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We use a slave-rotor approach within a mean-field theory to study the competition of metallic,
Mott-insulating, and superconducting phases of spin-3/2 fermions subjected to a periodic optical
lattice potential. In addition to the metal, the Mott-insulator, and the superconducting phase
that associates with the gauge symmetry breaking of spinon field, we identify a novel emerging
superconducting phase that breaks both roton and spinon field gauge symmetries. This novel
superconducting phase emerges as a result of the competition between spin-0 singlet and spin-2
quintet interaction channels naturally available for spin-3/2 systems. The two superconducting
phases can be distinguished from each other from quasiparticle weight. We further discuss the
properties of these phases for both two-dimensional square and three-dimensional cubic lattices at
zero and finite temperatures.

I. I. INTRODUCTION

Recent extraordinary progress achieved in trapping
and manipulating of ultra-cold atomic gases provides
a wonderful opportunity for exploring quantum many-
body physics. Ultra-cold atomic systems are now con-
sidered as one of the most promising and efficient play-
grounds for studying condensed matter and nuclear
physics phenomena [1]. Recent developments in laser
technology and experimental advancements allow one to
have unprecedented control over various experimental
parameters [2]. Effective spatial dimensionality, lattice
structure, and lattice geometry can be tuned by adjusting
the laser intensity, phase, and wavelength. The interac-
tion between the atoms can be controlled dramatically by
adjusting the two-body scattering length through mag-
netically tuned Feshbach resonance. Through the first
generation of experiments with ultra-cold bosons and
fermions in optical lattices, it has been well-established
that these systems can exhibit a variety of interesting
phenomena [3–8]. The growing availability of multi-
component degenerate fermionic atoms, such as 6Li [9–
11], 40K [12], 135Ba and 137Ba [13], and 173Yb [14]
provides a controllable platform to study higher spin,
strongly correlated physics that features novel phenom-
ena.
Among multi-component ultra-cold gases, high spin

fermions such as spin- 3/2 132Cs, 9Ba, 135Ba, and 201Hg
attracted much attention due to the rich collective phe-
nomena they can exhibit [15–26]. Spin-3/2 systems are
expected to show emerging behaviour due to the compet-
ing parameters, such as total spin-0 singlet and spin-2
quintet scattering lengths. The total spin-1 and spin-3
channels are prohibited due to the Pauli exclusion prin-
ciple. In addition, the strong quantum fluctuations due
to the enlarged SO(5) or Sp(4) symmetry is expected
to play a bigger role in these systems [27, 28]. In par-
ticular, when these spin-3/2 atoms are subjected to a
periodic lattice potential, they can show novel collective
behaviour that are not obvious in spin-1/2 electronic sys-

tems. For example, on-site four-particle clustering insta-
bilities can leads to quintet Cooper pairing favored by
the spin-2 interaction channel [29–34]. When the total
spin-0 interaction channel is strongly positive, the sys-
tem can leads to a Mott-insulating state with a fixed
number of atoms on each lattice site. It is the purpose of
this paper to study the competition and phase transitions
among metal, Mott-insulating, and singlet Cooper pair-
ing states of neutral spin-3/2 fermions subjected to two-
dimensional square lattice and three-dimensional cubic
lattice. In order to do so, we use a slave rotor approach
that allows us to handle the intermediate coupling regime
where the charge fluctuations are strong [35]. In the
slave-rotor representation, the particle operator is decom-
posed into a roton-bosonic field and a spinon-fermionic
field. While the roton caries the charge degrees of free-
dom, the spinon caries the spin degrees of freedom. In
this approach, the metal and Mott-insulating phases are
characterized by breaking of global U(1) gauge symme-
try associates with the charge degrees of freedom. In
general superconducting phase is characterised by break-
ing of global U(1) symmetry associates with the spinon
degrees of freedom.

In addition to the obvious metal, Mott-insulator, and
conventional (in the sense that one gauge symmetry is
broken) superconducting phases arising from the compet-
ing interactions, we find a novel emerging superconduct-
ing phase where both global symmetries associate with
charge and spin degrees of freedom are broken. This
novel superconducting phase is differentiated from the
conventional superconducting phase due to the non-zero
quasi particle weight. Notice that we use the condensed
matter terminology, but our metal and superconducting
phases are neutral for atoms in optical lattices. Further,
we investigate each of these emerging phases at both zero
temperature and finite temperature by calculating vari-
ous physical quantities.

