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It was recently found that excited states of semi-vortex and mixed-mode solitons are unstable in
spin-orbit-coupled Bose-Einstein condensates (BECs) with contact interactions. We demonstrate a
possibility to stabilize such excited states in a setting based on repulsive dipole-dipole interactions
induced by a polarizing field, oriented perpendicular to the plane in which the dipolar BEC is
trapped. The strength of the field is assumed to grow in the radial direction ∼ r4. Excited states of
semi-vortex solitons have vorticities S and S + 1 in their two components, each being an eigenstate
of the angular momentum. They are fully stable up to S = 5. Excited state of mixed-mode solitons
feature interweaving necklace structures with opposite fractional values of the angular momentum
in the two components. They are stable if they are built of dominant angular harmonics ±S, with
S ≤ 4. Characteristics and stability of these two types of previously unknown higher-order solitons
are systematically analyzed. Their characteristic size is ∼ 10 µm, with the number of atoms . 105.

PACS numbers: 03.75.Lm; 42.65.Tg; 47.20.Ky; 05.45.Yv

I. INTRODUCTION AND THE MODEL

Stabilizing bright solitary waves and vortices in the
two- and three-dimensional (2D and 3D) free space with
cubic nonlinearity remains a problem of great interest in
nonlinear optics and studies of Bose-Einstein condensates
(BECs), as well as in other areas [1, 2]. A well-known
challenging problem is that the ubiquitous cubic local
attractive nonlinearity makes multidimensional solitons
unstable against collapse. Diverse methods have been
proposed to suppress this instability. In particular, in
nonlinear optics stable 2D optical solitons have been pre-
dicted and created in media with saturable [3], quadratic
[4], cubic-quintic [5], and nonlocal nonlinearities [6–8],
which do not cause collapse.

It has been predicted too that long-range dipole-dipole
interactions can create 2D matter-wave solitons in BECs
with permanent atomic/molecular magnetic or electric
dipole moments [9–14]. Because dipole-dipole interac-
tions can be tuned to be isotropic or anisotropic by choos-
ing the orientation of the external polarizing field with re-
spect to the system’s plane, this makes the dipolar BECs
appropriate media for simulating 2D and 3D solitons and
solitary vortices.

In addition to the stabilization induced by dipole-
dipole interactions, it has also been predicted that
2D and 3D solitons can be stabilized in spinor (two-
component) BECs with the help of Rashba-type spin-
orbit (SO) coupling [15–23]. Similar to dipole-dipole in-
teractions, SO coupling in BECs [24–26] provides broad
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tunability for the formation of solitons [27–33]. To date,
two types of stable multidimensional solitons, viz., semi-
vortices (SVs, also called half-vortices [34]) and mixed-
mode (MM) states, have been predicted in SO-coupled
BECs. More complex self-trapped modes, which may be
considered as excited states of SVs and MMs, produced
by adding the same vorticity to both components of the
binary soliton, are also supported by the Rashba SO cou-
pling. Excited states of SVs and MMs exhibit complex
patterns, which may be of considerable interest to the
soliton physics, if they can be made stable. In reality,
all the previously studied excited states were found to be
unstable under the action of local and nonlocal attractive
nonlinearities [16, 22], quickly or gradually decaying back
to their ground-state counterparts, or completely losing
the soliton structure.

The objective of this work is to predict stable excited
states and study their properties in SO-coupled BECs,
using a nonlocal repulsive nonlinearity. Recently, we have
found that BECs with repulsive dipole-dipole interac-
tions can support stable 2D gap solitons with large values
of embedded vorticity, shaped as vortex rings [35]. This
finding suggests that repulsive dipole-dipole interactions
may be an appropriate means for stabilizing other types
of 2D solitons, including excited states in SO-coupled
BECs.

