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One-dimensional spinless Bose and Fermi gases with contact interactions have the close interre-
lation via Girardeau’s Bose-Fermi mapping, leading to the correspondences in their energy spectra
and thermodynamics. However, correlation functions are in general not identical between these
systems. We derive in both systems the exact universal relations for correlation functions, which
hold for any energy eigenstate and any statistical ensemble of the eigenstates with or without a
trapping potential. These relations include the large-momentum behaviors of static structure fac-
tors and of momentum distributions as well as energy relations, which connect the sums of kinetic
and interaction energies to the momentum distributions. The relations involve two- and three-body
contacts, which are the integrals of local pair and triad correlations, respectively. We clarify how
the relations for bosons and fermions differ and are connected with each other. In particular, we
find that the three-body contact makes no contribution to the bosonic energy relation, but it plays
a crucial role in fermionic one. In addition, we compute the exact momentum distribution for any
number of fermions in the unitary limit.

I. INTRODUCTION

Understanding of strongly correlated many-body sys-
tems is a challenging problem common to various fields
in physics, such as atomic physics, condensed mat-
ter physics, and nuclear physics. In ultracold atomic
gases [1–3], an interaction strength can be tuned by a
Feshbach resonance [4]. By using an optical lattice, we
can also obtain a low-dimensional gas, whose interaction
is controlled by a confinement-induced resonance [5, 6].
This high controllability allows ultracold atoms to be
ideal grounds to investigate quantum many-body sys-
tems with strong interactions not only in three dimen-
sions (3D) but also in 2D and 1D.
When the interaction range of atoms is much smaller

than other length scales such as a scattering length, a
thermal de Broglie wavelength, and a mean interatomic
distance, an atomic gas can be described by a model with
a contact interaction. In 1D, a system with a contact in-
teraction has a peculiar property. Bosons with an even-
wave interaction have the one-to-one correspondence to
spinless fermions with an odd-wave interaction [6, 7]:
When a 1D scattering length of bosons aeB and that of
fermions aoF are tuned to aeB = aoF , all energy eigen-
states for bosons are mapped into those for fermions and
vice versa via the Bose-Fermi mapping proposed by Gi-
rardeau [8]. This is a natural generalization of the well-
known correspondence between impenetrable bosons and
free fermions with aeB = aoF = −0 [8]. As a consequence
of this Bose-Fermi correspondence, the energy spectrum
and thermodynamics are identical between bosons and
fermions with aeB = aoF . However, correlation functions
for bosons are not always the same as those for fermions.
In homogeneous cases, 1D bosons and fermions with

contact interactions are described by integrable mod-
els [9, 10]. Energy spectra and free energies in these sys-

tems can be exactly obtained by the Bethe ansatz [9, 11].
On the other hand, the calculations of correlation func-
tions are in general much more complicated even in in-
tegrable systems [12]. One of the great successes in such
a problem is Haldane’s theory of quantum liquids, where
the long-range scaling behaviors of correlation functions
at zero temperature were derived [13]. These universal
behaviors originate from the quantum many-body fluc-
tuation in 1D.

Recently, it has been elucidated that a system with a
contact interaction has another type of universal prop-
erties, which are effectively determined by few-body
physics [14–16]. Here, various quantities including power-
law tails of correlation functions at large momentum or
high frequency, the energy, and the derivative of a free
energy with respect to a coupling constant are related
to so-called contact parameters, which measure short-
range correlations of the system. These universal rela-
tions are strong constraints on the system because they
hold for any number of particles, strength of the inter-
action, temperature, and with or without a trapping po-
tential. While the relations were originally found in a
3D Fermi gas with an s-wave interaction [14–16], they
have been generalized to various systems such as Bose
gases [17, 18], lower-dimensional gases [18–21], and quan-
tum gases with higher partial-wave interactions [22–24]
as well as to nuclear systems [25]. The relations have
also been verified experimentally in 3D Fermi gases with
s-wave and p-wave interactions [26, 27].