The paper is organized as follows. In section II, we
introduce spin-3/2 model Hamiltonian for atoms on op-
tical lattice. The model is a generalized Hubbard model
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based on microscopic s-wave atom-atom interaction. In
section III, we introduce the slave rotor approach and
convert our model Hamiltonian in to a coupled rotor-
spinon Hamiltonian. In section IV, a decoupling scheme
is introduced to decouple the rotor part and the spinon
part of the Hamiltonian. In section V and VI, we use a
mean-field treatment to solve the rotor and spinon sectors
of the Hamiltonian. In section VII and VIII, we discuss
our zero temperature and finite temperature formalism
and their results. Finally in section IX, we summarize
our results with a discussion.

II. II. MODEL HAMILTONIAN

We start with the generic from of the spin-3/2 neutral
particle Hamiltonian of the lattice model [27],

H = −t
∑

〈ij〉
(c†iσcjσ + h.c)− µ

∑

iσ

c†iσciσ

+U0

∑

i

P †
00(i)P00(i) + U2

∑

i,m=±2,±1,0

P †
2m(i)P2m(i), (1)

where P †
Fm(i) =

∑

αβ〈F,m|α, β〉c†iαc
†
iβ are the singlet

(F = 0, m = 0) and quintet (F = 2, m) pairing op-

erators and c†i,σ is the fermionic creation operator at site

i, in one of the hyperfine spin state σ = ±1/2,±3/2.
Here,

Us =

∫

d~rd~r′w∗(~r − ~Ri)w
∗(~r′ − ~Ri) (2)

×gsw(~r′ − ~Ri)w(~r − ~Ri),

is the interaction parameter for the total spin S = 0
and S = 2 channels with the contact interaction in free
space gs = 4πh̄2as/m and localized Wannier functions

w(~r− ~Ri) at ~Ri, where as is the s-wave scattering length
for total spin-S channel. At half filling (ie, on average one
atom per site), the particle-hole symmetry ensures the
chemical potential µ = (U0+5U2)/4 [27]. Here we assume
that the atoms can hop between nearest-neighbors with
hopping amplitude t, where 〈ij〉 stands for sum over only
nearest neighbors.
For the purpose of studying the phase transition

of metallic, insulating, and superconducting phases, it
is convenient if we re-write the Hamiltonian in terms
of spin-3/2 on-site singlet operator P †

i ≡ P †
00(i) =

1/
√
2(c†i,3/2c

†
i,−3/2 − c†i,1/2c

†
i,−1/2) and the on-site density

operator ni =
∑

σ c
†
iσciσ [36],

H = −t
∑

〈ij〉
(c†iσcjσ + h.c)− µ0

∑

iσ

c†iσciσ

+U/2
∑

i

(
∑

σ

c†iσciσ − 4/2)2 + V
∑

i

P †
i Pi (3)

Here U = 2U2 and V = U0−U2 with the shifted chemical
potential µ0 is given by (U0 − U2)/4 at half filling. This
model has an exact SO(5) symmetry which reduces to
a SU(4) symmetry at U0 = U2 [27, 37]. Notice that at
this SU(4) symmetric limit, the chemical potential at half
filling reaches to zero. Each major terms in the model
competes for metallic, Mott-insulating, and singlet pair-
ing states. At SU(4) limit and the interactions are weak
compared to the tunneling energy, U ≪ t, atoms can gain
kinetic energy by hopping through the lattice. In the op-
posite limit where U ≫ t, the repulsion is greater than
the gain in kinetic energy, thus the atoms will localize
at lattice sites, resulting a Mott-insulator. For V < 0,
the model naturally favors the singlet pairing state while
first two terms compete for metallic and Mott-insulating
states, respectively. In addition to the singlet pairing, as
discussed in Ref. [38], multi-particle clustering of spin-
3/2 atoms can lead to quintet pairing states with total
spin-2. The quintet pairing requires negative quintet in-
teraction parameter U2. Here we consider positive U2

that supports Mott-insulating states, therefore we can
safely neglect the possible quintet pairing in the model.
For deep optical lattices, one can approximate the

Wannier functions by the Gaussian ground state in the
local oscillator potential and find tunneling amplitude

t ∝ ErV
3/4
r e−2

√
Vr is exponentially sensitive to laser in-

tensity V0 = ErVr that used to create the optical lattice,
here Er is the recoil energy [39]. The interaction terms

Us ∝ asErV
3/4
r is linearly sensitive to scattering lengths

and relatively, weakly sensitive to the laser intensity. As
a result, the model is highly tunable in experimental se-
tups in optical lattice environments.