Of course, repulsive nonlinearity cannot create bright
soliton in free space (without the help of a trapping
potential; in models of the nonlinear Dirac/Weyl type,
which do not contain the usual kinetic-energy terms, re-
pulsive dipole-dipole interactions can support bright gap
soliton in the free space for the SO-coupled BEC, under
the action of the Zeeman splitting [36]). On the other
hand, it was reported that bright fundamental and vor-
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tex 2D solitons can be supported by spatially-patterned
repulsive dipole-dipole interactions, induced by a nonuni-
form polarizing field, the strength of which grows from
the center to periphery, as a function of distance r, at any
rate faster than r3 [37, 38]. Similar settings, using spa-
tially varying contact (local) self-repulsion, the strength
of which grows, in the space of dimension D, faster than
rD [39]-[43], have been reported to support robust fami-
lies of complex modes, such as hopfions [44], which carry
two independent topological charges.
We aim to predict stable excited states of SVs and

MM in a similar 2D system, using the repulsive inter-
action whose strength growth from the center to periph-
ery. While this possibility can be realized with both local
(contact) and nonlocal (dipole-dipole) interactions, it is
easier to produce stable excited states, with larger val-
ues of the added vorticity, in the latter case. Therefore,
we here consider long-range dipole-dipole interactions,
adopting the scheme introduced in Ref. [37] (the case
of contact repulsive interactions, which produces essen-
tially different results, will be considered elsewhere [45]):
an effectively two-dimensional BEC composed of atoms
carrying electric dipole moments, g(r), which are induced
by a polarizing field, E(r), directed perpendicular to the
system’s (x, y) plane, with the field’s strength growing
along the radial coordinate, r:

g(r) = χE(r), (1)

where χ is the atomic polarizability. The spatially modu-
lated field may be imposed by an external capacitor with
the separation between its electrodes decreasing with the
increase of r [37]. Because two components of the spinor
BEC corresponds to different hyperfine states of the same
atom, identical dipole moments are induced in both com-
ponents. In the mean-field approximation, the dynamics
of the spinor wave function, ψ = (ψ+, ψ−), is governed
by the scaled form of the Gross-Pitaevskii equation:

i∂tψ± = −1

2
∇2ψ± ± λD̂[∓]ψ∓ + g(r)ψ± ×

∫

dr′R(r− r
′)g(r′)(|ψ+(r

′)|2 + |ψ−(r
′)|2), (2)

where D̂[±] = ∂x±i∂y are the SO-coupling operators with
strength λ. Because the dipoles are perpendicular to the
2D plane, the kernel of the dipole-dipole interactions is

R(r− r
′) = 1/(ǫ2 + |(r− r

′)|2)3/2, (3)

where cutoff ǫ is determined by the confinement length
a⊥ in the transverse dimension, whose typical size in un-
derlying physical units is

a⊥ ∼ 3 µm (4)

[46]. As mentioned above, it was demonstrated in Ref.
[37] that the spatially modulated repulsive dipole-dipole
interactions can create 2D solitons, provided that the
magnitude of the locally induced dipole moment grows

in r faster than r3, therefore we here adopt the modula-
tion profile

g(r) = αr4 + g0, (5)

with α > 0 and g0 ≥ 0.
Stationary solutions to Eq. (2) are sought for in the

usual form, ψ±(r, t) = φ±(r)e
−iµt, where φ± are station-

ary wave functions and µ is a real chemical potential.
Solitons are characterized by the total norm, which is
proportional to the number of atoms in the binary BEC:

N = N+ +N− =

∫

dr(|φ+|2 + |φ−|2). (6)

The system’s energy is

E = EK + EDD + ESO, (7)

where EK, EDD and ESO are the kinetic, dipole-dipole,
and SO-coupling energies, respectively:

EK =
1

2

∫

dr
(

|∇φ+|2 + |∇φ−|2
)

,

EDD =
1

2

∫∫

drdr′g(r)
(

|φ+(r)|2 + |φ−(r)|2
)

×

R(r− r
′)g(r′)(|φ+(r′)|2 + |φ−(r′)|2),

ESO = λ

∫

dr(φ∗+D̂
[+]φ− − φ∗−D̂

[−]φ+).