In this paper, correlation functions for 1D bosons and
fermions with contact interactions are studied from the
viewpoint of universal relations. In Sec. II, we introduce
the models of 1D bosons and fermions and review the
Bose-Fermi mapping and its consequences. For bosons
and fermions, we derive the large-momentum tails of the
static structure factor and the momentum distribution
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and apply them to uniform gases at zero temperature
in Sec. III. The energy relations, in which the sums of
kinetic and interaction energies are expressed in terms
of momentum distributions and contact parameters, are
derived in Sec. IV. We clarify the consequences of the
Bose-Fermi correspondence in these universal relations
and verify them for homogeneous systems. While we fo-
cus on energy eigenstates without a trap in the thermo-
dynamic limit or those of trapped gases in Secs. II–IV,
the results therein are generalized to finite-size systems
and statistical ensembles in Sec. V. In Sec. VI, we exactly
compute the momentum distribution for N fermions in
the unitary limit and demonstrate that the relations for
fermions hold in this case. We conclude this paper in
Sec. VII.

II. MODELS

We start with the first-quantized Hamiltonians for 1D
bosons and fermions with a 1D scattering length aeB =
aoF = a. The Hamiltonian for N bosons with an even-
wave interaction is given by

HB = H0 −
2~2

ma

∑

i<j

δ(xij) (1)

with

H0 =

N
∑

i=1

(

−
~
2

2m

∂2

∂x2
i

+ V (xi)

)

, (2)

while the Hamiltonian for N fermions with an odd-wave
interaction is given by

HF = H0 −
2~2a

m

∑

i<j

δ′(xij)Dij . (3)

Here, m is the mass of particles, xij = xi − xj is
the relative coordinate of a pair of particles i, j, and a
trapping potential V (x) is an arbitrary smooth function
of x ∈ (−∞,∞). The linear operator Dij acts on a

fermionic wave function as DijΨF = ∂
∂xij

ΨF |xij=+0
with

the center of mass coordinateXij = (xi+xj)/2 of the pair
of fermions i, j and the other N−2 coordinates {xk}k 6=i,j

fixed.
The Bose-Fermi mapping is defined by

ΨF (x1, . . . , xN ) = AΨB(x1, . . . , xN ), (4)

where ΨB and ΨF are bosonic and fermionic wave func-
tions, respectively, the mapping factor

A = A(x1, . . . , xN ) =
∏

i<j

sgn(xij) (5)

is antisymmetric under the exchange of xi and xj with
i 6= j, and the sign function sgn(x) is +1 for x > 0 and

−1 for x < 0 [8]. This mapping provides the one-to-
one correspondence between the eigenstates of HB and
HF [7, 10]. From the coupling constants in Eqs. (1)
and (3), one can see that weakly (strongly) interact-
ing bosons correspond to strongly (weakly) interacting
fermions. Hereafter, we focus on a pair of bosonic and
fermionic energy eigenstates, ΨB and ΨF , related by
Eq. (4).
The existence of the mapping (4) makes some physi-

cal quantities identical between ΨB and ΨF [8]. Both
states have the same energy E and the same probabil-
ity distribution of finding M particles at the positions
x1, . . . , xM :

gM (x1, . . . , xM ) =
N !

(N −M)!

∫

dxM+1 · · · dxN

×|Ψα(x1, . . . , xN )|2, (6)

where α = B,F labels statistics of particles and Ψα is
normalized as

∫

dx1 · · · dxN |Ψα|
2 = 1. Hereafter, we ab-

breviate the label α = B,F for quantities identical be-
tween ΨB and ΨF . Because of the correspondence of
gM (x1, . . . , xM ), the following quantities are also identi-
cal for ΨB and ΨF : the density profile n(x) = g1(x), the
static structure factor

S(k) = 1 +
1

N

∫

dx1dx2e
−ik(x1−x2)