III. III. SLAVE-ROTOR APPROACH

Slave-particle approaches are proven to be simple
and computationally inexpensive approaches to study
strongly correlated effects in many-particle systems and
these approaches are capable of accounting for particle
correlations beyond standard mean-field theories. The
first slave-particle approach has been proposed to study
the Mott insulator-metal transitions [40]. There are sev-
eral advantages of using slave-particle approaches over
other mean-field theories and the variational methods.
While most variational approaches are valid only at zero
temperature, the slave-particle approaches are applicable
at both zero and finite temperatures. Unlike other mean-
field theories, quantum fluctuations can be taken into
account by Stratonovich-Hubbard transformation within
the slave particle formalism [41]. Further, it has been
shown that slave-particle approaches are equivalent to a
statistically-consistent Gutzwiller approximation [42–44].
Here we use the slave-rotor approach as it is convenient
for many component systems [35]. The method is simply
introducing auxiliary boson to represent local degrees of
freedom in the correlated system. The metallic solution
will be described as a correlated Fermi liquid. In the
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slave-rotor approach, the original local Fock space of the
problem is mapped onto a larger local Fock space that
contains as many fermions degrees of freedom as the orig-
inal one and same number of spin-3/2 local quantum vari-
ables, one for each fermions. While new pseudo-fermion
variable describes the itinerant quasiparticle fraction of
the atom, the auxiliary boson describes its localized frac-
tion.
The slave-rotor approach is first introduced by Flo-

rens and Georges for the Hubbard model to study metal-
Mott insulator transition [35]. Later this approach has
been applied to magnetic systems to study spin liquid
phases [45–50]. In this approach, the particle operator is
decoupled into a fermion and a bosonic rotor that carries
the spin and the charge degrees of freedom, respectively.
First, the particle operator ciσ that annihilate an atom
with spin σ at site i is expressed as a product:

ciσ = e−iθifiσ, (4)

where the auxiliary fermion fiσ annihilates a spinon with
spin σ and the local phase degree of freedom θi conju-
gates to the total (neutral) charge through the ”angular
momentum” operator Li = −i∂/∂θi,

[θi, Lj] = iδij . (5)

In this representation, while the rotor operator e−iθi re-
duces the site occupation by one unit, the eigenvalues of
the Li correspond to the possible number of atoms on
the lattice site. Notice that the name ”angular momen-
tum” is given due to the conservation of O(2) variable
θi ∈ [0, 2π] but nothing to do with physical angular mo-
mentum of the atoms. Using the fact that rotons and
spinons commute, one can show that the number opera-
tor of the physical particles coincide with that of spinon;

niσ = c†iσciσ = f †
iσfiσ = nf

iσ. (6)

As the eigenvalues of the angular momentum operator
l ∈ Z can have any integer values, one must impose a
constraint to truncate the enlarge Hilbert space to re-
move unphysical states,

Li =
∑

σ

nf
iσ − 1. (7)

This constraint glues charge and spin degrees of freedom
and can be taken into account by introducing a Lagrange
multiplier in the formalism. Notice that the angular mo-
mentum operator Li measure the particle number at each
site relative to the half-filling. In terms of new variables,
our Hamiltonian in Eq. (3) becomes,

H = −t
∑

〈ij〉
f †
iσfjσe

i(θi−θj) − (µ0 + h)
∑

iσ

f †
iσfiσ

+
U

2

∑

i

L2
i ++V

∑

i

P †
i Pi, (8)

where pairing operators in the last term now has the form

P †
i = 1/

√
2(f †

i,3/2f
†
i,−3/2− f †

i,1/2f
†
i,−1/2)e

2iθi . Notice that

the constraint is treated on average so that Lagrangemul-
tiplier h is site independent. Even though one interaction
term in S = 2 channel simply becomes the kinetic energy
for the rotons, the pairing interaction term is still quar-
tic and the hopping term now becomes quartic in spinon
and rotor operators as well. In the following section, we
make further approximations to the quartic terms to get
a manageable theory.

IV. IV. DECOUPLING SPINON AND ROTORS

For spin-3/2 atoms on square or cubic lattices at half
filling, we plan to decouple the Hamiltonian in Eq. (8)
by using a mean field description. First, we decouple
the hopping term so that the Hamiltonian H becomes
the sum of independent spinon and rotor parts: H →
Hf +Hθ. This will lead to Hθ part to be an interacting
quantum XY model and Hf part to be an interacting f -
particle spinon part. We will then make a second mean-
field treatment to each part of the Hamiltonian to convert
them into effectively non-interacting ones. At half-filling,
particle-hole symmetry requires Lagrange multiplier h =
0 and µ0 = (U0 −U2)/4. We introduce three mean-fields
as follows;

