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We demonstrate a two-photon interference experiment for phase coherent biphoton frequency
combs (BFCs), created through spectral amplitude filtering of biphotons with a continuous broad-
band spectrum. By using an electro-optic phase modulator, we project the BFC lines into sidebands
that overlap in frequency. The resulting high-visibility interference patterns provide an approach
to verify frequency-bin entanglement even with slow single-photon detectors; we show interference
patterns with visibilities that surpass the classical threshold for qubit and qutrit states. Addition-
ally, for the first time, we show that with entangled qutrits, two photon interference occurs even
with projections onto different final frequency states. Finally, we show the versatility of this scheme
for weak-light measurements by performing a series of two-dimensional experiments at different
signal-idler frequency offsets to measure the dispersion of a single-mode fiber.

The desire to execute computationally complex algo-
rithms in polynomial time and for complete security in
communication networks has led to increased research
activity in the areas of quantum computation and com-
munications [1–7]. In this regard, entangled photons
(“biphotons”) are promising candidates due to their long
coherence times and their capability to be projected into
discretized d -level entangled states in different degrees of
freedom, such as time [8, 9], frequency [10–14], orbital
angular momentum [15], etc. More specifically, biphoton
states in the form of a frequency comb (biphoton fre-
quency comb, BFC) provide high-dimensionality in the
frequency domain, and can be easily manipulated us-
ing electro-optic modulation and Fourier-transform pulse
shaping [16, 17] for quantum computation [18]. In addi-
tion, the frequency degree of freedom provides compati-
bility with standard optical fiber infrastructure and the
ability to perform routing based on optical frequencies.
However, showing that the photon-pairs are in a coherent
superposition of frequency bins, is required for claims of
frequency-bin entanglement.

A straightforward approach to examine the coherence
of a BFC is through temporal correlation measurements.
If the two-photon spectrum is a coherent comb with a
flat spectral phase, the temporal correlation would con-
sist of a train of evenly spaced narrow peaks (see Fig.
1), which can be manipulated by adjusting the phase
of different comb lines. In order to observe these fea-
tures with a pair of single-photon detectors, the period
of the correlation train would have to exceed the timing-
jitter of the detectors; for example, a detection resolu-
tion of ∼ 100 ps can only resolve the temporal structure
of BFCs with a free spectral range (FSR) smaller than
10 GHz. And while nonlinear mixing techniques can be
used for resolution improvement in coincidence measure-
ments [12, 19, 20], diminishing nonlinear efficiency makes
this approach impractical for narrow-linewidth entangled
photons. Nonetheless, electro-optic phase modulators

can be employed to mix comb lines, which can then reveal
spectral phase sensitivity even with slow single-photon
detectors. In [10], the authors used a pair of phase-
modulators along with control of their modulation depths
and relative phases to interfere biphotons, from which
frequency entanglement was inferred; however, the input
states to the “two-photon interferometer” had a continu-
ous broadband spectrum and the notion of frequency-bins
was only implied from the application of narrow band
spectral filters right before detection. Here we implement
another phase-modulation scheme, as presented in [21],
to demonstrate a proof-of-concept experiment, wherein
our input states are BFCs obtained through spectral am-
plitude shaping of broadband biphotons; phase modula-
tion in addition to spectral phase control enable us to
observe high contrast interference fringes, a confirmation
that the biphotons are indeed in a coherent superposi-
tion of frequency modes. Our new frequency domain
scheme is in close analogy with Franson interferometry
[22], which has been widely applied in experiments on
time-bin entangled photons [8, 9].