(8)

While all the quantities in Eqs. (2)-(8) are written
in the scaled form, therefore units are not necessary in
figures displayed below, it is relevant to summarize here
estimates for the relevant quantities in physical units,
using, in particular, estimates elaborated in Refs. [34]
and [37] for related settings. First, characteristic values
of the atomic or molecular electric polarizability relevant
to experiments with ultracold gases may be taken as ∼
100Å3, with the corresponding atomic/molecular weight
being M ∼ 100 [47]. The effective scattering length of
the dipole-dipole interactions, which is sufficient for the
formation of localized modes is

aDD ∼ 1 nm (9)

[48]. As it follows from Eqs. (1)-(3), the corresponding
intensity of the dipole-dipole interactions is induced by
the polarizing dc electric field in a range of ∼ 10 kV/cm
(which means that voltage ∼ 10 V should be applied to
the polarizing capacitor with the separation ∼ 10 µm
between its electrodes). The results reported below are
relevant to the experimental realization if, in the scaled
units adopted here, x = 1 corresponds to the physical
distance ∼ 10 µm. This, in turn, implies that normal-
ization λ = 1 adopted below in the scaled units repre-
sents the physical strength of the SO coupling λ ∼ 10−6

g·µm3/(ms)2. More appropriate, in this context, is the
estimate for the effective length of the SO coupling,

aSO = ~
2/ (mλ) ∼ 0.5 µm, (10)
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where m is the atomic mass in physical units. This range
of values of the SO-coupling strength is accessible to the
current experiments [24–26], [34]. Finally, it follows from
estimates given by Eqs. (4), (9) and (10) that values of
scaled norm N in the range of 1 ∼ 5, which appear in
the results reported below, correspond to the number of
atoms 104 ∼ 105 in the quasi-2D soliton, which should
make the observation of the so predicted self-trapped
states definitely possible [49].

II. SEMI-VORTICES AND THEIR STABLE

EXCITED STATES

The fundamental SVs and excited states generated
from them, with chemical potential µ < 0, can be
produced by the following ansatz, written in polar co-
ordinates (r, θ), and adopted as initial conditions for
imaginary-time simulations [50, 51]:

φ± = A±r
|S±| exp(−iµt− α±r

2 + iS±θ), (11)

where A± and α± are positive constants, and integer
topological-charge numbers, S±, are related by

S− = S+ + 1 (12)

[16]. Fundamental SVs are produced by (S+, S−) =
(−1, 0) or (0,+1), while the excited state of SVs cor-
respond to (S+, S−) = (n, n+ 1), where n 6= −1 or 0. In
fact, generic solutions in the form of SVs and their ex-
cited states exactly agree with a generalized form of the
ansatz based on Eqs. (11) and (12) [16]:

φ+ = r|S+|Φ+(r) exp(iS+θ),

φ− = r|S++1|Φ−(r) exp[i (S+ + 1) θ],
(13)

with real functions taking finite values at r = 0 and ex-
ponentially decaying ∼ exp (−√−µr) at r → ∞.
Another type of 2D self-trapped composite states sup-

ported by the SO-coupled BEC corresponds to MMs and
their excited states, which and can be obtained starting
from the following ansatz:

φ± = A1r
|S1| exp(−α1r

2 ± iS1θ)

∓A2r
|S2| exp(−α2r

2 ∓ iS2θ), (14)

where A1,2 and α1,2 are again positive constants, and
topological-charge numbers are subject to a relation sim-
ilar to Eq. (12): S2 = S1 + 1. Actually, ansatz (14)
is the superposition of a pair of expressions in the form
of ansatz (11) with S+ = S1 and its mirror image, with
S+ = − (S1 + 1). On the other hand, unlike the exact
ansatz (13) for the SVs, there is no exact generic ex-
pression for the MMs. Fundamental MMs correspond to
(S1, S2) = (−1, 0) and (S1, S2) = (0,+1), whereas the ex-
cited states of MM are generated by other integer value
of (S1, S2).

