}$ Eq. (23) for γ, to

$$
\begin{align*}
D\left(\tilde{c}_{0}, \tilde{c}_{1}\right) & =\left(\tilde{c}_{0} / 2\right)^{2}+\left(\tilde{c}_{1} / 3\right)^{3} \\
& =0 \tag{46}
\end{align*}
$$

${ }_{51}$ The trivial solution $\tilde{c}_{1}=0=\tilde{c}_{0}$ gives a three-fold degen${ }_{82}$ erate root $z_{i}=0$.

Details are deferred to Appendix E, where the exis584 tence of degenerate roots is characterized in terms of

$$
\begin{equation*}
\omega_{3}^{2}=\lambda_{3} R_{\delta}^{2} / 3 \quad \text { and } \quad \omega_{12}^{2}=\lambda_{12} R_{\delta}^{2} / 3 \tag{47}
\end{equation*}
$$

${ }_{585}$ For each ω_{3} defined by the range $0 \leq \lambda_{3} \leq 1$, one finds 586 two solutions for λ_{12} that satisfy $D\left(\tilde{c}_{0}, \tilde{c}_{1}\right)=0$ and give ${ }_{587}$ real values for ω_{12}. Thus, for each $\omega_{3} \in\left[0, R_{\delta}^{2} / 3\right]$, there ${ }_{588}$ are two values of ω_{12} that produce degeneracies in the ${ }_{599}$ roots z_{i}. The two solutions for λ_{12} can be expressed 590 concisely in the form

$$
\begin{array}{rlr}
\lambda_{12, i} & =\eta_{i}-\lambda_{3}+\frac{9}{4} & i=1,2 \\
\eta_{i} & =\frac{9}{2} \sqrt{8 \lambda_{3}+1} \sin \vartheta_{i} \\
\vartheta_{1} & =\operatorname{sgn}\left(\lambda_{3}-\lambda_{b}\right) \frac{1}{3} \sin ^{-1} \frac{\left|8 \lambda_{3}^{2}+20 \lambda_{3}-1\right|}{\left(8 \lambda_{3}+1\right)^{3 / 2}} \\
\vartheta_{2} & =\pi / 3-\vartheta_{1} \tag{48}
\end{array}
$$

${ }_{591}$ for $\lambda_{b}=\frac{3}{4}\left(\sqrt{3}-\frac{5}{3}\right)$. The solutions converge at $\lambda_{3}=1$ to ${ }_{592} \eta_{1}=\eta_{2}=27 / 4$, giving $\omega_{12}^{2}=8\left(R_{\delta}^{2} / 3\right)$. Then $\tilde{c}_{1}=0=\tilde{c}_{0}$
593 from Eq. (45), giving the three-fold degenerate root $z_{i}=$ 5940 of Eq. (19) mentioned above.

The following simple and explicit criteria characterize 596 the poles in Eqs. (15) and (29):
${ }_{597}$ (i) $\omega_{3}^{2}>R_{\delta}^{2} / 3$

601 (ii) $\omega_{3}^{2}<R_{\delta}^{2} / 3$
602 There are two different real-valued solutions for ω_{12}^{2} as
${ }_{603}$ a function of λ_{3} that each give a two-fold degeneracy in
${ }_{606}$ (iii) $\omega_{3}^{2}=R_{\delta}^{2} / 3$
${ }_{607}$ gives $\omega_{12}^{2}=8\left(R_{\delta}^{2} / 3\right)$ for $\lambda_{3}=1$, resulting in a three-fold 608 degenerate root $z_{i}=0$ which requires the third-order ${ }_{609}$ pole solution of Eq. (39).

Solutions for the roots z_{i} are characterized according to whether the discriminant ϖ^{2} of Eq. (22) is positive, negative, or zero, and can be described, respectively, as underdamped, overdamped, or critically damped, analogous to a damped harmonic oscillator.

The solution for the propagator in the case of degenerate roots $(\gamma=1)$ has a term linear in time, characteristic of a critically damped harmonic oscillator. For a threefold degeneracy in the roots, there is an additional term that is quadratic in the time. The values of ω_{3}^{2} that allow degeneracies are restricted to the narrow range parameterized according to $0 \leq \lambda_{3} \leq 1$, as discussed in the previous section. The two solutions $\omega_{12,1}^{2}$ and $\omega_{12,2}^{2}$ for each ω_{3}^{2}, as determined from Eqs. (47) and (48), are the solid curves plotted in Fig. 1.

Using the same scaling of ω_{3} and ω_{12} as in Eq. (47), we also have

$$
\begin{align*}
\tilde{c}_{0}\left(\lambda_{12}, \lambda_{3}\right) & =\left(\lambda_{12}-2 \lambda_{3}-6\right) R_{\delta}^{3} / 3 \\
\tilde{c}_{1}\left(\lambda_{12}, \lambda_{3}\right) & =\left(\lambda_{12}+\lambda_{3}-9\right) R_{\delta}^{2} / 3 \\
\gamma\left(\lambda_{12}, \lambda_{3}\right) & =\frac{9}{2} \frac{\left|\lambda_{12}-2 \lambda_{3}-6\right|}{\left|\lambda_{12}+\lambda_{3}-9\right|^{3 / 2}} \tag{49}
\end{align*}
$$

${ }_{28}$ Solutions in the range $\omega_{12,1}^{2}<\omega_{12}^{2}<\omega_{12,2}^{2}$ bounded by ${ }_{29}$ the critical damping parameters give $\tilde{c}_{1}<0$ and $\gamma<1$,

C. Characterization of the roots

The solution to the Bloch equation has a relatively sim-

B. Characterization of the damping

 resulting in three distinct real roots and overdamped evolution. The range of bounding values is fairly narrow, becoming increasingly so with increasing λ_{3} and converging to a single value $\omega_{12}^{2}=8 R_{\delta}^{2} / 3$ as $\lambda_{3} \rightarrow 1$, as shown in the figure.Underdamped, oscillatory solutions are obtained for all other field values, either $\omega_{3}^{2}>R_{\delta}^{2} / 3$ (i.e., $\lambda_{3}>1$) or $\omega_{12}^{2} \geq \omega_{12,1}^{2}$ and $\omega_{12}^{2} \leq \omega_{12,2}^{2}$ for $\lambda_{3} \leq 1$.

641

$$
642
$$ 643

$$
64
$$

z_{1}, of the characteristic polynomial for $-\Gamma_{p}$. Although the solutions for z_{1} have also been expressed in relatively simple functional form, these forms provide little physical insight. It remains to shed some light on the dependence of this root on the field $\boldsymbol{\omega}_{e}$ and the relaxation rates.

1. Physical limits of the roots

Since the roots z_{i} are functions of $\tilde{c}_{0}, \tilde{c}_{1}$ and γ, they also scale as R_{δ}. The associated decay rates are $\operatorname{Re}\left(s_{i}\right)=$ $\operatorname{Re}\left(z_{i}\right)-\bar{R}$, from Eq. (24). Defining

$$
\begin{equation*}
\lambda_{z}=\operatorname{Re}\left(z_{i}\right) / R_{\delta} \tag{50}
\end{equation*}
$$

650 and using Eq. (43) for R_{δ} gives the decay rates

$$
\begin{align*}
\operatorname{Re}\left(s_{i}\right) & =\lambda_{z} R_{\delta}-\bar{R} \\
& =-\frac{\left(2-\lambda_{z}\right)}{3} R_{2}-\frac{\left(1+\lambda_{z}\right)}{3} R_{3} . \tag{51}
\end{align*}
$$

${ }_{651}$ The limiting rates are R_{2} and R_{3}, which therefore con652 strains λ_{z} to the range

$$
\begin{equation*}
-1 \leq \lambda_{z} \leq 2 \tag{52}
\end{equation*}
$$

${ }_{53}$ The damping has equal contributions from R_{2} and R_{3} ${ }_{54}$ for $\lambda_{z}=1 / 2$, with a larger contribution from either R_{2} 55 or R_{3} if λ_{z} is less than or greater than $1 / 2$, respectively.

The dependence of z_{1} on $\boldsymbol{\omega}_{e}$ and R_{δ}, calculated accord${ }_{57}$ ing to Eqs. (C6), is shown in Fig. 2, where contours of λ_{z} ${ }_{58}$ are plotted as a function of λ_{12} and λ_{3}. As discussed ${ }_{59}$ earlier, there is only one real root for $\lambda_{3}>1$. When ${ }_{60} \lambda_{3} \leq 1$, there is also a single real root for values of λ_{12} 61 outside the narrow bounds that define critical damping. 62 Within these bounds where the solutions represent over63 damping, any of the three real roots can be designated ${ }_{64}$ as z_{1}, with $z_{ \pm}$from Eq. (C6c) giving the other two. For ${ }_{65} \omega_{12}=0$, the relaxation rate is R_{3} (i.e., $\lambda_{z}=2$), indepen${ }_{666}$ dent of the offset parameter λ_{3}, as is well-known. As ω_{12} ${ }_{667}$ increases for fixed ω_{3}, the relaxation rate approaches R_{2} ${ }_{668}\left(\lambda_{z}=-1\right)$, with the drop-off from $\lambda_{z}=2$ becoming in669 creasingly steep at lower values of ω_{3}. For the other roots ${ }_{670}$ in which $\operatorname{Re}\left(z_{ \pm}\right)=-1 / 2 z_{1}$, the upper limit in Eq. (52) ${ }_{671}$ becomes $1 / 2$.

2. A linear relation for the roots

Equation (19) evaluated at the real root z_{1} yields the 674 linear relation

$$
\begin{equation*}
\tilde{c}_{0}=-z_{1} \tilde{c}_{1}-z_{1}^{3} \tag{53}
\end{equation*}
$$

${ }_{675}$ The slope and intercept are determined by z_{1}. Substi${ }_{676}$ tuting the expressions for \tilde{c}_{0} and \tilde{c}_{1} given in Eq. (49), ${ }_{677}$ rearranging, and collecting terms after writing $9 \lambda_{z}=$ ${ }_{678} 6 \lambda_{z}+3 \lambda_{z}$ gives

$$
\begin{equation*}
\lambda_{12}=m_{\mathrm{s}} \lambda_{3}+\lambda_{12}^{\mathrm{int}} \tag{54}
\end{equation*}
$$

${ }_{679}$ with slope m_{s} and intercept $\lambda_{12}^{\mathrm{int}}$ given by

$$
\begin{equation*}
m_{\mathrm{s}}=\frac{2-\lambda_{z}}{1+\lambda_{z}}, \quad y_{12}^{\mathrm{int}}=3\left(2-\lambda_{z}\right)\left(1+\lambda_{z}\right) \tag{55}
\end{equation*}
$$

There is thus a simple graphical representation for the value of the root z_{1} as a function of the physical parameters $\omega_{12}, \omega_{3}, R_{\delta}$. There are a continuum of field values for a given R_{δ} that give the same z_{1}. Lines of constant z_{1} as a function of λ_{12} and λ_{3} become hyperbolas when Eq. (54) is rewritten in terms of $\omega_{12}^{2}, \omega_{3}^{2}, R_{\delta}^{2}$ using Eq. (47). A similar graphical analysis for any cubic polynomial with real coefficients reveals the parameter space yielding either one real and two complex conjugate roots, three real 9 roots, or degenerate roots.

V. INTUITIVE REPRESENTATIONS OF SYSTEM DYNAMICS

There are few, if any, simple models that interpret the solutions. In this section, we develop four, three of which are completely general. The reader is also referred to an abstract model for the on-resonance $\left(\omega_{3}=0\right)$ geometrical structure of OBE dynamics [36].

In most cases, the parameters of the Bloch equation yield three distinct roots for the characteristic polynomial $p(s)$ of Eq. (17), described as cases (i) and (ii) in Sec. III A. Exceptions were considered in more detail in Sec. IV for the OBE. To provide additional physical insight, we develop a straightforward vector model for the trajectory of $M(t)$ given by Eq. (10). The model is the 3D analogue to the dynamics of a single damped harmonic oscillator. As noted in section II A, a parametric plot of $\dot{x}(t)$ as a function of $x(t)$ is a decaying spiral in

$$
707
$$

$$
\begin{equation*}
708 \tag{70}
\end{equation*}
$$ II 712 713 714 716 718

$$
731
$$

73
732 732
${ }_{733} \Gamma_{\text {od }}$, and substituting $\dot{\mathcal{M}}=-\Gamma \mathcal{M}$ in the resulting $\Gamma_{\text {od }}$ ${ }_{34}$ term gives, for $\Lambda^{2} \equiv-\Gamma_{\mathrm{od}} \Gamma$,

$$
\begin{equation*}
\ddot{M}(t)+\Gamma_{\mathrm{d}} \dot{\mathcal{M}}+\Lambda^{2} \mathcal{M}=0 \tag{56}
\end{equation*}
$$

the phase plane (for underdamped motion). To make this connection more explicit, we first develop a damped oscillator model for the Bloch equation. Modeling dissipative processes in this manner provides a new perspective within the context of well-understood coupled harmonic oscillations. Fresh perspectives can yield new insights. Conversely, the dynamics of a damped oscillator can be represented by a Bloch-like equation for a single rotor in two dimensions. The comparison provides insight towards developing an easily visualized vector model of Bloch equation dynamics. An alternative vector model is then also considered.