×[g2(x1, x2)− n(x1)n(x2)], (7)

and the two- and three-body contacts,

C2 ≡

∫

dx g2(x, x), C3 ≡

∫

dx g3(x, x, x), (8)

which are contact parameters given by the integrals of
local pair and triad correlations, respectively. The cor-
respondence of the two-body contact C2 between bosons
and fermions was previously pointed out in Ref. [28]. We
note that C2 in the literature is defined as the coefficient
of the large-momentum tail of a momentum distribution
(see, e.g., Refs. [19, 28, 29]). On the other hand, since the
purpose of this paper is to make a comparison between
1D bosons and fermions, C2 in Eq. (8) is defined so as to
be identical between ΨB and ΨF . As a result, the tails
of momentum distributions presented below in Eqs. (14)
and (17) may look different from those in the literature.
The correspondence of gM (x1, . . . , xM ) for bosons and

fermions is naturally generalized to systems at nonzero
temperature T . With a and T fixed, the canonical ensem-
ble average of gM (x1, . . . , xM ) is identical between bosons
and fermions. In particular, the two-body contact plays
an important role in the thermodynamics of bosons and
fermions. By using the Hellmann-Feynman theorem, one
can find that C2 is the thermodynamic quantity conju-
gate to the inverse scattering length:

(

∂F

∂(−1/a)

)

T

=
~
2C2

m
, (9)
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where F is the free energy [30]. For homogeneous gases in
the thermodynamic limit, C2 and C3 were exactly com-
puted in the bosonic Lieb-Liniger model by the Bethe
ansatz [30–34].
While S(k) is a correlation function identical between

ΨB and ΨF , a momentum distribution

ρα(k) = N

∫

dx2 · · · dxN

∣

∣

∣

∣

∫

dx1e
−ikx1Ψα(x1, . . . , xN )

∣

∣

∣

∣

2

(10)

is a correlation function strongly dependent on statistics
of particles. However, in the next two sections, we show
that there are two nontrivial connections between ρB(k)
and ρF (k) resulting from the Bose-Fermi correspondence.

III. TAILS OF CORRELATION FUNCTIONS

Before evaluating the asymptotics of S(k) and ρα(k)
at large k, we recall the important property of contact
interactions. It is a well-known fact that contact interac-
tions result in singular behaviors of energy eigenfunctions
when two or more particles approach each other. In par-
ticular, when two particles i < j come close to each other,
ΨB and ΨF satisfy the following boundary conditions:

ΨB = (1− |xij |/a)ΦB;ij +O(x2
ij), (11a)

ΨF = (sgn(xij)− xij/a)ΦF ;ij +O(x2
ij), (11b)

where Φα;ij = Φα;ij(Xij ; {xk}k 6=i,j).
We then derive the large-k behavior of S(k). The key

point to evaluate it is that the Fourier transform of a
function having discontinuities or discontinuous deriva-
tives in isolated points obeys a power law at |k| → ∞.
The density profile n(x) in Eq. (7) is a smooth function,
so that its Fourier transformation rapidly vanishes for
|k| → ∞. On the other hand, the singularity of Ψα in
Eq. (11) makes the pair correlation function singular at
short distance: g2(x1, x2) = (1− 2|x12|/a)g2(X12, X12)+
O(x2

12). This singular term proportional to |x12| makes
a dominant contribution to S(k) in the large-k limit.
By changing integration variables x1, x2 → x12, X12, the
large-k behavior of S(k) reads

S(k) ≃ 1−
2

Na

∫

dx12e
−ikx12 |x12|C2. (12)

By using the formal Fourier transform of |x|,
∫

dxe−ikx|x| = −2/k2, we obtain the power-law tail of
S(k):

S(k) −−−−→
|k|→∞

1 +
4C2

Nak2
. (13)

We note that this result is derived from the boundary
conditions (11) satisfied by all eigenstates of Hα. There-
fore, this is an universal result in the sense that it holds
for any eigenstate.