∆ =
|V |
2

〈f †
i,3/2f

†
i,−3/2 − f †

i,1/2f
†
i,−1/2〉f (9)

Qθ =
∑

σ

〈f †
iσfjσ〉f (10)

Qf = 〈ei(θi−θj)〉θ (11)

where i and j are nearest-neighbor sites. The subscript
f or θ means that the quantum and thermal expectation
values must be taken with respect to the spinon and ro-
ton sectors, respectively. Here we make the assumptions
that these expectation values are real and independent
of bond directions. One can relax these assumptions and
treat orbital current around a plaquette. After perform-
ing the decoupling scheme, the spinon and rotor part of
the Hamiltonian becomes,

Hf = −tQf

∑

〈ij〉,σ
(f †

iσfjσ + h.c)− µ0

∑

iσ

f †
iσfiσ

+∆
∑

i

(f †
i,3/2f

†
i,−3/2 − f †

i,1/2f
†
i,−1/2 + h.c) (12)

Hθ = −tQθ

∑

〈ij〉
(X†

i Xj + h.c)− λ
∑

i

X†
iXi

− 1

2U

∑

i

(i∂τX
†
i )(−i∂τXi), (13)
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where Xi = eiθi and λ is the Lagrange multiplier to
impose the condition |Xi|2 = 1. At the operator level,
the Hamiltonian is now decoupled and while the spinon
part is quadratic, the rotor part is naturally interacting.
While mean field parameterQf renormalizes the hopping
term and related to the effective mass m∗ = mQf , the
expectation value of pairing operator, ∆ represents the
pairing of spinons.

V. V. MEAN-FIELD TREATMENT TO SPINON

PART

The spinon part can easily be diagonalized in the mo-
mentum space. Performing Fourier transform into mo-
mentum space and then usual Bogoliubov transforma-
tion, the spinon Hamiltonian has the form,

Hf =
∑

k,l

Λl(k)η
†
k,lηk,l +

1

2

∑

k,l

[Al
kk − Λl(k)], (14)

where ηk,l is a four component vector representing quasi-

spinons and Λl(k) = ±
√

ǫ2k +∆2 (twice) are the eigen-

values with l = 1, 2, 3, 4. Here Al
kk′ is 4 × 4 diagonal

matrix with diagonal element ǫk = −Qfγk − µ0, where
γk = 2t

∑

α cos kα with α = x, y, z and here the lattice
momentum is re-scaled with the lattice constant. The
quantum and thermal expectation value of the Eq. (9)
with respect to the Hamiltonian Hf leads to the gap
equation,

4

V
= − 1

Ns

∑

k

tanh(βEk/2)

Ek
, (15)

where Ek =
√

ǫ2k +∆2 with the total number of lattice
sites Ns and dimensionless inverse temperature β. Sum-
ming over nearest-neighbors and then calculating the ex-
pectation value in Eq. (10) with respect to Hf gives,

ηtQθ =
1

Ns

∑

k,σ

γknk (16)

where η is the number of nearest neighbors and the av-
erage occupation nk is given by,

nk =
1

2
− ǫk

2Ek
tanh(βEk/2). (17)

The two self-consistent equations derived in Eq. (15) and
Eq. (16) must be solved with the Eq. (11) which can be

written as Qf = 〈X†
iXj〉θ.

VI. VI. MEAN-FIELD TREATMENT TO

ROTON PART

The calculation of Qf requires a special attention as
X bosons can undergo Bose-Einstein condensation. The
metallic (or band-insulating) phase corresponding to the
ordering of rotors, and thus spontaneously break the O(2)
symmetry. The rotor disordered phase corresponds to
the Mott-insulating phase given that the system is non-
superfluid. Notice the metal to Mott-insulator transi-
tion is driven by spontaneous global U(1) symmetry as-
sociates with the charge degrees of freedom. However, the
Mott transition emerging from the slave rotor approach
does not break any spin rotational symmetry, thus the
transition is into a non-magnetic phase.
The final self-consistent equation can easily be cal-

culated using functional integral approach to the ro-
ton part of the Hamiltonian with the constraint equa-
tion |Xi|2 = 1. Introducing the rotor Green’s function

Gθ(k, τ) = 〈Xk(τ)X
†
k(0)〉, the constraint equation be-

comes,

1

Ns

∑

k

1

β

∑

n

Gθ(k, iνn) = 1, (18)

where νn = 2nπ/β are the bosonic Matsubara frequen-
cies. In coherent state path integral representation, the
rotor Green’s can be written as,