A. The Bloch equation as a system of coupled oscillators

Any quantum N -level system can be represented as a system of coupled harmonic oscillators [26], albeit requiring negative or even antisymmetric couplings. The Bloch equation is perhaps particularly interesting, since it incorporates dissipation for the most elementary case, i.e., 2-level systems.

To compare the Bloch equation to Eq. (5) for the damped harmonic oscillator, first eliminate the inhomogeneous term from either equation by the appropriate shift of coordinates, as discussed previously. Differentiating Eq. (9) with respect to time, writing Γ as the sum of diagonal matrix $\left(\Gamma_{\mathrm{d}}\right)_{i i}=R_{i}$ and off-diagonal elements

$$
\begin{align*}
& \Lambda^{2}=-\left[\begin{array}{lll}
\Gamma_{12} \Gamma_{21}+\Gamma_{13} \Gamma_{31} & \Gamma_{13} \Gamma_{32}+\Gamma_{12} R_{2} & \Gamma_{12} \Gamma_{23}+\Gamma_{13} R_{3} \\
\Gamma_{31} \Gamma_{23}+\Gamma_{21} R_{1} & \Gamma_{12} \Gamma_{21}+\Gamma_{23} \Gamma_{32} & \Gamma_{13} \Gamma_{21}+\Gamma_{23} R_{3} \\
\Gamma_{21} \Gamma_{32}+\Gamma_{31} R_{1} & \Gamma_{31} \Gamma_{12}+\Gamma_{32} R_{2} & \Gamma_{13} \Gamma_{31}+\Gamma_{23} \Gamma_{32}
\end{array}\right] \\
& \xrightarrow{\mathrm{OBE}}-\left[\begin{array}{ccc}
-\left(\omega_{2}^{2}+\omega_{3}^{2}\right) & \omega_{1} \omega_{2}+\omega_{3} R_{2} & \omega_{1} \omega_{3}-\omega_{2} R_{3} \\
\omega_{1} \omega_{2}-\omega_{3} R_{1} & -\left(\omega_{1}^{2}+\omega_{3}^{2}\right) & \omega_{2} \omega_{3}+\omega_{1} R_{3} \\
\omega_{1} \omega_{3}+\omega_{2} R_{1} & \omega_{2} \omega_{3}-\omega_{1} R_{2} & -\left(\omega_{1}^{2}+\omega_{2}^{2}\right)
\end{array}\right] . \tag{57}
\end{align*}
$$

742

743

$$
744
$$

Referring to the system of three coupled oscillators in 746 Fig. 4, the displacement r_{i} of mass m_{i} from equilibrium is equal to \mathcal{M}_{i}. The natural frequency of m_{i} is $\left(\Lambda^{2}\right)_{i i}$, with associated damping coefficient R_{i} multiplying com- 749 ponent \mathcal{M}_{i}. For unit masses, the force equation for $m_{i}{ }^{75}$ gives $\left(\Lambda^{2}\right)_{i i}=k_{i i}+\sum_{j \neq i} k_{i j}$ and a simple solution for the $k_{i i}$. Up to this point, a mechanical implementation of the oscillator system would be possible. However, the coupling constants $k_{i j}=-\left(\Lambda^{2}\right)_{i j}$ are asymmetric, which ${ }_{745}$ is a distinguishing feature of two-level systems with dis- ${ }_{75}$
sipation and can not be implemented with a system of springs or other mechanical contrivances.

The effect of asymmetric couplings seen more clearly by keeping Γ intact thoughout the previous derivation, giving

$$
\begin{equation*}
\ddot{\mathcal{M}}(t)-\Gamma^{2} \mathcal{M}=0 \tag{58}
\end{equation*}
$$

${ }_{51}$ The elements of Γ^{2} are similar to those of Λ^{2}. They dif${ }_{52}$ fer by the addition of R_{i}^{2} to each diagonal element of

753
754
$-\Lambda^{2}$ and $R_{i} \Gamma_{i j}$ to each element of $-(\Lambda)_{i j}$. This version 803 of the oscillator model is in the form of ideal, frictionless couplings but is, nonetheless, damped. How might dissipation arise in a "frictionless" system?
The couplings $k_{i j}$ are still asymmetric. For a given 8 positive $k_{i j}$, a positive displacement of mass m_{j} results 808 in a positive force on m_{i}. The resulting positive dis- 80 placement of m_{i} provides a different force on m_{j} due to $k_{j i} \neq k_{i j}$. Energy transferred from m_{j} to m_{i} is not reciprocally transferred back from m_{i} to m_{j}, and the motion is quenched. Asymmetric couplings can act as a negative feedback mechanism to curb system oscillations in the models represented in Eq. (56) and Eq. (58), similar to pushing a swing at a nonresonant frequency. Damped solutions are obtained in both models even if $R_{i} \rightarrow 0$ in the diagonal elements of $(\Lambda)^{2}$ or Γ^{2}.
Further insight is obtained by converting the simple damped oscillator to a system of coupled first-order differential equations, i.e., in the same format as the Bloch equation. Defining a two-element vector \boldsymbol{r} with components $r_{1}=x-g / \omega_{0}^{2}$ and $r_{2}=\dot{x}$ gives

$$
\begin{align*}
\dot{\boldsymbol{r}}(t) & =-\left(\begin{array}{cc}
0 & -1 \\
\omega_{0}^{2} & 2 b
\end{array}\right) \boldsymbol{r}(t) \\
& =-\tilde{\Lambda} \boldsymbol{r}(t) \tag{59}
\end{align*}
$$

and solution $\boldsymbol{r}(t)=e^{-\tilde{\Lambda} t} \boldsymbol{r}(0)$. The propagator is easily calculated directly or deduced using the solution in Eq. (6). Either way, the action of the propagator on any initial state $\boldsymbol{r}(0)$ is a decaying spiral in the (r_{1}, r_{2})-plane, as discussed previously. One might then wonder whether there is a similarly simple vector model of system dynamics for the Bloch equation.

B. Bloch equation dynamics: simple limiting cases

As a point of departure, consider first the OBE. For simple limiting cases, the dynamics are already well known and readily visualized. In the absence of relaxation, i.e., all $R_{i}=0$, any magnetization vector \mathcal{M} rotates about the total effective field $\boldsymbol{\omega}_{e}$ at constant angular frequency ω_{e}. The time evolution of a vector under the action of the propagator has a simple solution in a coordinate system rotated to align one of the axes with the effective field. The component of \mathcal{M} along $\boldsymbol{\omega}_{e}$ is constant, and the components in the plane perpendicular to $\boldsymbol{\omega}_{e}$ rotate at angular frequency ω_{e} in the plane. By contrast, the solution for each component $\mathcal{M}_{i}(t)$ in the standard $\left(x_{1}, x_{2}, x_{3}\right)$-coordinate system is more complicated, and it is not immediately apparent by inspection that the solution is a rotation.

If the relaxation is switched on with equal rates $R_{i}=$ R, the diagonal relaxation matrix $R \mathbb{1}$ commutes with the remaining rotation matrix. The simplification it affords has not been acknowledged in any of the previously cited solutions. The solution is a simple dynamic scaling $e^{-R t}$ of the rotating vector \mathcal{M}, as obtained by Jaynes [31] via
R_{1} circuitous route. In addition, for $\omega_{12}=0$ and ${ }_{4} R_{1}=R_{2} \neq R_{3}$, the relaxation matrix still commutes with 5 the rotation about nonzero ω_{3}. The evolution is then in 06 terms of noninteracting longitudinal and transverse components. We have exponential decay $e^{-R_{3} t}$ of component \mathcal{M}_{3} and decay $e^{-R_{2} t}$ of the transverse component \mathcal{M}_{12}, which rotates at angular frequency ω_{3} in the plane perpendicular to ω_{3}, as illustrated in Fig. 3a. In the case of pure relaxation, with all the field components $\omega_{i}=0$, the 2 solution is a non-oscillatory exponential decay $e^{-R_{i} t}$ for each component \mathcal{M}_{i} along coordinate axis x_{i}.

C. Bloch equation dynamics: a more general vector model

With the exception of the above simple cases, there has 17 been no analogous picture of system dynamics when the rotation and relaxation do not commute. The combined, noncommutative action of arbitrary fields and dissipation rates appears to require something more complex. Yet, the simple visual model shown in Fig. 3a, which is comprised of independent relaxation and rotation elements, is readily extended to the general case of arbitrary Γ when 224 viewed in an appropriate coordinate system. This re25 quires the action of the propagator $e^{-\Gamma t}$ on an arbitrary 26 vector.

The eigensystem for Γ is considered in sections that follow, but one can substitute notation for the partitioned matrix Γ_{p} in the expressions which are derived, since, as defined in Eq. (32), the matrices differ by a constant \bar{R} times the identity matrix. The difference in the eigenvalues is also \bar{R}, from Eqs. (24) and (25). Thus $-\Gamma$ and $-\Gamma_{\mathrm{p}}$ have the same eigenvectors $\boldsymbol{s}_{i} \equiv \boldsymbol{z}_{i}$. Simple analytical expressions for the eigenvectors and other constituents of the model are derived in Appendix F. Each (unnormalized) eigenvector, which can assume different analytical forms depending on the scaling, comprises the columns of $\operatorname{adj} A\left(s_{i}\right)=\operatorname{adj} A_{\mathrm{p}}\left(z_{i}\right)$, as derived in Appendix B. This provides a useful method for calculating an eigenvector, especially in symbolic form as a function of matrix parameters.

1. One real, two complex conjugate roots

The solution for each component \mathcal{M}_{i} is known to be a combination of oscillation and bi-exponential decay [6], as is also evident from the propagator derived in Eq. (15). The underlying simplicity of the system dynamics can be demonstrated starting with the eigensystem for Γ (or, alternatively, Γ_{p}, as noted above).

The real eigenvalue s_{1} of $-\Gamma$ has a real eigenvector \boldsymbol{s}_{1} which can be used as one axis of a physical coordinate system, but the complex roots s_{+}and $s_{-}=s_{+}^{*}$ have associated complex eigenvectors \boldsymbol{s}_{+}and $\boldsymbol{s}_{-}=\boldsymbol{s}_{+}^{*}$.

$$
\begin{align*}
\tilde{\boldsymbol{s}}_{1}=s_{1}, & \tilde{\boldsymbol{s}}_{2} & =\frac{1}{2}\left(s_{+}+s_{-}\right), & \tilde{\boldsymbol{s}}_{3}
\end{align*}=-\frac{i}{2}\left(s_{+}-s_{-}\right) .
$$

854 864

The eigenvectors above are most generally not orthogonal for arbitrary Γ, but they are linearly independent, given the distinct eigenvalues. The set $\left\{\tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{3}\right\}$ is then also linearly independent and can be used as an alternative physical basis for describing the system evolution. The new coordinate system will most generally also be nonorthogonal (oblique). System states and operators are transformed between bases in the usual fashion by a matrix P comprised of the $\left\{\tilde{\boldsymbol{s}}_{i}\right\}$ entered as column vectors. Vector $\tilde{\mathcal{M}}$ and the propagator in the new basis are given 4 by

$$
\begin{align*}
\tilde{\mathcal{M}} & =P^{-1} \mathcal{M} \\
e^{-\tilde{\Gamma} t} & =P^{-1} e^{-\Gamma t} P \\
& =e^{-\left(P^{-1} \Gamma P\right) t}, \tag{61}
\end{align*}
$$

and ϖ of Eq. (22), the solution $\tilde{\mathcal{M}}(t)=e^{-\tilde{\Gamma} t} \tilde{\mathcal{M}}(0)$ for the time dependence of state vector $\tilde{\mathcal{M}}$ in the new basis is found to be

$$
\begin{align*}
\tilde{\mathcal{M}}(t)= & \left(\begin{array}{ccc}
e^{\tilde{s}_{1} t} & 0 & 0 \\
0 & e^{\tilde{s}_{23} t} & 0 \\
0 & 0 & e^{\tilde{s}_{23} t}
\end{array}\right) \times \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varpi t & \sin \varpi t \\
0 & -\sin \varpi t & \cos \varpi t
\end{array}\right) \tilde{\mathcal{M}}(0) \tag{63}
\end{align*}
$$

$$
\begin{equation*}
R_{1 s}=\left|\tilde{s}_{1}\right|=1 / T_{1 s} \quad \text { and } \quad R_{2 s}=\left|\tilde{s}_{23}\right|=1 / T_{2 s} \tag{64}
\end{equation*}
$$ 883 in the $\left\{\tilde{s}_{i}\right\}$ coordinates and working backwards from ${ }_{92}$