Let us now turn to the large-k behavior of ρα(k). In
the case of bosons, the power-law tail of ρB(k) at large k
was derived by Olshanii and Dunjko in a similar way to
that for S(k) [35]. Their result is written as

ρB(k) −−−−→
|k|→∞

4C2

a2k4
(14)

in our definition of C2.
We now derive the tail of ρF (k). The Fourier transform

of ΨF with respect to x1 at large k is dominated by the
singularity in Eq. (11b):

∫

dx1e
−ikx1ΨF (x1, . . . , xN )

≃
N
∑

j=2

e−ikxjΦF ;1j(xj ; {xk}k 6=1,j)

∫

dx1je
−ikx1j sgn(x1j),

(15)

where the change of variables x1 → x1j was performed.
Since the Fourier transform of the sign function equals
∫

dxe−ikx sgn(x) = −2i/k, we find

∫

dx1e
−ikx1ΨF (x1, . . . , xN ) ≃

−2i

k

N
∑

j=2

e−ikxjΦF ;1j.

(16)

We then substitute this into Eq. (10) and expand the
modulus squared. Because the cross terms are written as
the Fourier transforms of functions continuous at xjl = 0,
where j, l 6= 1, with respect to xjl, they rapidly vanish in
the large-k limit. By making use of |ΦF ;1j | = |ΨF |x1=xj

and the antisymmetry of ΨF , ρF (k) is found to have the
following power-law tail:

ρF (k) −−−−→
|k|→∞

4C2

k2
. (17)

This is consistent with the result derived by using the
operator product expansion [28].
Let us compare Eq. (17) with Eq. (14). As men-

tioned above, the mapping (4) does not make ρB(k)
and ρF (k) identical, and we indeed find that they obey
different power laws at large momentum. Nevertheless,
Eqs. (14) and (17) show that ρB(k) and ρF (k) are related
to each other at |k| → ∞ through the two-body contact:
lim|k|→∞ a2k4ρB(k) = lim|k|→∞ k2ρF (k) = 4C2. This
is one of the nontrivial connections between ρB(k) and
ρF (k) resulting from the Bose-Fermi correspondence.
At the end of this section, we apply Eqs. (13), (14),

and (17) to the ground states of uniform Bose and Fermi
gases with a negative scattering length. In the ther-
modynamic limit, the states are characterized only by
the dimensionless parameter γ = −2/(na) > 0, where
n(x) = n is constant, and C2 was exactly calculated for
arbitrary γ > 0 [31]. This exact result combined with
Eqs. (13), (14), and (17) completely determines the large-
k asymptotics of S(k) and ρα(k) for arbitrary γ > 0.
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For sufficiently small or large γ, the analytical expres-
sion of C2 is also obtained as C2/N ≃ n for γ ≪ 1 and
C2/N ≃ 4

3π
2γ−2n for γ ≫ 1. By substituting these

expressions into Eqs. (13), (14), and (17), we obtain the
explicit forms of the tails for γ ≪ 1 and γ ≫ 1, which are
consistent with the large-k limit of the previous results
in Refs. [36–38].

IV. ENERGY RELATIONS

We now derive the energy relations for 1D bosons and
fermions. The energy relation for bosons is easily derived
by evaluating the expectation value of HB with respect
to ΨB:

E − Etrap =

∫

dk

2π

~
2k2

2m
ρB(k)−

~
2C2

ma
, (18)

where Etrap =
∫

dxV (x)n(x) is a trapping energy [29].
We note that the kinetic energy for bosons is ultraviolet
convergent because of Eq. (14).
In the case of fermions, an appropriate regularization

procedure is however required to derive the energy re-
lation. If the expectation value of HF with respect to
ΨF was naively evaluated, one would be faced with di-
vergences from both kinetic and interaction energies. In-
deed, Eq. (17) shows that the kinetic energy has an ul-
traviolet divergence. In this paper, we perform the reg-
ularization of the fermionic theory in the following way:
First, we introduce a function fǫ(x) with a range ǫ > 0,
which is finite for |x| < ǫ, rapidly vanishes for |x| > ǫ,
and approaches the derivative of the delta function in
the zero-range limit, limǫ→0 fǫ(x) = δ′(x). We then re-
place δ′(x) in Eq. (3) with fǫ(x). After evaluating the
expectation value of the regularized HF with respect to
ΨF , we take the zero-range limit ǫ → 0. Our approach is
motivated by the method used in Ref. [39].
Let us evaluate the expectation value of H0 with re-

spect to ΨF . In the previous section, we show in the
limit ǫ → 0 that ρF (k) behaves as 1/k