While a similar experimental setup has been explored
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FIG. 1. Depiction of biphoton frequency comb (BFC). (a)
Spectrum of BFC with a free spectral range labeled as ∆ω.
(b) Time correlation function, with fast substructure aris-
ing from coherent interference between the different bipho-
ton frequency components. If the phase between different
biphoton frequency components is random, there will be no
time-average interference, and we would get only the longer
envelope.
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in parallel for microresonator spontaneous four-wave
mixing sources [16, 17] which have narrow linewidth fre-
quency bins (∼ 100 MHz), here we show that this phase
modulation technique works well on the relatively wide
frequency bins (12 GHz in our case) that are carved
out of continuous, broadband spontaneous parametric
downconversion spectra. Using a pulse shaper [23] along
with the continuous broadband spectrum from down-
conversion gives us the ability to programmably carve
out combs with a wide range of linewidths and spacings,
unlike those generated through cavity-based parametric
downconversion [24, 25]. Such biphoton frequency combs
obtained through filtering of continuous spectra have
been utilized in several recent experiments [11–14]. Our
results in conjunction with the spontaneous four-wave
mixing works signify the universality of this approach
for characterizing frequency-bin entanglement. Further-
more, we extend this technique to measure the dispersion
in single-mode fibers using entangled photons.

The state of a BFC can be written as

|ψ〉 =

N∑
k=1

αk |k, k〉SI ,

|k, k〉SI =

∫
dΩ Φ(Ω− k∆ω,Ω + k∆ω) |ω0 + Ω, ω0 − Ω〉SI ,

(1)
where |k, k〉SI indicates the kth mode (or comb line pair)
of the signal and idler spectrum, αk is a complex number
representing the joint amplitude and phase of the kth

comb line pair, Φ(ωs, ωi) is the lineshape of an energy-
matched comb tooth pair, ∆ω is the FSR and ω0 = 2πf0
is the center frequency of the biphoton spectrum. From
here on, we will leave out the subscript, SI, from |k, k〉SI .

Applying phase modulation of the form eiδ sinωmt (ωm

is the modulation frequency and δ is the modulation
depth) to a comb line projects it into sidebands offset
from the original comb line by integer multiples of ωm

[26, 27]—the positive-integer multiples correspond to up-
shifts in frequency while those of the negative-integers
correspond to frequency downshifts. Thus, for a single
photon, we can describe the effect of phase modulation
on the kth frequency mode if in the signal and idler spec-
trum by

m̂s |k〉 =

∞∑
n=−∞

Cn

∣∣∣∣k +
nωm

∆ω

〉

m̂i |k〉 =

∞∑
m=−∞

Cm

∣∣∣∣k − mωm

∆ω

〉
,

(2)

respectively, where Cn(m) = Jn(m)(δ) is the Bessel func-
tion which, when normalized, represents the probability
amplitude of each frequency mode after phase modula-
tion, and J−n = einπJn. Consequently, the projection
state of the kth biphoton mode after phase modulation

of the signal and idler can be written as:

m̂sm̂i |k, k〉 =

∞∑
n,m=−∞

CnCm

∣∣∣∣k +
nωm

∆ω
, k − mωm

∆ω

〉
.

(3)
Therefore, we can project different comb line pairs into
sidebands such that when they overlap, the emerging
state would be in a superposition of indistinguishable fre-
quency modes.

As an example, let us consider two comb line pairs, k
and k + 1, from the BFC and the first pair of sidebands
(n,m = ±1) from phase modulation. After selecting only
the sidebands that are in-between k and k+1, in the sig-
nal and idler spectra, the biphoton state after projection
can be written as:

|ψproj〉 = αkC1C−1

∣∣∣∣k +
ωm

∆ω
, k +

ωm

∆ω

〉
+ αk+1C−1C1

∣∣∣∣k + 1− ωm

∆ω
, k + 1− ωm

∆ω

〉
.

(4)

Now if we set ωm = ∆ω/2, the output state will become

|ψout〉 = C1C−1(αk + αk+1)

∣∣∣∣k +
1

2
, k +

1

2

〉
. (5)

Hence, by selecting the resulting frequencies at (k+ 1
2 )∆ω

from the center frequency, the two-photon coincidence
rate, 〈ψout|ψout〉, truly originates from a superposition
of contributions from the k and k + 1 frequency modes.
Yet if the biphoton comb is coherent, we can observe
two-photon interference in the coincidence rate by ma-
nipulating the phases of αk and αk+1.