${ }_{884}$ Eq. (63) gives the Bloch equation in this basis as

$$
\begin{gather*}
\frac{d}{d t} \tilde{\mathcal{M}}(t)+\tilde{\Gamma} \tilde{\mathcal{M}}(t)=0 \\
\tilde{\Gamma}=\left(\begin{array}{ccc}
R_{1 s} & 0 & 0 \\
0 & R_{2 s} & \varpi \\
0 & -\varpi & R_{2 s}
\end{array}\right) \tag{65}
\end{gather*}
$$

928 and, by extension, so is the propagator in this basis. Thus 974

$$
\tilde{\mathcal{M}}(t)=\left(\begin{array}{ccc}
e^{s_{1} t} & 0 & 0 \tag{67}\\
0 & e^{s_{2} t} & 0 \\
0 & 0 & e^{s_{3} t}
\end{array}\right) \tilde{\mathcal{M}}(0)
$$

Each component of \mathcal{M} along $\tilde{\boldsymbol{s}}_{i}$ decays at the rate determined by s_{i}. In contradistinction to the rates that emerge 98 from the oscillatory solutions, here, even in the typical 98 case of equal transverse rates $R_{1}=R_{2}$ and longitudinal rate R_{3}, we find three distinct rates

$$
\begin{equation*}
R_{i s}=\left|s_{i}\right|=1 / T_{i s} \tag{68}
\end{equation*}
$$

due to the coupling of the field with the relaxation processes.

Given $e^{-\tilde{\Gamma} t}$ as obtained in Eq. (63) or (67), the propagator in the standard coordinate basis is $e^{-\Gamma t}=$ $P e^{-\tilde{\Gamma} t} P^{-1}$ from Eq. (61). One obtains a simple, factored solution for the propagator derived by different methods in Sec. III. The physical interpretation of the dynamics is correspondingly simple, with oscillation frequencies and decay rates hinging upon the primary real root z_{1}. The dependence of this root on the fields and relaxation rates has been shown previously in Fig. 2.

3. Degenerate roots

The vector model approach to obtaining the propagator is only applicable to the case of distinct eigenvalues. Degenerate eigenvalues do not give the linearly independent eigenvectors necessary to define a new coordinate system. However, the degeneracies are a relatively trivial component of the parameter space, at least for the OBE, as shown in Fig. 1. Moreover, the solution has to be continuous as the degeneracies are approached, with a smooth transition from oscillatory, decaying solutions to pure decay as one crosses the parameter-space boundary identifying the degenerate solutions.

4. Discussion and representative examples

The solutions of Sec. III are represented in the standard coordinate system, expressed in general form for arbitrary driving matrix Γ. Here, they are applied to specific physical examples applicable to the OBE, with $R_{1}=R_{2}$. The trajectories of initial states under the action of the propagator are plotted to illustrate the underlying simplicity of the dynamics and corroborate the alternative coordinate system that defines the vector model. Parameters for the examples are chosen to demonstrate the damping and rotation that are char- 1013 acteristic of the dynamics for all but a small region of 1014 the parameter space. A purely damped solution and 1015 model dynamics given by Eq. (67) is rather featureless, 1016 by comparison. Unless stated otherwise, the first col- 1017 umn of adj A_{p} is chosen to calculate the eigenvectors and ${ }_{101}$ coordinate basis $\left\{\tilde{\boldsymbol{s}}_{i}\right\}$.

$$
\begin{align*}
& \tilde{\boldsymbol{s}}_{1} \leftarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \tilde{s}_{2} \leftarrow\left(\begin{array}{ccc}
\omega_{3} & -3 R_{\delta} & 0 \\
3 R_{\delta} & \omega_{3} & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \tilde{\boldsymbol{s}}_{3} \leftarrow\left(\begin{array}{ccc}
3 R_{\delta} & \omega_{3} & 0 \\
-\omega_{3} & 3 R_{\delta} & 0 \\
0 & 0 & 0
\end{array}\right) . \tag{69}
\end{align*}
$$

${ }_{87}$ As noted earlier, there is always only one unique nonzero ${ }_{988}$ result for $\tilde{\boldsymbol{s}}_{1}$, with any apparent differences between 989 columns simply a matter of scale. The nonzero columns

$$
\tilde{\boldsymbol{s}}_{1}=\left(\begin{array}{c}
\omega_{1} \tag{70}\\
\omega_{2} \\
0
\end{array}\right) \quad \tilde{\boldsymbol{s}}_{2}=\left(\begin{array}{c}
-\omega_{2} \\
\omega_{1} \\
-\frac{3}{2} R_{\delta}
\end{array}\right) \quad \tilde{\boldsymbol{s}}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Thus, on resonance, the propagator still generates a spiral about the effective field $\omega_{e}=\tilde{s}_{1}$ with precession in the $\left(\tilde{s}_{2}, \tilde{s}_{3}\right)$-plane orthogonal to \tilde{s}_{1}. However, as considered in section VC1, the rotation frequency driven by ϖ is not constant, since \tilde{s}_{2} is not perpendicular to $\tilde{\boldsymbol{s}}_{3}$. The deviation from orthogonality, determined by the 10 third component of \tilde{s}_{2}, is small for fields that are large
compared to R_{δ}. The respective decay rates $R_{1 s}$ and $R_{2 s}{ }^{1078}$ are R_{2} and $1 / 2\left(R_{2}+R_{3}\right)$, using $\lambda_{z}=-1$ and $\lambda_{z}=1 / 2$ as 1079 determined from z_{1} and $-z_{1} / 2$. Components along $\tilde{\boldsymbol{s}}_{1}, 108$ i.e., in the (x, y)-plane, decay at the usual spin-spin relaxation rate, as would be expected. Components rotating in the plane orthogonal to $\tilde{\boldsymbol{s}}_{1}$ experience equal influence, 1081 on average, from their projection onto the longitudinal z-axis defining ω_{3} and their projection into the $(x, y){ }_{-1082}$ plane, so one might predict from the model that they decay at the average of the usual spin-spin and longitudinal relaxation rates. These values for the decay rates have been obtained previously as elements of the solution in the standard coordinate system [6] without the physical interpretation presented here.

The trajectory for an initial state \mathcal{M}_{0} due to the action of propagator $e^{-\Gamma t}$ with $\boldsymbol{\omega}_{e}=\left(\omega_{1}, 0,0\right)$ and nonzero relaxation is shown in Fig.3b. Values of the parameters are given in the caption. For nonzero ω_{2}, the figure is simply rotated about the z-axis by angle $\phi=\tan ^{-1}\left(\omega_{2} / \omega_{1}\right)$. The state \mathcal{M}_{0} has been chosen with equal components parallel and orthogonal to $\boldsymbol{\omega}_{e}$ to most clearly illustrate the dynamics predicted by the vector model. The slight misalignment between \tilde{s}_{2} and the y-axis, which makes \tilde{s}_{2} and $\tilde{\boldsymbol{s}}_{3}$ nonorthogonal, is evident in the figure and becomes more prominent as the magnitude of the field, ω_{12}, is reduced relative to R_{δ}.
c. Off resonance, general $\boldsymbol{\omega}_{e}$ Most generally, $\tilde{\boldsymbol{s}}_{1}$ is not aligned with $\boldsymbol{\omega}_{e}$. Dividing column j of the matrix in Eq. (F5) by (nonzero) ω_{j} quantifies the degree to which $\tilde{\boldsymbol{s}}_{1}$ deviates from $\boldsymbol{\omega}_{e}$ due to the coupling between the fields and the relaxation rates R_{i}. The result is an expression of the form $\boldsymbol{s}_{1}=\boldsymbol{\omega}_{e}+\delta \boldsymbol{v}$, where vector $\delta \boldsymbol{v}$ is comprised of the second term in each row of the $j^{\text {th }}$ column divided by ω_{j}.
In addition, \tilde{s}_{1} is typically not orthogonal to the $\left(\tilde{s}_{2}, \tilde{s}_{3}\right)$-plane. One then has to further modify intuitions developed from orthogonal coordinate systems. For ex- 109 ample, in Fig. 3c, \mathcal{M}_{0} is aligned with the normal to the 1098 $\left(\tilde{s}_{2}, \tilde{s}_{3}\right)$-plane. It therefore has no orthogonal projection 1099 in the plane and might naively be expected to have no ${ }_{110}$ evolution in the plane. However, \tilde{s}_{1} is distinctly different ${ }_{110}$ than the normal, and \mathcal{M}_{0} is the vector sum of a component along $\tilde{\boldsymbol{s}}_{1}$ and a component parallel to the plane, which are the quantities relevant for the vector model. As shown in the figure, the parallel component rotates and decays in the plane while the component along $\tilde{\boldsymbol{s}}_{1}$ strictly decays. Similarly, \mathcal{M}_{0} orthogonal to \tilde{s}_{1} as in Fig. 3d nonetheless has a component along \tilde{s}_{1} in the oblique coordinates. This component decays to generate the spiral shown in the figure.

Contrast this with the dynamics viewed in standard co- ${ }_{1111}$ ordinates, where the solution for each component $\mathcal{M}_{i}(t){ }_{1112}$ is an oscillation combined with relaxation at two separate 1113 rates. As in simpler examples, it can be decoupled into 1114 two independent dynamical systems, one of which rotates 1115 in a plane and decays at one rate and another which de- 1116 cays along a fixed axis, albeit in an oblique coordinate ${ }_{1117}$ system. 1087

The deviation of $\tilde{\boldsymbol{s}}_{1}$ from the normal to the plane is quantified in Appendix F for $\boldsymbol{\omega}_{12}$ of either x - or y-phase and for $\omega_{1}=\omega_{2}=\omega_{3}$.

D. Alternative vector model

The Bloch equation, considered here in matrix form, 83 is typically represented in vector form. Its physics is the 184 torque on a magnetic moment in a magnetic field subject 35 to relaxation of the magnetization. The effects of this 886 physics on the OBE solution can be made more explicit

$$
\begin{align*}
\Gamma_{\mathrm{p}} \mathcal{M}= & \left(\mathcal{R}_{\mathrm{p}}+\Omega\right) \boldsymbol{v}_{0} \\
= & \left(\mathcal{R}_{\mathrm{p}} \mathcal{M}\right)-\left(\boldsymbol{\omega}_{e} \times \mathcal{M}\right) \\
= & \boldsymbol{v}_{1} \\
\Gamma_{\mathrm{p}}^{2} \mathcal{M}= & \left(\mathcal{R}_{\mathrm{p}}+\Omega\right) \boldsymbol{v}_{1} \\
= & \left(\mathcal{R}_{\mathrm{p}}^{2} \mathcal{M}\right)-\mathcal{R}_{\mathrm{p}}\left(\boldsymbol{\omega}_{e} \times \mathcal{M}\right)-\boldsymbol{\omega}_{e} \times\left(\mathcal{R}_{\mathrm{p}} \mathcal{M}\right)+ \\
& \boldsymbol{\omega}_{e} \times\left(\boldsymbol{\omega}_{e} \times \mathcal{M}\right) \\
= & \left(\mathcal{R}_{\mathrm{p}}^{2} \mathcal{M}\right)-\mathcal{R}_{\mathrm{p}}\left(\boldsymbol{\omega}_{e} \times \mathcal{M}\right)-\boldsymbol{\omega}_{e} \times\left(\mathcal{R}_{\mathrm{p}} \mathcal{M}\right)+ \\
& \boldsymbol{\omega}_{e}\left(\boldsymbol{\omega}_{e} \cdot \mathcal{M}\right)-\omega_{e}^{2} \mathcal{M} \\
= & \boldsymbol{v}_{2} \tag{71}
\end{align*}
$$

Each succeeding \boldsymbol{v}_{n} is a nonuniform scaling of the previous \boldsymbol{v}_{n-1} added to a vector $\left(\boldsymbol{v}_{n-1} \times \boldsymbol{\omega}_{e}\right)$ that is orthogonal to \boldsymbol{v}_{n-1}. The time dependence of \boldsymbol{v}_{n} is given by the associated term $a_{n}(t) e^{-\bar{R} t}$ found in Eqs. (37-39). The $a_{n}(t)$ are factored as the product of a matrix $W\left(z_{1}\right)$ and vector $\boldsymbol{u}(t)$. Each $a_{n}(t)$ is merely a different linear combination of the same three simple functions $u_{i}(t)$ that comprise the components of \boldsymbol{u}, weighted according to the corresponding elements from row n of the matrix W. A given $\boldsymbol{v}_{n}(t)$ thus maintains a fixed orientation, changing length with a time dependence consisting of the different weightings of the $u_{i}(t)$ for different \boldsymbol{v}_{n}. The trajectory $\mathcal{M}(t)=\sum_{n} \boldsymbol{v}_{n}(t)$ can thus be represented in terms of the decaying oscillations of three vectors fixed in place.