2 for large momen-
tum. For ǫ > 0, Eq. (17) holds as long as |k| is much
smaller than 1/ǫ but much larger than the other mo-
mentum scales in the system. However, the momentum
distribution rapidly vanishes for |k| > Λ ∼ 1/ǫ, which is
easily demonstrated in the case of a simple finite-range
potential such as a square-well potential. As a result, a
contribution from the region |k| > Λ to the kinetic en-
ergy is negligible. The expectation value of H0 is thus
found to be

∫

dx1 · · · dxNΨ∗
FH0ΨF ≃

∫ Λ

−Λ

dk

2π

~
2k2

2m
ρF (k) + Etrap,

(19)

where a trapping energy Etrap =
∫

dxV (x)n(x) is con-
vergent in the limit ǫ → 0 and is the same as that for
bosons.

The interaction energy has only two contributions re-

maining in the limit ǫ → 0. One contribution U
(2)
F

comes from the configuration where only one pair of
fermions i < j interact with each other. In this re-
gion, the wave function behaves as Eq. (11b), leading
to −aDijΨF = ΦF ;ij . By taking the antisymmetry of

ΨF into account, U
(2)
F can be written as

U
(2)
F =

~
2

m

∫ ǫ

−ǫ

dx12fǫ(x12)(sgn(x12)− x12/a)

×

∫ ∞

−∞

dX12

∫

Rǫ

dx3 · · · dxNN(N − 1)|ΦF ;12|
2 +O(ǫ).

(20)

Here, the symbol Rǫ refers to the region where all
fermions at x3, . . . , xN are not affected by the interac-
tion, i.e., |x1i|, |x2i| > ǫ for i = 3, . . . , N and |xjk | > ǫ for
3 ≤ j < k ≤ N . Because power counting with respect
to ǫ provides dx12, x12 = O(ǫ), fǫ(x12) = O(ǫ−2), and
X12, sgn(x12) = O(1), we need to evaluate the integra-
tion over Rǫ up to O(ǫ2). It is convenient to rewrite this
integral as follows:
∫

Rǫ

dx3 · · · dxNN(N − 1)|ΦF ;12|
2

=

(
∫

RN−2

−

∫

R̄ǫ

)

dx3 · · · dxNN(N − 1)|ΦF ;12|
2, (21)

where R̄ǫ denotes the complement of Rǫ. The first in-
tegral equals g2(X12, X12). The second is dominated by
the region where only one of the remaining fermions ap-
proaches the pair of fermions 1, 2, so that it is evaluated
as −(2ǫ+ |x12|)g3(X12, X12, X12)+O(ǫ2). After perform-

ing the integration over x12 and X12, U
(2)
F is found to be

U
(2)
F =

~
2

m
(JǫC2 − 2ǫJǫC3 + C2/a+ C3) +O(ǫ), (22)

where Jǫ ≡
∫ ǫ

−ǫ dx12fǫ(x12) sgn(x12) and the three-body

contact C3 is defined in Eq. (8). By using the Fourier
transforms of δ′(x) and sgn(x) and recalling the exis-
tence of the momentum cutoff Λ, Jǫ is evaluated as

Jǫ ≃ −2
∫ Λ

−Λ
dk/(2π). The first term in Eq. (22) thus

cancels the divergence from the kinetic energy in Eq. (19).