Because the SO coupling naturally creates the orbital
angular momentum (OAM) in BEC, we define the nor-
malized OAM of each component, and the total normal-
ized OAM:

〈L±〉 =
∫

drφ∗±L̂φ±

N±
, 〈L〉 = N+〈L+〉+N−〈L−〉

N
,

(15)

where L̂ = −i(x∂y − y∂x) is the OAM operator.

Stationary solutions for SVs and their excited states
were generated by means of the imaginary-time integra-
tion of Eq. (2) (where we adopt normalization λ = 1,
as said above), initiated by the input given by Eqs. (11)
and (12) with integer S+. Then, the stability of the so
obtained states was tested by means of real-time simu-
lations. This scenario is relevant for making it sure that
the imaginary-time evolution has produced the relevant
solutions (for given norm). Indeed, it may happen, in
some cases, that the trajectory of the imaginary-time
evolution passes very close to a saddle point, and gets
stuck there, which is an obstacle for producing the tar-
get states. For this reason, it is commonly adopted to
run real-time simulations following the imaginary-time
integration (see, e.g., Ref. [52]).

We apply rescaling to fix α = 1 in Eq. (5), and, fol-
lowing Ref. [37], we take g0 = 0 and ǫ = 0.5, other
values of these parameters producing quite similar re-
sults. The imaginary-time simulations readily produce
SVs and their excited states with all integer values of
the topological charge, S+ = 0,±1,±2,±3, . . .. Typi-
cal examples of stable SVs and their excited states with
S+ = 0, 1, 2, 3, and 4 are displayed in Fig.1(a), the respec-
tive total-density pattern, |ψ+|2 + |ψ−|2, being a perfect
ring, as seen in the third row of Fig.1(a). Further, fami-
lies of SVs and their excited states are characterized, as
usual, by dependences µ(N) and E(N) for them for dif-
ferent values of S+, which are displayed in Fig.2 panels
(a) and (b). They former one satisfies the anti-Vakhitov-
Kolokolov criterion, i.e., dµ/dN > 0, which is a known
necessary condition of the stability of bright solitons sup-
ported by self-repulsive nonlinearities [53, 54]. The soli-
tons with topological numbers (S+, S−) = (n, n+1) and
(−n − 1,−n) (where n ≥ 0 is an arbitrary integer) ob-
viously have identical energies and chemical potentials,
therefore, we only consider the case of S+ ≥ 0 for this
type of the solitons. In the case of S+ ≥ 0, at N → 0,
evident limit values are µ→ |S+| − 0.5 and E → 0 [16].

The normalized OAM of each component of the SVs
and their excited states, defined by Eq. (15), are 〈L±〉 ≡
S±, i.e., both components of the excited states of SVs are
eigenstates of the OAM operator. The component with
a smaller value of |S±| accounts for a larger contribution
to the total norm, in agreement with the trend found for
the SVs in Ref. [16]. The total normalized OAM, 〈L〉,
is displayed vs. N for different values of S+ in Fig.2(c),
with 〈L〉 = S+ + 0.5 in the limit of N → 0. At N >
1, 〈L〉, which is slightly smaller than S+ + 0.5, almost
does not depend on N . The latter result indicates that
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(a)

(b)

FIG. 1: (Color online) (a) The first and second rows: density patterns of the φ+ and φ− components of the fundamental SVs
and their excited states. The third row: the total-density patterns of the binary BEC, i.e. |φ+|

2 + |φ−|
2. The fourth and fifth

rows: phase patterns of φ+ and φ−, respectively. From left to right: S+ = 0, 1, 2, 3, and 4. (b) Similar results for the MMs and
their excited states, with the same meaning of the rows as in (a). From left to right: S1 = 0, 1, 2, 3, and 4. The total norm of
all the soliton modes displayed in the figure is N = 4.

the SVs and their excited states may be approximately
regarded as effectively having a half-integer eigenvalue of
the normalized OAM.
As mentioned above, the stability of the SVs and their

excited states was verified by means of direct real-time
simulations, using the split-step fast-Fourier-transform
algorithm. We have thus found that the excited state
of SVs are completely stable in this setting for S+ ≤ 5.