Alternatively, expand $\left(\mathbb{1}, \Gamma_{p}, \Gamma_{p}^{2}\right) W\left(z_{1}\right) \boldsymbol{u}(t)$ and group terms of the same time dependence $u_{i}(t)$. The propagator applied to \mathcal{M} gives three different linear combinations of the \boldsymbol{v}_{n}, with a time dependence $u_{i}(t)$ for the $i^{\text {th }}$ combination. The resulting interpretation of $\mathcal{M}(t)$ is similar to the previous paragraph, but the functional form of the decaying oscillations is simpler using this different set of 18 vectors.

VI. CONCLUSION

A more comprehensive solution of the Bloch equation has been presented together with intuitive visual models of its dynamics. The solution is valid for arbitrary system parameters, yet is simpler than previous solutions. It can be expressed as the product of three separate terms: one which depends directly on the physical parameters of the problem through the driving matrix Γ, a term that depends on its eigenvalues, and a term that gives the time dependence, which in turn is solely a function of the eigenvalues. Moreover, the time evolution of the system as a function of the physical parameters has been made more explicit and apparent.

System dynamics depend critically on the eigenvalues, with (i) oscillatory, underdamped evolution for one real ${ }^{1}$ and two complex-conjugate values, (ii) non-oscillatory, overdamped evolution for three real values, and (iii) ${ }^{1}$ non-oscillatory, critically damped evolution for doubly ${ }^{1}$ or triply degenerate (real) values. The damping rates ${ }^{116}$ and the frequency driving the oscillatory behavior have ${ }^{1168}$ been reduced to simple functions of a primary, real eigen- ${ }^{11}$ value that is obtained as a straightforward function of ${ }^{117}$ the system parameters. For the conventional Bloch equa- ${ }^{117}$ tion, simple quantitative relations have been derived that ${ }^{117}$ delineate the three categories of dynamical behavior in ${ }^{117}$ terms of the physical parameters. A linear relation has also been derived in this case relating critical system 1174

147 a straightforward graphical realization of the damping rates and frequency for a given physical configuration.

An intuitive dynamical model developed here transforms the general Bloch equation to a frame in which damping commutes with a rotation, providing a propagator for the time evolution of the system that is the product of a rotation times a decay, in either order. The decay rates in this frame result from interaction/coupling of the fields with the spin-lattice and spin-spin relaxation processes. The model was motivated by well-known visual models for simple conventional cases such as equal relaxation rates or free precession (no fields transverse to the longitudinal, z-axis). The system state in such cases rotates about the effective field, with concurrent exponential decay of the longitudinal and transverse components. The extended model retains the same essential features: rotation, exponential decay of the invariant component in the rotation (analogous to the longitudinal axis), and a separate decay of the rotating components in an analogous transverse plane. The model also includes solely damped solutions (i.e., no rotation). An alternative vector model has also been provided, as well as a representation of the Bloch equation as a system of coupled, damped harmonic oscillators. The net result of the solutions and models is a framework for more direct physical insight into the dynamics of the Bloch equation.

ACKNOWLEDGMENTS

The author gratefully acknowledges support from the National Science Foundation under Grant CHE-1214006.

Consider a general 3×3 matrix Υ with characteristic polynomial $p(s)=\operatorname{det}(s \mathbb{1}-\Upsilon)=\sum_{j=0}^{3} c_{j} s^{j}$ and polynomials $p_{j}(s)$ derived from it as defined in Eq. (31). The claim is that

$$
\begin{equation*}
\operatorname{adj}(s \mathbb{1}-\Upsilon)=\sum_{j=0}^{2} p_{j}(s) \Upsilon^{j} \tag{A1}
\end{equation*}
$$

Note first that $\sum_{j=0}^{2} p_{j}(s) \Upsilon^{j}=\sum_{j=0}^{2} p_{j}(\Upsilon) s^{j}$, as is eas1182 ily verified by expanding the terms. Then Eq. (12) for ${ }_{1183}$ the inverse matrix $(s \mathbb{1}-\Upsilon)^{-1}=\operatorname{adj}(s \mathbb{1}-\Upsilon) / p(s)$ gives

$$
\begin{align*}
p(s) \mathbb{1} & =(s \mathbb{1}-\Upsilon) \operatorname{adj}(s \mathbb{1}-\Upsilon) \\
& =s \sum_{j=0}^{2} p_{j}(s) \Upsilon^{j}-\Upsilon \sum_{j=0}^{2} p_{j}(\Upsilon) s^{j} \tag{A2}
\end{align*}
$$

4 For the $j=0$ term, make the substitution $s p_{0}(s) \mathbb{1}=$ remaining sum, which is easily shown to equal pero upon evaluating $p_{1}(x)=c_{2}+x^{2}$ and $p_{2}(x)=1$ for ${ }_{1190} x=s$ and $x=\Upsilon$.

Appendix B: An Alternative Method for Calculating 1192

Equation (A2) suggests the modest result, at the least not widely recognized, that an eigenvector \boldsymbol{v} corresponding to a distinct eigenvalue v of operator Υ can be obtained as

$$
\begin{equation*}
\boldsymbol{v} \in \operatorname{adj}(v \mathbb{1}-\Upsilon) \tag{B1}
\end{equation*}
$$

Appendix C: Cubic Polynomials with Real Coefficients

The standard solutions for the three roots of Eq. (19), 1218 cast here in terms of

$$
\begin{equation*}
\Lambda_{ \pm}=\left[-\tilde{c}_{0} / 2 \pm \sqrt{\left(\tilde{c}_{0} / 2\right)^{2}+\left(\tilde{c}_{1} / 3\right)^{3}}\right]^{1 / 3} \tag{C1}
\end{equation*}
$$

1219 are

$$
\begin{aligned}
z & =\left\{\Lambda_{+}+\Lambda_{-},-\frac{\Lambda_{+}+\Lambda_{-}}{2} \pm \sqrt{-3} \frac{\Lambda_{+}-\Lambda_{-}}{2}\right\} \\
& =\left\{z_{1}, z_{ \pm}\right\}
\end{aligned}
$$

1220 These solutions can be consolidated in a convenient form ${ }_{1221}$ that does not appear to have been employed heretofore. ${ }^{1222}$ Substituting $\left(\Lambda_{+}-\Lambda_{-}\right)=\left[\left(\Lambda_{+}+\Lambda_{-}\right)^{2}-4 \Lambda_{+} \Lambda_{-}\right]^{1 / 2}$ and ${ }^{1223}$ noting $\Lambda_{+} \Lambda_{-}=-\tilde{c}_{1} / 3$ gives

$$
\begin{align*}
z_{1} & =\Lambda_{+}+\Lambda_{-} \\
z_{ \pm} & =-\frac{1}{2} z_{1} \pm i \sqrt{3} \sqrt{\left(\frac{z_{1}}{2}\right)^{2}+\frac{\tilde{c}_{1}}{3}} \\
& =-\frac{1}{2} z_{1} \pm i \varpi \tag{C3}
\end{align*}
$$

1224 in terms of a discriminant

$$
\begin{equation*}
\varpi^{2}=3\left[\left(z_{1} / 2\right)^{2}+\tilde{c}_{1} / 3\right] \tag{C4}
\end{equation*}
$$

1225 Any polynomial with real coefficients has at least one ${ }_{1226}$ real root. Therefore $\varpi^{2}>0$ gives one real and two com${ }^{1227}$ plex conjugate roots, with three real roots resulting from $1228 \varpi^{2} \leq 0$.

One can then employ simple forms for $z_{1}[37,38]$. The 200 so the method is fairly efficient. However, the trivial zero eigenvector solution can be one of the columns, requiring ${ }^{1229}$ further completion of the adjugate to obtain the desired ${ }^{123}$ eigenvector.

1204
1205 i
1206 S

1212 is greater than $(n-k)$, the method appears to return the ${ }_{1213}$ eigenvectors that exist, but one rarely needs these, since 1214 the matrix Υ is not diagonalizable in this case.

For the case of degenerate eigenvalues, the method ${ }^{123}$ is incomplete. When the nullity (dimension of the null space) of $(v \mathbb{1}-\Upsilon)$ equals the order of the degeneracy, k (i.e, the rank equals the dimension of the operator, n, minus k), there are k distinct eigenvectors, but the method fails, returning only the zero eigenvector. If there is not a complete set of eigenvectors (the degenerate eigenvalue is defective in that the nullity is less than k), and the rank
${ }_{1233}$ Then the roots can be calculated according to their do-

1234 main of applicability as
$\tilde{c}_{1}>0$
$\varphi \equiv \frac{1}{3} \sinh ^{-1} \gamma$
$x_{1} \equiv \operatorname{sgn}\left(\tilde{c}_{0}\right) \sinh \varphi$
$z_{1}=-2 \sqrt{\alpha} x_{1}$
$\varpi=\sqrt{3 \alpha\left(x_{1}^{2}+1\right)}=\sqrt{3 \alpha} \cosh \varphi$
$z_{ \pm}=\sqrt{\alpha} x_{1} \pm i \varpi$
$\tilde{c}_{1}<0$
$\gamma \geq 1$
$\varphi \equiv \frac{1}{3} \cosh ^{-1} \gamma$
$x_{1} \equiv \operatorname{sgn}\left(\tilde{c}_{0}\right) \cosh \varphi$
$z_{1}=-2 \sqrt{\alpha} x_{1}$
$\varpi=\sqrt{3 \alpha\left(x_{1}^{2}-1\right)}=\sqrt{3 \alpha} \sinh \varphi$
$z_{ \pm}=\sqrt{\alpha} x_{1} \pm i \varpi$
$\rightarrow \sqrt{\alpha} x_{1} \quad \gamma=1$
$\gamma \leq 1$
$\varphi \equiv \frac{1}{3} \cos ^{-1} \gamma$
$x_{1} \equiv \operatorname{sgn}\left(\tilde{c}_{0}\right) \cos \varphi$
$z_{1}=-2 \sqrt{\alpha} x_{1}$
$\varpi=i \sqrt{3 \alpha\left(1-x_{1}^{2}\right)}=i \sqrt{3 \alpha} \sin \varphi$ $=i \mu$
$z_{ \pm}=\sqrt{\alpha} x_{1} \pm \mu \quad$ or, alternatively
$\varphi \equiv \frac{1}{3} \sin ^{-1} \gamma$
$x_{1} \equiv \operatorname{sgn}\left(\tilde{c}_{0}\right) \sin \varphi$
$z_{1}=+2 \sqrt{\alpha} x_{1}$
$\varpi=i \sqrt{3 \alpha\left(1-x_{1}^{2}\right)}=i \sqrt{3 \alpha} \cos \varphi$ $=i \mu$
$z_{ \pm}=-\sqrt{\alpha} x_{1} \pm \mu$
$\tilde{c}_{1}=0$
$z_{1}=-\operatorname{sgn}\left(\tilde{c}_{0}\right) \sqrt[3]{|b|}$
$z_{ \pm}=-\frac{1}{2} z_{1}(1 \pm i \sqrt{3})$

For $\left(\tilde{c}_{1}>0\right)$ or ($\tilde{c}_{1}<0$ and $\left.\gamma>1\right)$, there is one real root and complex conjugate roots $z_{ \pm}$. For $\tilde{c}_{1}<0, \gamma<1$, there are three real roots. When $\gamma=1$, both Eq. (C6b) and Eq. (C6c) give $\varphi=0=\varpi$ and two degenerate roots $z_{+}=z_{-}$. Equation (C6d) reorders the roots relative to $\gamma=1$ is one of the $z_{ \pm}$. Results for $\tilde{c}_{1}=0$ are straightforwardly obtained from Eq. (C2) and Eq. (21), or using 1269 the expressions in (C6a) and (C6b), with $\sinh ^{-1} \gamma \rightarrow{ }_{1270}$ Eq. (22) gives doubly-degenerate real roots $z_{2}=z_{3}=$ $\cosh ^{-1} \gamma \rightarrow \ln (2 \gamma)$ in the limit $\gamma \rightarrow \infty$. Terms then re- $1271-z_{1} / 2$ and $q(z) \rightarrow\left(z-z_{1}\right)\left(z-z_{2}\right)^{2}$. The residue at sult that are multiplied by $\sqrt{\alpha}$, canceling the singularity ${ }_{1272} z=z_{2}$ in Eq. (29) for the Cayley-Hamilton coefficients at $\tilde{c}_{1}=0$. For the case $\tilde{c}_{1}=0=\tilde{c}_{0}$, there are three equal ${ }_{1273} a_{j}(t)$ requires the derivative of $e^{z t} q_{j}(z) /\left(z-z_{1}\right)$ with reroots $z_{i}=0$. 1265 real when $\varpi^{2}<0$, which is the case for $\tilde{c}_{1}<0$ and $\gamma<1$. ${ }_{1266}$ Then $\varpi \rightarrow i \mu$ in Eq. (37), with $\mu^{2}=\left|3\left(z_{1}^{2} / 2\right)+\tilde{c}_{1}\right|$ and ${ }^{1267} \tilde{c}_{1}=-\left|\tilde{c}_{1}\right|$.