Our experimental setup is presented in Fig. 2(a). We
pump a 67-mm-long periodically poled lithium niobate
waveguide with a continuous-wave laser at 771 nm in or-
der to generate broadband biphotons centered around
1542 nm (194.55 THz). Figure 2(b) shows a concep-
tual picture of the broadband biphoton spectrum gen-
erated through spontaneous parametric downconversion;
the signals are defined as photons in the higher fre-
quency band while the lower-frequency photons are called
idlers. After filtering out the pump photons, we cou-
ple the signal and idler photons into a commercial pulse
shaper (Pulse Shaper 1, Finisar WaveShaper 1000s). Us-
ing Pulse Shaper 1, we carve the continuous broadband
spectrum into a BFC with a linewidth of 12 GHz and an
FSR of 36 GHz (∆ω/2π) (Fig. 2(c)). Pulse Shaper 1 is
also used to attenuate comb lines when necessary to en-
sure the amplitude equalization required for maximally
entangled states [11], as well as applying spectral phase
patterns to the signal and idler comb lines during mea-
surements. Next, the BFC is sent into a phase modulator
(EOSpace)—driven by an 18-GHz sinusoidal waveform
(one-half the FSR of the BFC)—to create sidebands at
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FIG. 2. Basic schematic for phase coherence measurements and illustration of biphoton spectral progression at different steps.
(a) Experimental setup. (b) Broadband continuous biphoton spectrum. (c) Biphoton frequency comb after carving continuous
spectrum with Pulse Shaper 1. The blocked frequencies were attenuated by 60 dB, making contamination from undesired
frequencies negligible. (d) Sidebands projected from phase modulation of comb lines. (e) Using Pulse Shaper 2, selected
sidebands could be routed to a pair of single-photon detectors. SPDC, spontaneous parametric downconversion; PM, phase
modulator; RF, radio frequency.

integer multiples of 18 GHz (Fig. 2(d)). We then send the
phase-modulated BFC into another pulse shaper (Pulse
Shaper 2, Finisar WaveShaper 4000s), with which we pick
out only overlapped sidebands that consist of projections
from different signal and idler comb lines (Fig. 2(e)).
The selected sidebands from the signal and idler halves
are sent to a pair of gated InGaAs single-photon detec-
tors (Aurea SPD AT M2) and an event timer (PicoQuant
HydraHarp 400) is used to record coincidences.

For our first demonstration using this scheme, we cre-
ate two comb line pairs, S1I1 and S2I2, while ensuring
that the pairs contribute equal amplitudes (|α1|2 = |α2|2)
by measuring coincidences between S1 and I1, and S2 and
I2. We also apply a phase of φ2/2 to both S2 and I2, giv-
ing a total relative phase of φ2 on S2I2 with respect to
S1I1. Then we drive the phase modulator with an RF
power such that the frequency projection is mostly dom-
inated by the first phase modulation sidebands, giving
us |C±1|2 = 0.32 (the amplitude of each sideband is ob-
tained by sending a continuous-wave laser through the
phase modulator and measuring the output using an op-
tical spectrum analyzer). After phase modulation, we
pick out the overlapped sidebands—S12 halfway between
S1 and S2, and I12 in the middle of I1 and I2. Sweeping
φ2 from 0 to 2π and recording the coincidence rates, we
obtain a sinusoidal interference pattern with a visibility
of 95% ± 7%, shown in Fig. 3(a). The pattern matches
our expectation from theory, 〈ψout|ψout〉 ∼ 1 + cosφ2,

using Eq. 5 with α2 = eiφ2α1. Similarly, we repeated
the experiment using comb line pairs S2I2 and S3I3, and
picked out the overlapped sidebands in-between them
(S23I23); the resulting inteference pattern with a visiblity
of 91%± 9% is shown in Fig. 3(b). Thus we can confirm
frequency-bin entanglement for the utilized d = 2 states
since the visibilities exceed 71% [8]. Here we also note
that the constructive and destructive interference points
occur at φ2 = 0 and φ2 = π respectively, suggesting that
α1 ≈ α2 ≈ α3.