Gθ(k, τ) =

∫
∏

ki
dXkidX

∗

ki

2πi X(τ)X∗
k (0)e

−Sθ

∫
∏

ki

dXkidX∗

ki

2πi e−Sθ

, (19)

where time index i labeling runs from 0 to ∞ correspond-
ing to τ = 0 and τ = β, respectively. The action in the
momentum space associates with the rotor part of the
Hamiltonian is given by,

Sθ =

∫ β

0

dτ
∑

k

X∗
k (−

1

2U
∂2
τ − λ−Qθγk)Xk. (20)

Following the standard path integral formalism, the rotor
Green’s function for the non-zero wave vector is given by,

Gθ(k, iνn) = [ν2n/U + λ−Qθγk]
−1. (21)

Notice that following the Ref. [35], a renormalization
of U → U/2 has been performed to preserve the exact
atomic limit. Then writing,

1

β

∑

n

Gθ(k, iνn) =
U

β

∑

n

1

iνn +
√

U(λ−Qθγk)

× 1

−iνn +
√

U(λ−Qθγk)
, (22)
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performing a suitable contour integration, we find

1

β

∑

n

Gθ(k, iνn) =
U

2
√

U(λ−Qθγk)

coth[
β

2

√

U(λ−Qθγk)]. (23)

Combining this with Eq. (18) and separating k = 0 term
leads the constraint equation to be,

1 = Z +
1

2Ns

∑

k 6=0

√

U

λ−Qθγk

× coth[
β

2

√

U(λ−Qθγk)], (24)

where 0 ≤ Z ≤ 1 is the rotor condensate amplitude which
represents the quasiparticle weight. As the rotor conden-
sation indicates the transition into the metallic phase,
non-zero quasiparticle weight Z represents the metallic
state. In the non-interacting limit Z → 1. Finally, sum-
ming over nearest-neighbors of Eq. (11) and transform-
ing into Fourier space leads to

ηtQf = ηtZ +
1

Ns

∑

k 6=0

γk
β

∑

n

Gθ(k, iνn). (25)

Completing the contour integration, our final self consis-
tent equation becomes,

ηtQf = ηtZ − 1

2Ns

∑

k 6=0

γk

√

U

λ−Qθγk

× coth[
β

2

√

U(λ−Qθγk)]. (26)

This Qf is the mass enhancement factor of the quasi-
particle, thus it is proportional to the effective mass of
the quasiparticle m∗ = Qfm, where m is the bare mass
of the free atoms. As the second term in Eq. (26) is
negative, mass enhancement is always greater than the
quasiparticle weight, Qf > Z at the saddle point level,
and remains finite even away from metallic phase where
Z vanishes.

VII. VII. ZERO TEMPERATURE FORMALISM

AND QUANTUM PHASE TRANSITIONS

For spin-3/2 atoms on a d-dimensional lattice at zero
temperature, four self-consistent equations can be largely
simplified. First, by introducing the d-dimensional den-

sity of states, D(ǫ) = 1
Ns

∫

ddk
(2π)d

δ(ǫ + γk) and setting

energy units to be t = 1, our self consistent equations
become,

4

V
= −

∫

dǫD(ǫ)
1

√

(Qf ǫ− µ0)2 +∆2
, (27)

ηQθ = −
∫

dǫD(ǫ)ǫ

(

1

2
− Qf ǫ− µ0

2
√

(Qf ǫ− µ0)2 +∆2

)

, (28)

1 = Z +
1

2

∫

dǫD(ǫ)

√

U

λ+Qθǫ
, (29)

and,

ηQf = ηZ − 1

2

∫

dǫD(ǫ)ǫ

√

U

λ+Qθǫ
, (30)

where the nearest-neighbor coordination number is η and
these self-consistent equations are valid only at zero tem-
perature for a half filled system whose chemical potential
is given by µ0 = (U0 − U2)/4.
Obviously, the superconducting phase is characterized

by the non-zero singlet pairing order parameter ∆. The
gap equation gives non-zero solutions for the pairing or-
der parameter for all V < 0, thus the superconducting
transition line in U0 − U2 parameter space is given by
the equation U0 = U2. This is the SU(4) symmetric line
which can be alternatively represented by µ0 = 0. In
the metallic phase rotors are condensed so that the non-
zero value of the condensate amplitude or the quasipar-
ticle weight Z signifies the metallic state. In the metallic
phase, a macroscopic fraction of rotors occupy the low-
est energy El = −ηtQθ and the Lagrange multiplier or
the rotor chemical potential λ = −El ≡ ηtQθ remains
constant. The quantum phase transition from the metal-
lic state to Mott-insulating state is characterized by the
vanishing quasiparticle weight Z. In the Mott-insulating
phase the quasiparticle weight Z is zero and the rotor
chemical potential λ > ηtQθ needs to be determined by
self consistently. The metal-insulator transition line can
be determined by setting ∆ = 0, Z = 0, and λ = ηtQθ

in self-consistent equations presented above.
For a two-dimensional square lattice, the density of

states can be approximated by a closed form using the
elliptic integral of first kind K, D(ǫ) = 1