The case $\varpi=0$ resulting from $\tilde{c}_{1}=-3\left(z_{1} / 2\right)^{2}$ in

2. Second-order pole

1274 spect to z, evaluated at $z=z_{2}$. Calculating the residue

Appendix D: Calculation of $e^{-\Gamma_{\mathrm{p}} t}$

1. First-order pole

Consider the case of one real root z_{1} and two com${ }^{1251}$ plex conjugate roots $z_{2,3}=-1 / 2 z_{1} \pm i \varpi$, as given by ${ }_{1252}$ Eq. (21), with $\varpi^{2}=3\left(z_{1} / 2\right)^{2}+\tilde{c}_{1}>0$. Two of the terms 1253 in Eq. (35) for the Cayley-Hamilton coefficients $a_{j}(t)$ are 1254 therefore also complex conjugates of each other, of the ${ }_{1255}$ form $w+w^{*}=2 \operatorname{Re}(w)$ for the sum of w and its complex 1256 conjugate. Then

$$
\begin{equation*}
a_{j}(t)=\frac{q_{j}\left(z_{1}\right)}{q^{\prime}\left(z_{1}\right)} e^{z_{1} t}+2 \operatorname{Re}\left[\frac{q_{j}\left(z_{2}\right)}{q^{\prime}\left(z_{2}\right)} e^{z_{2} t}\right], \tag{D1}
\end{equation*}
$$

(C6b) ${ }_{1257}$ with $q^{\prime}\left(z_{i}\right)=\prod_{j \neq i}\left(z_{i}-z_{j}\right)$, as discussed in section III D. ${ }_{1258}$ Evaluating the $q^{\prime}\left(z_{i}\right)$ and using Eq. (22) for ϖ^{2} gives

$$
\begin{align*}
q^{\prime}\left(z_{1}\right) & =\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right) \\
& =\left(3 / 2 z_{1}\right)^{2}+\varpi^{2} \\
& =3 z_{1}^{2}+\tilde{c}_{1} \\
q^{\prime}\left(z_{2}\right) & =\left(z_{2}-z_{1}\right)\left(z_{2}-z_{3}\right) \\
& =-q^{\prime}\left(z_{1}\right)\left(z_{2}-z_{3}\right) /\left(z_{1}-z_{3}\right) \\
& =-\left(3 z_{1}^{2}+\tilde{c}_{1}\right) 2 i \varpi /\left(3 / 2 z_{1}+i \varpi\right) \tag{D2}
\end{align*}
$$

1259 The $q_{j}(z)$ are defined in Eq. (31), giving

$$
\begin{equation*}
q_{0}(z)=\tilde{c}_{1}+z^{2} \quad q_{1}(z)=z \quad q_{2}(z)=1 \tag{D3}
\end{equation*}
$$

1260 for a cubic polynomial in the standard canonical form of ${ }^{1261}$ Eq. (19). Evaluating Eq. (D1) gives

$$
\begin{align*}
& a_{0} \sim e^{z_{1} t}\left(z_{1}^{2}+\tilde{c}_{1}\right)+e^{-z_{1} t / 2}\left[2 z_{1}^{2} \cos \varpi t-\tilde{c}_{1} z_{1} \frac{\sin \varpi t}{\varpi}\right] \\
& a_{1} \sim z_{1} e^{z_{1} t}+e^{-z_{1} t / 2}\left[-z_{1} \cos \varpi t+\left(\frac{3}{2} z_{1}^{2}+\tilde{c}_{1}\right) \frac{\sin \varpi t}{\varpi}\right] \\
& a_{2} \sim e^{z_{1} t}-e^{-z_{1} t / 2}\left[\cos \varpi t+\frac{3}{2} z_{1} \frac{\sin \varpi t}{\varpi}\right], \tag{D4}
\end{align*}
$$

1262 with a common factor $\left(3 z_{1}^{2}+\tilde{c}_{1}\right)^{-1}$ multiplying each $a_{i}(t)$. 1263 Arranging coefficients of each time-dependent term in 1264 a matrix gives the result in Eq. (37). All three roots are

1275 according to Eq. (16) and substituting $z_{2}=-z_{1} / 2$ gives ${ }_{1303}$ Note for use in what follows that

$$
\begin{align*}
& a_{0}(t)=e^{-z_{1} t / 2}\left(\frac{8}{9}+\frac{1}{3} z_{1} t\right) \\
& a_{1}(t)=e^{-z_{1} t / 2}\left(-\frac{4}{9} z_{1}^{-1}+\frac{1}{3} t\right) \\
& a_{2}(t)=-e^{-z_{1} t / 2}\left(\frac{4}{9} z_{1}^{-2}+\frac{2}{3} t z_{1}^{-1}\right) \tag{D5}
\end{align*}
$$

${ }_{1276}$ The contribution from the first-order pole at z_{1} is ob- ${ }_{1309}$ 1277 tained as before from the simple-pole term of Eq. (37), 1278 i.e., the first column of $W_{1}\left(z_{1}\right)$ and the first element of 1310 $u_{1}(t)$ remain the same.

1280

1282
1283 ' 1284 1285 ${ }_{1285} q_{j}(z) e^{z t}$ with respect to z, evaluated at $z=0$, giving

$$
\begin{align*}
& a_{j}(t)=\left.\left[\frac{1}{2} q_{j}^{\prime \prime}(z)+t q_{j}^{\prime}(z)+\frac{1}{2} t^{2} q(z)\right] e^{z t}\right|_{z=0} \\
& a_{0}(t)=1 \quad a_{1}(t)=t \quad a_{2}(t)=\frac{1}{2} t^{2} \tag{D6}
\end{align*}
$$

Appendix E: Existence of Degenerate Roots

The characteristic polynomial for the case $R_{1}=R_{2}$ has ${ }^{1326}$ which ${ }^{1327}$ 1289 requires $\tilde{c}_{1}<0$. The special case $\tilde{c}_{0}=0=\tilde{c}_{1}$ discussed ${ }^{1328}$ ${ }_{1290}$ in section IV A gives $\omega_{3}^{2}=1$ and $\omega_{12}^{2}=8$, normalized to ${ }_{132}$ ${ }_{1291} R_{\delta}^{2} / 3$. More generally, scale ω_{3}^{2} and ω_{12}^{2} in terms of the ${ }_{1330}$ 1292 same normalization as

$$
\begin{equation*}
\omega_{3}^{2}=\lambda_{3} R_{\delta}^{2} / 3 \tag{E1}
\end{equation*}
$$

1293 where $\lambda_{3} \geq 0$, and

$$
\begin{equation*}
\omega_{12}^{2}=\left(\eta-\lambda_{3}+9 / 4\right) R_{\delta}^{2} / 3 \tag{E2}
\end{equation*}
$$

${ }_{1294}$ Then $D\left(\tilde{c}_{0}, \tilde{c}_{1}\right)=0$ gives

$$
\begin{equation*}
\eta^{3}+a_{\eta} \eta+b_{\eta}=0 \tag{E3}
\end{equation*}
$$

1295 with

$$
\begin{align*}
\frac{a_{\eta}}{3} & =-\left(\frac{3}{2}\right)^{4}\left(8 \lambda_{3}+1\right) \\
\frac{b_{\eta}}{2} & =\left(\frac{3}{2}\right)^{6}\left(8 \lambda_{3}^{2}+20 \lambda_{3}-1\right) \tag{E4}
\end{align*}
$$

${ }_{1296}$ The roots $\eta_{1}\left(\lambda_{3}\right)$ and $\eta_{ \pm}\left(\lambda_{3}\right)$ of Eq. (E3) can then be ${ }^{1345}$ ${ }_{1297}$ obtained using Eqs. (C6) with the appropriate substitu- ${ }^{1346}$ ${ }_{1298}$ tion of variables. Only those solutions such that $\omega_{12}^{2} \geq 0{ }^{1347}$ 1299 (i.e., is real) are of interest. The results, outlined in de- ${ }^{1348}$ ${ }_{1300}$ tail below, are that (i) there are no degenerate roots if ${ }_{1349}$ ${ }_{1301} \omega_{3}^{2}>R_{\delta}^{2} / 3$; and (ii) for each ω_{3} satisfying $0 \leq \omega_{3}^{2} \leq R_{\delta}^{2} / 3,{ }_{1350}$ ${ }_{1302}$ there are two values of ω_{12}^{2} that give degenerate roots. ${ }^{1351}$

When $\tilde{c}_{0}=0=\tilde{c}_{1}$, the characteristic polynomial ${ }^{131}$ $q(z) \rightarrow z^{3}$, with a triply degenerate, real root $z_{1}=0$ The residue at $z=0$ in Eq. (29) for the Cayley-Hamilton coefficients $a_{j}(t)$ is one-half the second derivative of ${ }^{131}$
5

$$
\begin{aligned}
& \text { - } \omega_{12}^{2} \sim\left(\eta+\frac{9}{4}-\lambda_{3}\right) \geq 0 \text { for } \eta \geq 0 \\
& \text { - } D\left(a_{\eta}, b_{\eta}\right) \leq 0 \text {, equivalent to } \gamma_{\eta} \leq 1 \\
& \text { - there are three real solutions } \eta_{1}, \eta_{ \pm} \text {from Eq. (C6d) } \\
& \text { - Define } \vartheta=\frac{1}{3} \sin ^{-1}\left(\gamma_{\eta}\right) \\
& \text { (a) If } \lambda_{b} \leq \lambda_{3} \leq 1 \text {, then } \\
& 0 \leq \gamma_{\eta} \leq 1, \\
& 0 \leq \vartheta \leq \pi / 6, \\
& b_{\eta} \geq 0 \\
& \text { - } \eta_{1}=2 \sqrt{\alpha_{\eta}} \sin \vartheta \\
& \begin{array}{l}
\therefore \quad \eta_{1} \geq 0 \\
\Longrightarrow \quad \omega_{12}^{2}>0
\end{array} \\
& \Longrightarrow \omega_{12}^{2}>0 \\
& \cdot \eta_{ \pm}=-\sqrt{\alpha_{\eta}} \sin \vartheta \pm \sqrt{3}\left(\alpha_{\eta}-\alpha_{\eta} \sin ^{2} \vartheta\right)^{1 / 2} \\
& = \pm 2 \sqrt{\alpha_{\eta}} \sin (\pi / 3 \mp \vartheta) \\
& \therefore \quad \eta_{+} \geq 0 \\
& \Longrightarrow \omega_{12}^{2}>0 \\
& \text { (b) If } 0 \leq \lambda_{3} \leq \lambda_{b} \text {, then } \\
& 1 \geq \gamma_{\eta} \geq 0, \\
& \pi / 6 \geq \vartheta \geq 0, \\
& b_{\eta} \leq 0 \\
& \text { - } \eta_{1}=-2 \sqrt{\alpha_{\eta}} \sin \vartheta \\
& \therefore-\frac{9}{4} \leq \eta_{1} \leq 0 \\
& \Longrightarrow \omega_{12}^{2} \sim \eta_{1}+\frac{9}{4}-\lambda_{3} \geq 0, \\
& \text { since } \eta_{1} \in\left[-\frac{9}{4}, 0\right] \text { as } \lambda_{3} \in\left[0, \lambda_{b}\right] \\
& \text { - } \eta_{ \pm}=\sqrt{\alpha_{\eta}} \sin \vartheta \pm \sqrt{3}\left(\alpha_{\eta}-\alpha_{\eta} \sin ^{2} \vartheta\right)^{1 / 2} \\
& =2 \sqrt{\alpha_{\eta}} \sin (\vartheta \pm \pi / 3)
\end{aligned}
$$