A typical example of the stable evolution of the excited
state with S+ = 5 is displayed in Fig.3(a). At S+ ≥ 6,
the excited states of SVs are less stable, with some corru-
gation appearing in the vortex rings in the course of the
long-time propagation. Nevertheless, the excited state of
SVs keep their overall vortex structure. A typical exam-
ple of them with S+ ≥ 6 is displayed in Fig.3(b).
The observed stabilization of the vortex solitons with
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large values of S is a noteworthy findings, as such solitons
tend to be unstable in the majority of models of nonlinear
media, spontaneously splitting into fragments the num-
ber of which being equal or close to |S| [55–58]. Stable
vortex solitons with S > 1 have been found in Bessel lat-
tices with self-defocusing nonlinearity [59] and, more re-
cently, in radial ring-lattices with repulsive dipole-dipole
interactions [35], as well as in the other model with the ef-
fectively nonlinear interaction, which corresponds to a bi-
nary BEC with the components coupled by a microwave
field [60] (in the latter case, the components represent
two hyperfine atomic states coupled by a magnetic tran-
sition). In this connection, it is relevant to mention that
matter-wave fields carrying definite values of the OAM
have various applications to quantum-information pro-
cessing and optical communications [61–67], hence stable
excited state of SVs with large values of S may help to
expand the range of the potential applications [60].

III. MIXED MODES AND THEIR STABLE

EXCITED STATES

Stationary solutions for the MMs and their excited
states were produced by imaginary-time simulations of
Eq. (2) with input (14), setting S1 = 0,±1,±2, . . .. The
solutions produced by S1 = −(n + 1) are tantamount
to those obtained with S1 = n (n ≥ 0), therefore, we
consider only the case of S1 ≥ 0 for states of this type.
Unlike the SVs and their excited states, the modes of the
MMs and their excited states types naturally have equal
norms of the two components, i.e., N+ = N−. Typi-
cal examples of stable MMs and their excited states with
S1 = 0 ,1, 2, 3 and 4 are displayed in Fig.1(b). Numerical
results reveal that the established excited states of MM
in each component is built as a necklace ring, with the
number of fragments exactly equal to S1 +S2 ≡ 2S1 +1.
The results reported in Ref. [16] demonstrated that

chemical potentials and energies of the SVs and MMs co-
incide (µSV = µMM and ESV = EMM) for the systems of
the Manakov’s type, with equal coefficients of the contact
self-attraction and cross-attraction [68]. Because dipole-
dipole interactions in Eq. (2) automatically satisfy the
Manakov’s condition, the excited states of SVs and MM
with S+ = S1 also have equal chemical potentials and
energies. Therefore, the plots in Fig.2(a) and (b) repre-
sent curves of µ(N) and E(N), respectively, for excited
states of SVs and MM alike, for given values of S1. The
stability of the excited states was verified through direct
real-time simulations. We have found that excited states
of MM are stable at S1 ≤ 4 and unstable at S1 ≥ 5.
Typical examples of the evolution of stable and unsta-
ble excited states of MM are displayed in Fig.3(c,d). In
particular, Fig.3(d) shows that unstable excited states of
MM develop spontaneous twist at the initial stage of the
evolution, and eventually degenerate into fundamental
MMs.
The complexity of the phase patterns of the excited

(a) (b)

(c) (d)

(e)

FIG. 2: (Color online) (a) The chemical potential, µ, and (b)
energy, E, for both excited states of SVs and MM as func-
tions of the total norm, N (the coincidence of the curves for
the excited states of SVs and MM is explained in the main
text). Black curves with squares, red curves with circles, and
blue curves with triangles correspond to S+ = S1 = 1, 2,
and 3, respectively. (c) The total normalized orbital angu-
lar momentum values 〈L〉 of excited state of SVs versus N
for different values of S+; (d) the normalized orbital angular
momentum for component φ+, i.e., 〈L+〉, of excited states of
MM versus N for different values of S1; (e) values of 〈L±〉
for excited states of MM versus S1 for N = 4. (note that
〈L−〉 ≡ −〈L+〉 for excited states of MM).