2π2K(1− ǫ2/16)
for −4t ≤ ǫ ≤ 4t, and zero otherwise. Therefore for both
metal and Mott-insulating phases, where ∆ = 0, Qθ has
an analytical form. Evaluating the integral in Eq. (28)
for a two-dimensional square lattice, we find,

Qθ =
1

2π2
K(1− µ2

0/16)[16− µ2
0]. (31)

Notice that the chemical potential µ0 = (U0 − U2)/4
at half filling, thus Qθ depends on the interaction pa-
rameters. This is in contrast with the regular Hubbard
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model with spin-1/2 particles where Qθ = 4/π2 is in-
dependent of the interaction [51]. Here at SU(4) limit
where µ0 = 0, we find Qθ = 8/π2 where extra factor 2
comes from the extra spin for the spin-3/2 system. For
three-dimensional cubic lattice, we numerically evaluate
Qθ value. Re-arranging Eq. (30), we find a self-consistent
equation for the critical U2 value for the metal-insulator
transition,

UCMI
2 = 16QC

θ

{
∫

dǫD(ǫ)
√

1 + ǫ/4

}−2

, (32)

where QC
θ = Qθ(U2 = UCMI

2 ) depends on the critical
interaction through the chemical potential.
Zero temperature phase diagrams for both square and

cubic lattices in U0−U2 plane are given in FIG. 1. There
are four different phases at half filling, a metallic phase
(M) at smaller value of U2 < U0, a Mott-insulating phase
(MI) at larger values of U2 < U0, and two distinct super-
conducting phases (Z-SC and SC) for larger values of
U2 > U0. In Z-SC phase quasiparticle weight Z is non-
zero and it reaches to zero at the SC - Z-SC boundary
breaking O(2) rotor symmetry. The boundary of Z-SC
and SC phase is determined by solving our self-consistent
equations with the conditions, Z = 0 and λ = ηtQθ.
With our numerical calculations, we find Qf remains con-
stant along Z-SC-SC boundary, giving Qf ≈ 0.255 for
two-dimensional square lattice and Qf ≈ 0.104 for three-
dimensional cubic lattice. As to our knowledge, this new
emergent Z-SC phase in which both U(1) symmetries as-
sociate with rotor degrees of freedom and spinon degrees
of freedom are broken, has not been discussed before.
For two-dimensional square lattice, the quasiparticle

weight Z, the mass enhancement Qf , the average kinetic
energy of the spinons Qθ, and the pairing order parame-
ter ∆ are shown at fixed values of U0 = 6t and U0 = 2t
in Fig. 2. As can be seen from the left panel of FIG 2,
the quasiparticle weight is unity at non-interacting level
of rotors, and then reaches to zero at the metal-insulator
boundary. Meantime the superconducting order param-
eter picks a finite value at the insulator-superconductor
boundary and increases as one increases the interaction
parameter U2 beyond U0. Both quasiparticle weight and
superconducting order parameter remain at zero at the
intermediate Mott-insulating phase. The right panel of
FIG 2 shows the variation of parameters across quantum
phase transition from metal to Z-SC to SC phases. For
a fixed value of U0 = 2t, the metallic phase exists for low
values of U2 ≤ 2 indicating non-zero quasiparticle weight
Z and zero pairing order parameter ∆. For intermedi-
ate values of U2, both quasi particle weight and pairing
order parameter become non-zero, thus represents the Z-
SC phase. As can be seen from the right panel in the
SC phase, while quasiparticle weight vanishes, the pair-
ing order parameter remains non-zero beyond U2 ≈ 3.3t.
Notice, both mass enhancement and average kinetic en-
ergy of the rotons are non-zero across all quantum phase
transitions, however Qf shows small discontinuities at

the quantum phase transitions. This zero-temperature
discontinuity of mass enhancement factor Qf is an arti-
fact of the mean-field theory and it can be recovered by
adding fluctuations over the mean fields, as we discussed
in discussion section.