$$
\begin{align*}
\tilde{\boldsymbol{s}}_{2} & =\frac{1}{2}\left(\boldsymbol{s}_{+}+\boldsymbol{s}_{-}\right) & \tilde{\boldsymbol{s}}_{3} & =-\frac{i}{2}\left(\boldsymbol{s}_{+}-\boldsymbol{s}_{-}\right) \\
\boldsymbol{s}_{+} & =\tilde{\boldsymbol{s}}_{2}+i \tilde{\boldsymbol{s}}_{3} & \boldsymbol{s}_{-} & =\tilde{\boldsymbol{s}}_{2}-i \tilde{\boldsymbol{s}}_{3} \tag{F1}
\end{align*}
$$

$$
\begin{align*}
\tilde{c}_{1} & \sim\left(\eta-\lambda_{3}+\frac{9}{4}\right)+\lambda_{3}-9 \\
& \leq \frac{27}{4}+\frac{9}{4}-9=0 . \tag{E5}
\end{align*}
$$

Appendix F: Vector Model

There is a simple physical interpretation for the action of the propagator $e^{-\Gamma t}$ when, as is most common, the matrix Γ has three distinct eigenvalues. Supplementary details of the model introduced in section V C are presented here. Consider the case of one real eigenvalue and two complex conjugate eigenvalues. Results for the other possibility, that of three real eigenvalues, are obtained directly from Eq. (F5) in what follows.

The eigenvalues of $-\Gamma$ are the roots $s_{1}=z_{1}-\bar{R}$ and $s_{2,3} \equiv s_{ \pm}=-z_{1} / 2 \pm i \varpi-\bar{R}$, obtained from Eq. (24), with real z_{1} given in Eqs. (C6). The associated eigenvectors are \boldsymbol{s}_{1} and the complex conjugate pair $\boldsymbol{s}_{ \pm}$. The relation between $\boldsymbol{s}_{ \pm}$and the real vectors $\tilde{\boldsymbol{s}}_{2}$ and $\tilde{\boldsymbol{s}}_{3}$ defined in Eq. (60) is
${ }_{1380}$ Defining $\tilde{\boldsymbol{s}}_{1} \equiv \boldsymbol{s}_{1}$ gives a set $\tilde{\boldsymbol{s}}_{i}$ of three linearly indepen1381 dent vectors that can be used as an alternative basis for 1382 representing arbitrary system states. We then have

$$
\begin{align*}
-\Gamma \tilde{\boldsymbol{s}}_{2} & =\frac{1}{2}\left(s_{+} \boldsymbol{s}_{+}+s_{-} \boldsymbol{s}_{-}\right)=\frac{1}{2}\left(s_{+} \boldsymbol{s}_{+}+s_{+}^{*} \boldsymbol{s}_{+}^{*}\right) \\
e^{-\Gamma t} \tilde{\boldsymbol{s}}_{2} & =\frac{1}{2}\left(e^{s_{+} t} \boldsymbol{s}_{+}+e^{s_{+}^{*} t} \boldsymbol{s}_{+}^{*}\right)=\operatorname{Re}\left[e^{s_{+} t} \boldsymbol{s}_{+}\right] \\
& =e^{-\left(\bar{R}+z_{1} / 2\right) t} \operatorname{Re}\left[e^{i \varpi t}\left(\tilde{\boldsymbol{s}}_{2}+i \tilde{\boldsymbol{s}}_{3}\right)\right] \\
& =e^{-\left(\bar{R}+z_{1} / 2\right) t}\left(\cos \varpi t \tilde{\boldsymbol{s}}_{2}-\sin \varpi t \tilde{\boldsymbol{s}}_{3}\right) . \tag{F2}
\end{align*}
$$

Similarly,

$$
\begin{align*}
e^{-\Gamma t} \tilde{\boldsymbol{s}}_{3} & =-\frac{i}{2}\left(e^{s_{+} t} \boldsymbol{s}_{+}-e^{s_{+}^{*} t} \boldsymbol{s}_{+}^{*}\right)=\operatorname{Im}\left[e^{s_{+} t} \boldsymbol{s}_{+}\right] \\
& =e^{-\left(\bar{R}+z_{1} / 2\right) t} \operatorname{Im}\left[e^{i \varpi t}\left(\tilde{\boldsymbol{s}}_{2}+i \tilde{\boldsymbol{s}}_{3}\right)\right] \\
& =e^{-\left(\bar{R}+z_{1} / 2\right) t}\left(\sin \varpi t \tilde{\boldsymbol{s}}_{2}+\cos \varpi t \tilde{\boldsymbol{s}}_{3}\right) \tag{F3}
\end{align*}
$$

4 These relations, together with $e^{-\Gamma t} \tilde{\boldsymbol{s}}_{1}=e^{s_{1}} \tilde{\boldsymbol{s}}_{1}$, yield the propagator $e^{-\tilde{\Gamma} t}$ for the evolution of states $\tilde{\mathcal{M}}=$ $\sum_{i} \tilde{\mathcal{M}}_{i} \tilde{\boldsymbol{s}}_{i}$ expressed in the $\left\{\tilde{\boldsymbol{s}}_{i}\right\}$ basis, as given in Eq. (63).

As noted in Eq. (61), matrix P generated from the $\left\{\tilde{\boldsymbol{s}}_{i}\right\}$ entered as column vectors transforms from the $\left\{\tilde{s}_{i}\right\}$ basis to the standard basis, with $P^{-1}=\operatorname{adj} P / \operatorname{det} P$ giving the desired $\tilde{\mathcal{M}}$ starting with \mathcal{M} in the standard basis. One easily shows that $\operatorname{det} P=\tilde{\boldsymbol{s}}_{1} \cdot\left(\tilde{\boldsymbol{s}}_{2} \times \tilde{\boldsymbol{s}}_{3}\right)$, and row i, column l of $\operatorname{adj} P$ is $\left(\tilde{s}_{j} \times \tilde{\boldsymbol{s}}_{k}\right)_{l}$ for cyclic permutation of $i=1, j=2$, and $k=3$ to obtain

$$
P^{-1}=\frac{1}{\tilde{s}_{1} \cdot\left(\tilde{s}_{2} \times \tilde{\boldsymbol{s}}_{3}\right)}\left[\begin{array}{ccc}
\cdots & \left(\tilde{s}_{2} \times \tilde{s}_{3}\right) & \cdots \tag{F4}\\
\cdots & \left(\tilde{s}_{3} \times \tilde{s}_{1}\right) & \cdots \\
\cdots & \left(\tilde{s}_{1} \times \tilde{s}_{2}\right) & \cdots
\end{array}\right]
$$

The eigenvectors needed to construct the real basis 335 are most readily obtained as any column of adj $A\left(s_{i}\right)=$ $\operatorname{adj}\left(s_{i} \mathbb{1}+\Gamma\right)$ for each eigenvalue s_{i} (see Appendix B). Performing the straightforward calculation gives the following result for the eigenvectors, with the left arrow signifying that the columns of the matrix map to s_{i} :

$$
\begin{align*}
\boldsymbol{s}_{i} \leftarrow \operatorname{adj} A\left(s_{i}\right) & =\left[\begin{array}{ccc}
-\Gamma_{23} \Gamma_{32}+\left(s_{i}+R_{2}\right)\left(s_{i}+R_{3}\right) & \Gamma_{13} \Gamma_{32}-\Gamma_{12}\left(s_{i}+R_{3}\right) & \Gamma_{12} \Gamma_{23}-\Gamma_{13}\left(s_{i}+R_{2}\right) \\
\Gamma_{31} \Gamma_{23}-\Gamma_{21}\left(s_{i}+R_{3}\right) & -\Gamma_{13} \Gamma_{31}+\left(s_{i}+R_{1}\right)\left(s_{i}+R_{3}\right) & \Gamma_{13} \Gamma_{21}-\Gamma_{23}\left(s_{i}+R_{1}\right) \\
\Gamma_{21} \Gamma_{32}-\Gamma_{31}\left(s_{i}+R_{2}\right) & \Gamma_{31} \Gamma_{12}-\Gamma_{32}\left(s_{i}+R_{1}\right) & -\Gamma_{12} \Gamma_{21}+\left(s_{i}+R_{1}\right)\left(s_{i}+R_{2}\right)
\end{array}\right] \\
& \xrightarrow{\mathrm{OBE}}\left[\begin{array}{ccc}
\omega_{1}^{2}+\left(s_{i}+R_{2}\right)\left(s_{i}+R_{3}\right) & \omega_{1} \omega_{2}-\omega_{3}\left(s_{i}+R_{3}\right) & \omega_{1} \omega_{3}+\omega_{2}\left(s_{i}+R_{2}\right) \\
\omega_{1} \omega_{2}+\omega_{3}\left(s_{i}+R_{3}\right) & \omega_{2}^{2}+\left(s_{i}+R_{1}\right)\left(s_{i}+R_{3}\right) & \omega_{2} \omega_{3}-\omega_{1}\left(s_{i}+R_{1}\right) \\
\omega_{1} \omega_{3}-\omega_{2}\left(s_{i}+R_{2}\right) & \omega_{2} \omega_{3}+\omega_{1}\left(s_{i}+R_{1}\right) & \omega_{3}^{2}+\left(s_{i}+R_{1}\right)\left(s_{i}+R_{2}\right)
\end{array}\right] . \tag{F5}
\end{align*}
$$

The three different forms of a given s_{i} are therefore re- 1406 combination of the other two and is redundant. We are lated by a scale factor, despite perhaps appearing other- 1407 free to assign any (nonzero) value to one of the compowise. The scaling can be verified by calculating the eigen- 1408 nents, leaving two equations and two unknowns. There vectors in the usual fashion as solutions to $\left(s_{i} \mathbb{1}+\Gamma\right) s_{i}={ }_{1409}$ are three different but equivalent forms for the eigen0 . This system of equations is overdetermined, by con- 1410 vector solution depending on which two equations are struction, so any one of the three equations is a linear 1411 chosen. Setting the third component equal to one gives

1432
a. Off resonance, $\boldsymbol{\omega}_{e}=\left(0, \omega_{2}, \omega_{3}\right)$

Off resonance, in contrast to the on-resonance example ${ }_{1456}$ of section $\mathrm{VC} 4 \mathrm{~b}, \tilde{\boldsymbol{z}}_{1}$ is neither aligned with $\boldsymbol{\omega}_{e}$, nor is ${ }_{1457}$ it orthogonal to the $\left(\tilde{\boldsymbol{z}}_{2}, \tilde{\boldsymbol{z}}_{3}\right)$-plane. Calculating the $\tilde{\boldsymbol{z}}_{i}$ as ${ }_{1458}$ above provides the normal to this plane, $\tilde{\boldsymbol{n}}_{23}=\tilde{\boldsymbol{z}}_{2} \times \tilde{\boldsymbol{z}}_{3}$. ${ }_{1459}$ Then

$$
\tilde{\boldsymbol{z}}_{1}=\left(\begin{array}{c}
\left(z_{1}+R_{\delta}\right)\left(z_{1}-2 R_{\delta}\right) \tag{F8}\\
\omega_{3}\left(z_{1}-2 R_{\delta}\right) \\
-\omega_{2}\left(z_{1}+R_{\delta}\right)
\end{array}\right)
$$

1460 and

$$
\tilde{\boldsymbol{n}}_{23}=\left(\begin{array}{c}
3 \omega_{2} \omega_{3} R_{\delta} \tag{F9}\\
-\omega_{2}\left(\tilde{c}_{1}-z_{1} R_{\delta}+z_{1}^{2}+R_{\delta}^{2}\right) \\
-\omega_{3}\left(\tilde{c}_{1}+2 z_{1} R_{\delta}+z_{1}^{2}+4 R_{\delta}^{2}\right)
\end{array}\right)
$$