states of MM increases with the increase of the number
of fragments in the corresponding necklace, i.e., with the
growth of S. The ansatz written in Eq. (14) demon-
strates that the MMs and their excited states may be
considered as mixtures of two different eigenstates of the
OAM operator, therefore the normalized OAM of each
component, defined as per Eq. (15), no longer takes in-
teger values, being functions of N and S1, with the total
normalized OAM being zero, 〈L+〉 + 〈L−〉 ≡ 0. Figures
2(d) and (e) show 〈L+(N)〉 for different values of S1, and
〈L±(S1)〉 for N = 4, respectively. These figures demon-
strate that 〈L+〉 gradually increases with the growth of
N and S1.

It is interesting to note that spatial positions of frag-
ments (“beads”) of the necklace in one component are
located exactly in the middle of positions of two adja-
cent fragments of the other component [see the panels in
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(a) (b)

(c) (d)

FIG. 3: (Color online) Long real-time evolution of the density
pattern |ψ+(t)|

2, with 3% random noise added to the initial
conditions in all panels here. (a) A stable excited state of SVs
mode with (N,S+) = (4, 5). (b) An unstable excited state of
SVs with (N,S+) = (4, 6). (c) A stable excited state of MM
with (N,S1) = (4, 4). (d) An unstable excited state of MM
with (N, S1) = (4, 5). All the panels are shown as isosurfaces
of 0.4 × |ψmax

+ (t = 0)|2.

first and second rows of Fig.1(b)]. This feature causes the
overall density pattern, |φ+|2 + |φ−|2, to exhibit a pro-
file of a perfect ring. For a given value of total norm
N , the total-density patterns of the excited states of
SVs and MM are identical for S1 = S+ [see the third
rows in Fig.1(a,b)], while, as mentioned above, the total
normalized OAM of the excited states of MM vanishes,
〈L〉 = (〈L+〉 + 〈L−〉)/2 ≡ 0, on the contrary to nonzero
〈L〉 for the excited states of SVs. Moreover, because the
normalized OAM for each component is different from
zero, 〈L+〉 = −〈L−〉 6= 0, the two-component MMs and
their excited states resemble, in terms of photonics, lin-
early polarized light split into left and right circularly
polarized components. In this connection, it is relevant
to mention that the splitting of linearly polarized light
beams into left- and right-polarized waves finds diverse
applications in chiral media and topological photonics
[69–74], suggesting that similar applications, such as the

realization of topological insulators, may be also realized
in terms of the matter waves.

IV. CONCLUSION

The objective of this work was to stabilize the 2D
excited states of SVs (semi-vortices) and MM (mixed
mode) in spin-orbit-coupled BECs in the setting based on
the dipole-dipole interactions between originally isotropic
atoms, induced by a polarizing field oriented perpendic-
ular to the plane in which the BEC is trapped, under
the assumption that the strength of the polarizing field
grows in the radial direction as r4. Stable excited states
of SVs and MM are predicted in this setting for the
first time. They have a size ∼ 10 µm, and may con-
tain up to 105 atoms. Both components of the excited
states of SVs are eigenstates of the OAM (orbital angular
momentum), the total normalized OAM of such a soli-
ton being 〈L〉 ≈ S+ − 0.5. Characteristics and stability
of these excited states of SVs have been systematically
studied. They are completely stable at S+ ≤ 5, and be-
come weakly unstable for S+ ≥ 6. The excited states
of MM feature a circular necklace structure with mu-
tually interleaved components, whose total-density pat-
tern is a perfect ring. The values of the normalized
OAM of the two components of the excited states of
MM are 〈L+〉 = −〈L−〉, with the vanishing total OAM,
〈L+〉 + 〈L−〉 ≡ 0. The excited states of MM are sta-
ble at S1 ≤ 4, and become unstable at S1 ≥ 5. The
characteristics of the stable excited states of SVs and
MM suggest that they may find potential applications to
high-precision communications, as well as to the design of
chiral media and topological insulators for matter waves.
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