To explore d = 3 frequency-bin entanglement, we uti-
lize all three of the comb line pairs, S1I1,S2I2, and S3I3
(setting |α1|2 = |α2|2 = |α3|2). After phase modula-
tion, we again pick out the sidebands S12 and I12, but
in this case, S12 consists of the sideband projections
n = 1,−1,−3 from S1,S2,S3, and m = −1, 1, 3 from
I1, I2, I3, respectively. We ensure that the magnitude of
the 1st and 3rd sidebands are equal by adjusting the RF
power to give us C1 = −C−1 = C3 = −C3, and we mea-
sured |C1|2 to be 0.16. Now by applying a phase of 0 to
comb line pair S1I1, φ to S2I2, and 2φ to S3I3, the output
state just before detection can be written as:

|ψout〉 = α1C1C−1 + α2C−1C1eiφ + α3C−3C3ei2φ
∣∣∣∣32 , 3

2

〉
= −α1C1

2(1 + eiφ + ei2φ)

∣∣∣∣32 , 3

2

〉
,

(6)
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if α1 = α2 = α3. The result obtained after sweeping φ
from 0 to 2π is presented in Fig. 3(c). Since we have
contributions from three pairs of comb lines, the features
of the interference pattern are now sharper compared to
those observed in the Figs. 3(a) and (b); this sharpening
is analogous to the sharpening of the pulses in a mode-
locked laser as more frequency lines are added. We calcu-
late a visibility of 90%± 6%, which is sufficient to prove
entanglement between our entangled qutrits (d = 3) since
it is higher than the three-dimensional classical visibility
threshold of 77.5% [8].

We can also manipulate the coincidence pattern result-
ing from the interference of three comb line pairs by look-
ing at sidebands projected to other frequency locations
as well as applying different phase configurations to the
comb lines. Here we examine asymmetric sidebands, S12

and I23, containing contributions from the n = 1,−1,−3
sidebands of S1,S2,S3, and m = −3,−1, 1 sidebands of
I1, I2, I3, respectively. Again, we set α1 = α2 = α3, but

now we tune the RF power such that |C3| = |C1|
2 and

then we apply a phase of φ2 to S2I2. The ensuing output
state will be

|ψout〉 = α1C1C−3 + α2C−1C−1eiφ2 + α3C−3C1

∣∣∣∣32 , 5

2

〉
= −α1C1

2
(1

2
− eiφ2 +

1

2

) ∣∣∣∣32 , 5

2

〉
.

(7)

Yet again we observe a sinusoidal interference pattern
(Fig. 3(d)) when we sweep φ2 from 0 to 2π, in agreement
with theory—using Eq. 7, 〈ψout|ψout〉 ∼ 1− cosφ2.

Moreover, the versatility of our experimental technique
facilitates the measurement of dispersion using entangled
photons. We insert some SMF-28e fiber before Pulse
Shaper 1 to induce dispersion on the biphotons (Fig.
2(a))—the dispersion of this fiber around 1550 nm (ex-
tracted from the datasheet) is D = 16.2 ps/(nm · km)
and β2 = −Dλ2/2πc = −2.06 × 10−2 ps2/m [23]. Now
we revisit the d = 2 interference results shown in Figs.
3(a) and (b), and described by Eq. 5. Fiber dispersion

will impart additional relative phase on the (k + 1)
th

bin
with respect to the kth, and this will lead to a phase shift
in the interference pattern. The phase shift is given by