1461 using $\varpi^{2}=3 / 4 z_{1}^{2}+\tilde{c}_{1}$ from Eq. (22) in the expression 1462 for $\tilde{\boldsymbol{s}}_{2}$. Although the normal bears little resemblance to ${ }_{1463} \tilde{z}_{1}$, let us scale $\tilde{\boldsymbol{z}}_{1}$ by $f_{s}=-\left(\tilde{\boldsymbol{n}}_{23}\right)_{1} /\left(\tilde{\boldsymbol{z}}_{1}\right)_{1}$, so that the 1464 first component $\left(\tilde{\boldsymbol{z}}_{1}\right)_{1} \rightarrow-\left(\tilde{\boldsymbol{n}}_{23}\right)_{1}$. For the other two 1465 components, straightforward algebra gives the relation ${ }_{1466} f_{s} \tilde{\boldsymbol{z}}_{1}-\tilde{\boldsymbol{n}}_{23} \propto q\left(z_{1}\right)$, the characteristic polynomial for $-\Gamma_{\mathrm{p}}$, ${ }_{1467}$ which is zero when evaluated at its root z_{1}. Thus, within 1468 a scale factor or, equivalently, when both both vectors 1469 are normalized, we have

$$
\tilde{\boldsymbol{n}}_{23}=\left(\begin{array}{c}
-\left(\tilde{\boldsymbol{z}}_{1}\right)_{1} \tag{F10}\\
\left(\tilde{z}_{1}\right)_{2} \\
\left(\tilde{\boldsymbol{z}}_{1}\right)_{3}
\end{array}\right) .
$$ with the substitutions $s_{i} \rightarrow z_{i}$ and $R_{i} \rightarrow R_{i p}$ for the corresponding parameters associated with Γ_{p}. One can readily deduce the coefficient matrices $A_{0 \mathrm{p}}$ and $A_{1 \mathrm{p}}$ by comparing Eq. (F5) with the polynomial form in Eq. (26), also given above in the expression for $\tilde{\boldsymbol{s}}_{1}$. Recall that ${ }_{147}$ $\sum_{i} R_{i \mathrm{p}}=0$ by construction in the original matrix partitioning, so we can simplify terms such as $R_{2 \mathrm{p}}+R_{3 \mathrm{p}} \rightarrow$ $-R_{1 \mathrm{p}}$ and its cyclic permutations. The coefficients can also be obtained as simple functions of Γ_{p} using Eq. (27). For the OBE parameters, each coefficient matrix is

$$
A_{0 \mathrm{p}}=\left[\begin{array}{ccc}
\omega_{1}^{2}+R_{2 \mathrm{p}} R_{3 \mathrm{p}} & \omega_{1} \omega_{2}-\omega_{3} R_{3 \mathrm{p}} & \omega_{1} \omega_{3}+\omega_{2} R_{2 p} \\
\omega_{1} \omega_{2}+\omega_{3} R_{3 \mathrm{p}} & \omega_{2}^{2}+R_{1 \mathrm{p}} R_{3 \mathrm{p}} & \omega_{2} \omega_{3}-\omega_{1} R_{1 \mathrm{p}} \\
\omega_{1} \omega_{3}-\omega_{2} R_{2 \mathrm{p}} & \omega_{2} \omega_{3}+\omega_{1} R_{1 \mathrm{p}} & \omega_{3}^{2}+R_{1 \mathrm{p}} R_{2 \mathrm{p}}
\end{array}\right] 1472 \text { and }
$$

$$
A_{1 \mathrm{p}}=-\Gamma_{\mathrm{p}}=\left[\begin{array}{ccc}
-R_{1 \mathrm{p}} & -\omega_{3} & \omega_{2} \tag{F7}\\
\omega_{3} & -R_{2 \mathrm{p}} & -\omega_{1} \\
-\omega_{2} & \omega_{1} & -R_{3 \mathrm{p}}
\end{array}\right]
$$

${ }_{43}$ with $R_{1 \mathrm{p}}=R_{2 \mathrm{p}}=R_{\delta}$ and $R_{3 \mathrm{p}}=-2 R_{\delta}$ from Eq. (44).

$$
\begin{align*}
& \tilde{\boldsymbol{s}}_{1}=\tilde{\boldsymbol{z}}_{1} \leftarrow A_{0 \mathrm{p}}+A_{1 \mathrm{p}} z_{1}+\mathbb{1} z_{1}^{2} \\
& \tilde{\boldsymbol{s}}_{2}=\tilde{\boldsymbol{z}}_{2} \leftarrow A_{0 \mathrm{p}}-A_{1 \mathrm{p}} \frac{z_{1}}{2}+\mathbb{1}\left[\left(\frac{z_{1}}{2}\right)^{2}-\varpi^{2}\right] \\
& \tilde{\boldsymbol{s}}_{3}=\tilde{\boldsymbol{z}}_{3} \leftarrow A_{1 \mathrm{p}}-\mathbb{1} z_{1} \tag{F6}
\end{align*}
$$

an expression for the other two components involving a ${ }_{1454}$ common denominator. Scaling each eigenvector by the denominator of its other two components gives the result ${ }_{145}$ in Eq. (F5).
For the OBE in the absence of relaxation $\left(R_{i}=0\right)$, Γ generates a rotation about $\boldsymbol{\omega}_{e}$, as is well known. The real eigenvalue of $-\Gamma$ is $s_{1}=0$ with eigenvector $s_{1}=$ $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, obtained by dividing column j of $\operatorname{adj} A\left(s_{1}\right)$ by (nonzero) ω_{j}. This is the expected rotation axis for the resulting time evolution. If $\boldsymbol{\omega}_{e}=0$, then Γ is already diagonal, and the coordinates reduce to the standard coordinate system as required.

We also have adj $A\left(s_{i}\right)=\operatorname{adj} A_{\mathrm{p}}\left(z_{i}\right)$, since $s_{i}=z_{i}-\bar{R}$ and $R_{i}-\bar{R}=R_{i \mathrm{p}}$. The real basis vectors $\tilde{\boldsymbol{s}}_{2,3} \equiv \tilde{\boldsymbol{z}}_{2,3}$ are equal to the respective real, imaginary parts of $\boldsymbol{z}_{+}=$ adj $A_{\mathrm{p}}\left(z_{+}\right)$according to Eq. (60), with $z_{+}=-z_{1} / 2+$ $i \varpi$. Then, using Eq. (26) for adj $A_{\mathrm{p}}\left(z_{i}\right)$ in polynomial form and eliminating common scale factors, the real basis vectors defining the oblique coordinate system can be written concisely as

1478 and

$$
\tilde{\boldsymbol{n}}_{23}=-\left(\begin{array}{c}
\omega\left(2 \omega-3 R_{\delta}\right) \tag{F15}\\
\frac{1}{4}\left(z_{1}-2 R_{\delta}\right)^{2}+\omega\left(z_{1}+R_{\delta}\right)+\varpi^{2}-\omega^{2} \\
\frac{1}{4}\left(z_{1}+4 R_{\delta}\right)^{2}-\omega\left(z_{1}+R_{\delta}\right)+\varpi^{2}-\omega^{2}
\end{array}\right)
$$

The solutions are evaluated here for $R_{1}=R_{2}$ using a
epresentative set of limiting cases that are readily solved by other methods to check the solutions.

1. Three distinct roots

Three examples are presented representing the separate cases $\tilde{c}_{0}=0$ and $\tilde{c}_{1}=0$.

$$
\text { (i) } \tilde{c}_{0}=0, \tilde{c}_{1} \neq 0
$$

According to the defining relations for \tilde{c}_{0} and \tilde{c}_{1} in Eq. (45), the condition $\tilde{c}_{0}=0$ implies $\omega_{12}^{2}=2 R_{\delta}^{2}\left(1+\frac{1}{3} \lambda_{3}\right)$, using Eq. (3) for ω_{e}^{2} and Eq. (47) for ω_{3}. Then

$$
\tilde{c}_{1}= \begin{cases}R_{\delta}^{2}\left(\lambda_{3}-1\right) & R_{\delta} \neq 0 \tag{G1}\\ \omega_{e}^{2} & R_{\delta}=0\end{cases}
$$

3 The roots of Eq. (19) are easily obtained, giving

$$
\begin{equation*}
z_{1}=0 \quad \varpi=\sqrt{\tilde{c}_{1}} \tag{G2}
\end{equation*}
$$

$$
\text { (1) } \tilde{c}_{1}>0
$$

1496
Equation 37 gives

$$
\begin{equation*}
e^{-\Gamma_{\mathrm{p}} t}=\mathbb{1}-\frac{\Gamma_{\mathrm{p}}}{\varpi} \sin \varpi t+\left(\frac{\Gamma_{\mathrm{p}}}{\varpi}\right)^{2}(1-\cos \varpi t) \tag{G3}
\end{equation*}
$$

1500 Example (1)

$$
\begin{aligned}
& \text { Choose } R_{\delta}=0 \text { to obtain } \\
& \tilde{c}_{0}=0, \quad \tilde{c}_{1}=\omega_{e}^{2}, \quad \varpi=\omega_{e} .
\end{aligned}
$$

Then Eq. (G3) represents a rotation about the field $\boldsymbol{\omega}_{e}$.
There is no exponential decay contribution due to this term, with the overall factor $e^{-\bar{R} t}$ in the final expression for $e^{-\Gamma t}$ providing a single system decay rate \bar{R}.

The propagator U_{R} for a rotation about $\boldsymbol{\omega}_{e}$ is read- ${ }^{1540}$ Then most off-diagonal elements of Γ_{p} are equal to zero, ily obtained by transforming to a coordinate system 1541 and $\tilde{\lambda}_{3}=1$ for the Eq. (G7) input parameters to Eq. (37). with new z-axis aligned with $\boldsymbol{\omega}_{e}$, rotating by angle ${ }_{1542}$ Defining $\kappa=(\sqrt{3} / 2) R_{\delta}$ and combining the sums of

1543 1544

Again, the matrix $-\Gamma_{\mathrm{p}}$ is diagonalizable, providing a simple result for the matrix exponential in the eigenbasis and a straightforward means for calculating $e^{-\Gamma_{p} t}$ as obtained above. The associated eigenvectors are complex-valued in this case, making the algebra slightly more tedious. Alternatively, one can readily verify that $d / d t e^{-\Gamma_{\mathrm{p}} t}=-\Gamma_{\mathrm{p}} e^{-\Gamma_{\mathrm{p}} t}$.

2. Two equal roots

Degenerate roots require $\gamma=1$. For a given $\omega_{3}^{2}=$ $\lambda_{3} R_{\delta}^{2} / 3$, with $0 \leq \lambda_{3} \leq 1$, there are two values ω_{12}^{2} that satisfy $\gamma=1$, derived in Appendix E and discussed in Sec. IV A. Consider $\lambda_{3}=0$, on resonance, in which case Eqs. (47) and (48) give

$$
\begin{align*}
\left(\vartheta_{1}, \vartheta_{2}\right) & =(-\pi / 6, \pi / 2) \\
\left(\eta_{1}, \eta_{2}\right) & =(-9 / 4,9 / 2) \\
\left(\omega_{12,1}^{2}, \omega_{12,2}^{2}\right) & =\left(0,9 / 4 R_{\delta}^{2}\right) . \tag{G9}
\end{align*}
$$

1558
${ }^{1559}$ (i) $\omega_{12}=0$
${ }_{1560}$ Then there is only relaxation, with Γ_{p} reduced to the 1561 diagonal elements $\left\{R_{\delta}, R_{\delta},-2 R_{\delta}\right\}$. We have $\tilde{c}_{1}=-3 R_{\delta}^{2}$, ${ }_{1562} \tilde{c}_{0}=-2 R_{\delta}^{3}<0$, and

$$
\begin{equation*}
z_{1}=2 R_{\delta} \quad \varpi=0 \tag{G10}
\end{equation*}
$$

1563 from Eq. (C6b). Equation (38) gives the expected result

$$
e^{-\Gamma_{P} t}=\left(\begin{array}{ccc}
e^{-R_{\delta} t} & 0 & 0 \tag{G11}\\
0 & e^{-R_{\delta} t} & 0 \\
0 & 0 & e^{2 R_{\delta} t}
\end{array}\right)
$$

${ }_{1564}\left(\right.$ ii) $\omega_{12}^{2}=\frac{9}{4} R_{\delta}^{2} \rightarrow \omega_{1}^{2}$
${ }_{7}$ Verifying that $d / d t e^{-\Gamma_{\mathrm{p}} t}=-\Gamma_{\mathrm{p}} e^{-\Gamma_{\mathrm{p}} t}$ is fairly straightforward and represents the simplest test of the solution, since Γ_{p} is not diagonalizable.