VIII. VIII. FINITE TEMPERATURE PHASE

TRANSITIONS

For two-dimensional fermions on a lattice, the finite
temperature phase transitions are absent, but one can ex-
pect to have crossovers. For three-dimensional fermions
on a lattice, the finite temperature phase transitions are
not forbidden. We numerically solve the finite temper-
ature self consistent equations for the cubic lattice. As
a demonstration, we show some finite temperature prop-
erties of the metallic phase and Z-SC phase in FIG. 3.
The left panel shows the temperature dependence of the
quasiparticle weight Z, the mass enhancement factor Qf ,
and, the average kinetic energy Qθ in the metallic phase
where the interaction parameters are fixed to be U2 = 2t
and U0 = 4t. Unlike zero temperature metal-Mott in-
sulator transition, the finite temperature metal-insulator
phase transition is found to be of first order, thus Z shows
a discontinuity at the transition. However, we find Qf

and Qθ remain to be continuous at the transition. The
right panel shows temperature dependence of the singlet
pairing order parameter ∆, Qf and Qθ at the interac-
tion parameters U2 = 1.5t and U0 = 0.5t. The ground
state at these interaction parameters is Z-SC phase where
both singlet pairing order parameter ∆ and quasiparticle
weight Z are non-zero. The continuously vanishing sin-
glet order parameter at a high temperature indicates the
second order thermal transition from the Z-SC phase.

IX. IX. DISCUSSION AND CONCLUSIONS

As discussed above, all zero temperature quantum
phase transitions are second order, however we find a
discontinuity in mass enhancement factor Qf when the
transition is into Mott-insulating phase. On the other
hand, while finite temperature thermal phase transition
into the Mott-insulating phase is first order, we do not
find any discontinuity in the mass enhancement factor.
In our approach, the zero temperature Mott-transition is
continuous, thus one expects continuous destruction of
metallic Fermi surface. This would lead to a metal to
have instabilities toward a magnetic Mott-insulator due
to the Fermi surface nesting, though we have not con-
sidered any symmetry breaking insulating states in our
approach.
The two superconducting phases discussed above are

distinguished due to two main reasons. In the Z-SC
phase, both rotor and pair of spinons are in condensate.
As a result, the broken U(1) gauge symmetry in the ro-
tor sector gives non-zero quasiparticle weight as similar
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FIG. 1: Zero temperature phase diagram showing four different phases; M: metallic phase, MI: Mott-insulating
phase, Z-SC: superconducting phase with non-zero quasiparticle weight, and SC: superconducting phase with zero
quasiparticle weight. Left: The phase diagram for two-dimensional square lattice. Right: The phase diagram for
three-dimensional cubic lattice. The metal phase is characterized by global U(1) symmetry broken state associates
with the rotor degrees of freedom and both superconducting phases (SC and Z-SC) are characterized by the global
U(1) symmetry broken states associates with the spinon degrees of freedom. The Z-SC phase shows additional U(1)

symmetry breaking associates with the rotor sector.

FIG. 2: (color online) Zero temperature physical properties as a function of U2 at U0 = 6t (Left Panel) and at
U0 = 2t (Right Panel). Left : The quasiparticle weight Z (green line) continuously and monotonically decreases from
unity to zero showing metal to Mott-insulator transition at U2 ≈ 3.8t. For 3.8t ≤ U2 ≤ 6t, both quasiparticle weight
and the pairing order parameter remain zero showing Mott-insulating phase. For U2 > 6t, the singlet pairing order
parameter ∆ (blue line) becomes finite, indicating Mott-insulator to superconductor transition. Right : Only the

metallic phase exists for low values of U2 showing non-zero Z and zero ∆. For 2t ≤ U2 ≤ 3.3t, the existence of Z-SC
phase is evident as both Z and ∆ have non-zero values. Notice for both cases, while Qθ (gray line) is continuous at
each phase boundary, Qf shows discontinuities. For clarity, the pairing order parameter ∆ has been increased by

factor five in these figures.

to that of the metallic phase. In the SC phase, the ro-
tors give non-zero charge gap δc = 2

√

U(λ− ηtQθ), as
similar to that of the Mott-insulating phase.