φshift = −(2π)2β2l[(fos + ∆f)2 − f2os]
= −(2π)2β2l∆f(2fos + ∆f)

(8)

where l is the fiber length, ∆f = ∆ω/2π is the FSR in
Hz, fos = k∆f is the frequency difference between the
kth frequency bin and the center frequency, and we have
assumed the dominant dispersion is the quadratic spec-
tral phase term. (Unlike the classical term, a factor of
1/2 is dropped in Eq. 8 since the total phase shift is sum
of relative phase shifts in the signal and idler comb lines.)
As an initial experimental test, we use a fiber length of
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FIG. 3. Qubit and Qutrit interference patterns. The two-
photon interference as a result of applying (a) φ2 relative
phase on S2I2 with respect to S1I1, (b) φ2 relative phase on
S3I3 with respect to S2I2, (c) 0 phase on S1I1, φ phase on
S2I2, and 2φ phase on S3I3, (d) φ2 phase on S2I2 while set-

ting the sideband amplitude such that |C3| = |C1|
2

. The red
error bars are the standard deviation of three measurements
for each phase and the blue curves indicate the theoretical
predictions taking into account the visibility calculated from
the maximum and minimum data points. The coincidence-to-
accidental ratio in our measurements was 3:1, but accidentals
were subtracted in these plots.

200 m and select comb line pairs S5I5 and S6I6. Sim-
ilar to prevous measurements, after phase modulation,
we pick out the sidebands S56 between S5 and S6, and
I56 between I5 and I6, and then record the coincidence
counts as we sweep φ5 from 0 to 2π. The result, given in
Fig. 4(a), shows a sinuosidal interference pattern albeit
shifted by a phase of 0.74π, in excellent agreement with
theory (using Eq. 8 with k = 5 and ∆f = 36 GHz).

For a complete frequency-dependent phase shift mea-
surement, we replace the 200-m-long fiber with another
fiber, 1.1 km long. However, rather than sweep φk for
each fos, we set it to zero and only register the coinci-
dence counts as a function of fos (Fig. 4(b)). We can
then compute the phase shift for each fos by compar-
ing its corresponding coincidence counts, C(fos), to the
expected maximum number of coincidences Cmax. By
measuring the same single photon count rates in the se-
lected frequency bins, we ensure that Cmax is constant
as a function of fos. The phase shift will be given by
C(fos) = Cmax

2 [1 + cos(φshift)], which we can unwrap to
obtain the linear plot in Fig. 4(c). From Fig. 4(c), β2 can
be retrieved by calculating the slope of the curve (deriva-
tive of φshift with respect to fos in Eq. 8). We obtain a
value of β2 = (−2.030± 0.013)× 10−2 ps2/m, not far off
the −2.06× 10−2 ps2/m expected for SMF-28e fiber.

In conclusion, we have demonstrated a technique for
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FIG. 4. (a) Shift in the interference pattern as a result of added dispersion; the dashed vertical line indicates the relative
shift of φ5 = 0.74π. The blue curve indicates the theoretical prediction taking into account the visibility calculated from
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theoretical prediction normalized to the maximum number of coincidence counts. (c) Phase shift of the interference pattern
as a function of fos.The blue line is the linear fit to the data points. The red error bars are the standard deviation of three
measurements. The coincidence-to-accidental ratio was also 3:1 in these measurements and the accidentals were subtracted in
the plots.

verifying phase coherence in BFCs. The attributes
of this approach, in which we mix adjacent frequency
bins, are analogous to those of Franson interferometry,
which mixes entangled photon time bins. Equivalently,
our approach provides a straightforward path to prove
frequency-bin entanglement; we presented interference
patterns with visibilities higher than the classical thresh-
old for entangled qubit and qutrit states. These results
reinforce the potential of biphoton frequency combs as
high-dimensional entangled states. Lastly, our dispersion
measurements suggest the potential of low-light disper-
sion measurement with biphotons.
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