3. Three equal roots

There is a three-fold degenerate root $z_{i}=0$ in the case $\tilde{c}_{0}=0=\tilde{c}_{1}$, since $q(z) \rightarrow z^{3}$. This requires $\omega_{e}^{2}=3 R_{\delta}^{2}$ from Eq. (45), which then forces $\omega_{3}^{2}=R_{\delta}^{2} / 3$ in the expression for \tilde{c}_{0}. As noted previously, the Cayley-Hamilton theorem is simple to apply directly in this case, since $q\left(\Gamma_{\mathrm{p}}\right)=\Gamma_{\mathrm{p}}^{3}=0$. The series expansion of $e^{-\Gamma_{\mathrm{p}} t}$ is there1577 fore truncated, giving the Eq. (39) result.

1578 4. On resonance

When $\omega_{3}=0, \tilde{c}_{0}$ can be written in the form $R_{\delta}\left(\tilde{c}_{1}+R_{\delta}^{2}\right)$ 1580 from Eq. (45), with $\tilde{c}_{1} \rightarrow \omega_{12}^{2}-3 R_{\delta}^{2}$. The characteristic 81 polynomial then becomes $z^{3}+R_{\delta}^{3}+\tilde{c}_{1}\left(z+R_{\delta}\right)$, so that, 1582 by inspection,

$$
\begin{equation*}
z_{1}=-R_{\delta} \quad \varpi=\sqrt{\omega_{12}^{2}-\left(\frac{3}{2} R_{\delta}\right)^{2}} \tag{G14}
\end{equation*}
$$

1583 The solution for $e^{-\Gamma_{p} t}$ using Eq. (37) with the above 1584 parameters yields the solution for $e^{-\Gamma t}$ obtained origi1585 nally by Torrey $[6]$ for $\varpi \neq 0$. As discussed above, if ${ }^{1586} \omega_{12}=3 R_{\delta} / 2$ so that $\varpi=0$, there is a two-fold degen${ }_{1587}$ eracy in the roots, giving the solution in Eq. (G13) for ${ }_{1588} e^{-\Gamma_{p} t}$.
${ }^{1589}$ For $\omega_{12}<3 R_{\delta} / 2$, the sinusoidal terms become the cor1590 responding hyperbolic functions, as noted earlier, with $1591 \cos \varpi t \rightarrow \cosh \mu t$ and $\sin \varpi t / \varpi \rightarrow \sinh \mu t / \mu$, where ${ }_{1592}$ now $\mu=\sqrt{\left(\frac{3}{2} R_{\delta}\right)^{2}-\omega_{12}^{2}}$.

$$
\begin{align*}
& e^{-\Gamma_{\mathrm{p}} t}= \\
& e^{\frac{1}{2} R_{\delta} t}\left(\begin{array}{ccc}
e^{-\frac{3}{2} R_{\delta} t} & 0 & 0 \\
0 & 1-\omega_{1} t & -\omega_{1} t \\
0 & \omega_{1} t & 1+\omega_{1} t
\end{array}\right) . \tag{G13}
\end{align*}
$$

[1] F. Bloch, Phys. Rev., 70, 460 (1946).
[2] R. P. Feynman, J. F. L. Vernon, and R. W. Hellwarth, 1603 J. Appl. Phys., 28, 49 (1957).
[3] R. Chakrabarti and H. Rabitz, International Re- 1605 views in Physical Chemistry, 26, 671 (2007), 1606 http://dx.doi.org/10.1080/01442350701633300.
[4] N. C. Nielsen, C. Kehlet, S. J. Glaser, and N. Khaneja, 1008 "Optimal control methods in NMR spectroscopy," in 1609 eMagRes (2010).
[5] D. Dong and I. R. Petersen, IET Control Theory and Applications, 4, 2651 (2010).
[6] H. C. Torrey, Phys. Rev., 76, 1059 (1949).
[7] P. K. Madhu and A. Kumar, J. Magn. Reson. A, 114, 201 (1995).
[8] A. D. Bain, J. Magn. Reson., 206, 227 (2010).
[9] A. Szabo and T. Muramoto, Phys. Rev. A, 37, 4040 (1988).
[10] F. Bloch, Phys. Rev., 105, 1206 (1957).

1611 [11] K. Tomita, Prog. Theor. Phys., 19, 541 (1958).
1612 [12] E. Sziklas, Phys. Rev, 188, 700 (1969).
1613 [13] R. H. Lehmberg, Phys. Lett., 33A, 501 (1970).
4 [14] E. Hanamura, J. Phys. Soc. Jpn., 52, 2258 (1983).
5 [15] E. Hanamura, J. Phys. Soc. Jpn., 52, 3678 (1983).
1616 [16] M. Yamanoi and J. H. Eberly, Phys. Rev. Lett., 52, 13531 1617 (1984).
[17] M Yami J. H. Ebely, J. Opt. Soc. Am. B, 1, 751 1639
(1984)
[18] J. Javanainen, Opt. Commun., 50, 26 (1984).
[19] A. Schenzle, M. Mitsunaga, R. G. DeVoe, and R. G. ${ }_{1643}$ [32] J. B. Marion, Classical Dynamics of Particles and SysBrewer, Phys. Rev. A, 30, 325 (1984). 1644 tems (Academic Press, New York, 1970).
[20] P. A. Apanasevich, S. Ya-Kilin, A. P. Nizovtsev, and 1645 [33] U. Fano, Rev. Mod. Phys., 29, 74 (1957). N. S. Onishchenko, Opt. Commun., 52, 279 (1984). 1646 [34] C. Moler and C. van Loan, Siam Review, 45, 3 (2003).
[21] K. Wódkiewicz and J. H. Eberly, Phys. Rev. A, 32, $992{ }_{1647}$ [35] G. Arfken, Mathematical Methods for Physicists (Aca(1985).

1648
1648 demic Press, New York, 1970).
[22] P. R. Berman and R. G. Brewer, Phys. Rev. A, 32, 27841649 [36] M. Lapert, E. Assémat, S. J. Glaser, and D. Sugny, (1985).
[23] A. G. Redfield, Phys. Rev., 98, 1787 (1955).
${ }_{1651}$ [37] R. M. Miura, Appl. Math Notes, 5, 22 (1980).
[24] R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett., 50, 1652 [38] J. P. McKelvey, Am. J. Phys., 52, 269 (1984). 1269 (1983).
${ }_{32}$ [25] A. G. Yodh, J. Golub, N. W. Carlson, and T. W. Moss-

FIG. 1. Parameter values of ω_{12}^{2} that give degenerate roots of the characteristic polynomial $(\gamma=1)$ and critically damped solutions to the Bloch equation are plotted as a function of ω_{3}^{2}, shown as red (solid) lines calculated using Eq. (48). The parameters are scaled to $R_{\delta}^{2} / 3$ as in Eq. (47). In the interior of the region delineated by these curves (light red), there are three distinct real roots ($\tilde{c}_{1}<0, \gamma<1$) resulting in overdamped solutions. Outside this region (light blue), one real and two complex conjugate roots produce oscillatory, underdamped solutions, with $\tilde{c}_{1}>0$ above the overdamped region and $\tilde{c}_{1}>0, \gamma>1$ below the overdamped region.

FIG. 2. Contours of the characteristic polynomial's guaranteed real root z_{1}, calculated according to Eqs. (C6) and normalized to R_{δ}, are plotted as a function of ω_{12}^{2} and ω_{3}^{2} normalized as in Fig. 1. The root satisfies $-1 \leq z_{1} \leq 2$, as expected from Eq. (51), with lines of constant z_{1} as derived in Eqs. (53-55). The $z_{1}=0$ contour is shown as a dashed line. Contours of the frequency ϖ from Eq. (22) that appears in the oscillatory, underdamped solutions of the Bloch equation are also plotted in the rightmost panels. Within the overdamped region defined in Fig. 1 and expanded in the lower panels, there is no oscillation or frequency ϖ, and only one of the three real roots is plotted.

FIG. 3. Trajectories for initial vector \mathcal{M}_{0} acted upon by propagator $e^{-\Gamma t}$ are displayed in the $\left\{\tilde{\boldsymbol{s}}_{1}, \tilde{\boldsymbol{s}}_{2}, \tilde{\boldsymbol{s}}_{3}\right\}$-coordinates developed as the natural system for describing propagator dynamics. The component of \mathcal{M}_{0} along $\tilde{\boldsymbol{s}}_{1}$ decays at the rate $\bar{R}-z_{1}$, while components in the ($\tilde{\boldsymbol{s}}_{2}, \tilde{\boldsymbol{s}}_{3}$)-plane rotate in the plane and decay at the rate $\bar{R}+z_{1} / 2$. The different panels represent different \mathcal{M}_{0}, fields $\boldsymbol{\omega}_{e}$, transverse relaxation rate R_{2}, and longitudinal relaxation rate R_{3}, with details of the predicted system evolution described in more detail in the text. Physical parameters are in units inverse seconds. (a) Initial state $\mathcal{M}_{0}=(-1,1,1)$. Physical parameters $\boldsymbol{\omega}_{e}=\left(0,0,10^{4}\right), R_{2}=400, R_{3}=200$ give coordinates $\tilde{\boldsymbol{s}}_{1}=\hat{\boldsymbol{z}}, \tilde{\boldsymbol{s}}_{2}=\hat{\boldsymbol{y}}, \tilde{\boldsymbol{s}}_{3}=\hat{\boldsymbol{x}}$ and the well-known rotation about $\boldsymbol{\omega}_{e}=\omega_{3}$ followed by longitudinal and transverse relaxation. (b) Initial state $\mathcal{M}_{0}=(1,-1,0)$. Parameters $\boldsymbol{\omega}_{e}=(5000,0,0), R_{2}=400, R_{3}=200$ lead to coordinates $\tilde{\boldsymbol{s}}_{1}=\hat{\boldsymbol{x}}, \tilde{\boldsymbol{s}}_{2}=(0,-1, .02), \tilde{\boldsymbol{s}}_{3}=\hat{\boldsymbol{z}}$. Rotation is also about $\boldsymbol{\omega}_{e}$ for $\omega_{3}=0$ (on resonance), but now $\tilde{\boldsymbol{s}}_{2}$ is not perpendicular to $\tilde{\boldsymbol{s}}_{3}$, so the rotation in the plane transverse to $\tilde{\boldsymbol{s}}_{1}$ is not at constant angular frequency. (c) Parameters $\boldsymbol{\omega}_{e}=(0,300,300), R_{2}=100, R_{3}=1$ lead to non-orthogonal oblique coordinates $\tilde{s}_{1}=(0.12,0.69,0,71), \tilde{s}_{2}=(0.99,0.04,0.12), \tilde{s}_{3}=(0 ., 0.72,-0.70)$. Initial $\mathcal{M}_{0}=(-0.12,0.69,0,71)$ is normal to the ($\left.\tilde{\boldsymbol{s}}_{2}, \tilde{s}_{3}\right)-$ plane, but has components in the plane and along $\tilde{\boldsymbol{s}}_{1}$ in the oblique coordinate system, so spirals about $\tilde{\boldsymbol{s}}_{1}$ as shown. (d) Initial $\mathcal{M}=(-0.99,0.17,0)$ is orthogonal to $\tilde{\boldsymbol{s}}_{1}$. Parameters $\boldsymbol{\omega}_{e}=(0,3000,3000), R_{2}=1000, R_{3}=1$ lead to nearly identical coordinates as in (c). \mathcal{M}_{0} projects onto $\tilde{\boldsymbol{s}}_{1}$ in oblique coordinates and therefore decays along this direction, resulting in the spiral as shown.

FIG. 4. The Bloch equation is shown in the text to model the displacements, from equilibrium positions $r_{i}=0$, of a system of three unit masses coupled by springs of stiffness $k_{i j}$. One model identifies "velocity"-dependent damping terms. An alternative model is expressed as an ideal frictionless system that is, nonetheless, damped. Asymmetric couplings $k_{i j} \neq k_{j i}$ provide a dissipative mechanism in both models. The mechanical springs depicted in the figure are therefore only an analogy.

[^0]: * thomas.skinner@wright.edu