Here in the present work, we have decoupled the rotor
and spinon part of the Hamiltonian using a mean-field
theory. We do not expect the inclusion of fluctuation to
alter the qualitative features. However the physical ob-
servable can slightly be different once the direct coupling
between the rotors and spinons are restored. Fluctua-
tions can easily be included by going beyond the saddle
point approximation. From the transition from metal

phase or Z-SC phase, the quasiparticle weight vanishes,
however the effective spinon hopping tQf is finite. As a
result, the effective mass does not diverge at these tran-
sitions. We believe this is an artifact of our mean-field
theory. In the presence of fluctuation of a gauge field, the
zero-sound Goldstone mode will combine with a gauge
boson through Anderson-Higgs mechanism. We believe
that this would recover our metal phase as a proper Fermi
liquid phase with a diverging Fermi liquid mass [52]. In
addition to the mean-field approximation, we treated our
constraint globally and assumed all parameters are bond
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FIG. 3: (color online) Finite temperature properties of the Z-SC phase (right) and metallic phase (left) of fermions
in three dimensional cubic lattice. The left graph shows the quasiparticle weight (Z) as a function of temperature
kBT/t in the metallic phase. The interaction parameters were chosen as U2 = 2t and U0 = 4t. The quasiparticle

weight (green line) monotonically decreases from ground state metallic phase to Mott-insulating phase at
kBT/t ≈ 0.58t. Notice that the finite temperature metal-insulator transition is first order showing a discontinuity of

Z at the transition. At the transition, both Qθ and Qf finite and continuous. The right graph shows the
superconducting order parameter (∆) as a function of temperature kBT/t in the Z-SC phase close to the Z-SC-SC
boundary. The interaction parameters were chosen as U2 = 1.5t and U0 = 0.5t, While ∆ continuously decreases

(blue line) from a finite value to zero showing second order thermal phase transition, both Qf and Qθ values remain
almost constant as a function of temperature.

independent. We do not expect these approximations to
change any qualitative features, specially for the square
and cubic lattices discussed.

On the experimental side, spin-3/2 alkaline-earth
atoms, such as 135Ba and 137Ba can be promising candi-
dates for observing the Z-SC novel emerging phase. Even
though the full spectrum of scattering lengths are not
available yet, it is predicted that both scattering lengths
a0 and a2 should have similar values [38, 53]. Therefore,
we believe experiments can find a suitable parameter win-
dow in the phase diagram to observe the Z-SC phase even
if scattering lengths cannot be independently tuned. On
the other hand, the pairing phenomena and the emerg-
ing novel phase discussed here is much more general con-
cept associates with many body systems. Thus, the Z-SC
phase must exist in other many body systems where com-
peting interactions are taking place. One such example
is spin-3/2 rare-earth based half-Heusler semimetals [54–
59]. Another promising electronic compound is rubidium
doped fullerids [60]. Though on-site interaction is repul-
sive, the effective negative Hunds coupling due to phonon
screening effect can leads to a pairing of electrons [61, 62].
Indeed, a recent experiment finds a novel phase termed by
Jahn-Teller metal in rubidium doped fullerids [60]. Per-
haps, the superconducting critical temperature enhance-
ment close to the tri-critical point of paramagnetic metal,
paramagnetic insulator, and superconducting phases in-
dicates the Z-SC phase in this rubidium doped fullerids
compound [63].

The superfluid density, charge gap, and quasiparticle
weight all can be measured with currently available ex-
perimental techniques in cold gas experiments. For ex-

ample, the momentum distribution of the atoms can be
probed by the absorption imaging after a period of ballis-
tic expansion or in trap in-situ imaging [64]. The charge
gap can be detected by measuring the fraction of atoms
residing in a lattice site [65]. The superconducting order
can be probed by the momentum-resolved Bragg spec-
troscopy [66]. In addition, the periodic forcing can also
be used as a detecting and manipulating tool for many-
body states of ultra-cold atomic quantum gases in optical
lattices [67]. Though we neglected it in this study, the un-
derlying harmonic trapping potential present in all cold
gas experiments causes the density to monotonically vary
across the lattice. As a result, the edge of the trap will
not be at half filling. As the metallic phase is favorable
over the Mott-insulating phase away from half filling, we
expect metallic phase to dominate over Mott-insulating
phase in the phase diagram.

In conclusion, we have studied the competition of
emerging phases of spin-3/2 fermions subjected to a pe-
riodic lattice potential using a slave rotor approach. In
addition to the well known Fermi liquid metallic phase,
Mott-insulating phase, and singlet pairing superconduct-
ing phase, we discovered the possibility of having novel
emerging superconducting phase due the competing in-
teractions. The novel superconducting phase is charac-
terized by the global U(1) broken symmetries with re-
spect to both roton and spinon fields. Experimentally,
this novel phase can be differentiated from regular su-
perconducting phase by its non-zero quasiparticle weight.
Further, we have calculated properties of these phases
for fermions in both two dimensional square lattice and
three dimensional cubic lattice geometries at zero and
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finite temperatures.
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