The other contribution U
(3)
F to the interaction en-

ergy comes from the configuration where only three
fermions interact with each other. When three fermions
at x1, x2, x3 come close to each other, the Bose-Fermi
mapping (4) implies that Ψ∗

F has the singularity ∼
sgn(x12) sgn(x13) sgn(x23) = sgn(x12x13x23). By taking
the antisymmetry of ΨF into account, this contribution
can be evaluated as

U
(3)
F =

~
2

m

∫ ǫ

−ǫ

dx12

∫ ∞

−∞

dX12fǫ(x12)g3(X12, X12, X12)

×

∫ xmax+ǫ

xmin−ǫ

dx3 sgn(x12x13x23) +O(ǫ),

(23)
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where xmin = min(x1, x2) and xmax = max(x1, x2). This
integration can be easily performed to obtain

U
(3)
F =

~
2

m
(2ǫJǫ + 1)C3 +O(ǫ). (24)

Finally, by summing up Eqs. (19), (22), and (24) and
taking the limit of ǫ ∼ 1/Λ → 0, we arrive at the follow-
ing energy relation:

E − Etrap = lim
Λ→∞

∫ Λ

−Λ

dk

2π

~
2k2

2m

(

ρF (k)−
4C2

k2

)

+
~
2C2

ma
+

2~2C3

m
. (25)

This is a novel universal relation including the three-body
correlation in 1D. We note that Eq. (25) is similar to the
energy relation for 3D bosons, where the Efimov effect
takes place [40], in the sense that both of them involve
the three-body contacts [17].
The energy relation for 1D fermions with an odd-wave

interaction was recently proposed in Ref. [28], where the
three-body contribution to the relation was not included.
To demonstrate the necessity of this contribution, we
apply Eq. (25) to a uniform Fermi gas in the thermo-
dynamic and unitary limits, a → −∞, at zero temper-
ature. In this case, the Fermi gas corresponds to the
ideal Bose gas and has E = Etrap = 0, C2/N = n, and
C3/N = n2 with n(x) = n. The momentum distribu-
tion, ρF (k)/N = 4n/(k2 + 4n2), is also exactly calcu-
lated [36, 37]. By substituting these into both sides of
Eq. (25), one can see that Eq. (25) holds in this case
and that the three-body contact makes an essential con-
tribution to the energy of fermions. On the other hand,
the virial theorems for bosons and fermions trapped by
a harmonic potential do not involve C3 and are identical
to each other [28, 29].
We now compare the energy relations for bosons and

fermions. Although the left-hand sides of Eqs. (18) and
(25) are the same, the right-hand sides look quite differ-
ent, in particular, in the absence or presence of a term
proportional to C3. Nevertheless, Eqs. (18) and (25) con-
nect ρB(k) and ρF (k), which is the other nontrivial con-
nection of ρα(k) resulting from the Bose-Fermi correspon-
dence.

V. GENERALIZATION OF RESULTS

The universal relations [Eqs. (13), (14), (17), (18), and
(25)] presented in the previous sections can be gener-
alized to bosons and fermions with a finite system size
L < ∞. Although k is not continuous but quantized,
the power-law tails of correlation functions [Eqs. (13),
(14), and (17)] hold for these systems. The energy re-
lations for these systems can be obtained by replacing
the integrals in Eqs. (18) and (25) with the sum over

k:
∫ Λ

−Λ dk/(2π) → L−1
∑

|k|<Λ. In the next section, we

demonstrate Eqs. (17) and (25) for a finite-size fermionic
system at unitarity a → ∞.

Here, we note a subtle issue in the Bose-Fermi map-
ping (4) with periodic (or more generally twisted) bound-
ary conditions [9, 10]: If and only if N is even, the factor
A defined by Eq. (5) makes boundary conditions for the
mapped state opposite in sign from those for the original
state. For example, ΨB with periodic boundary condi-
tions corresponds to ΨF with antiperiodic (periodic) ones
if N is even (odd). On the other hand, the factor A does
not change hard wall boundary conditions [41, 42].

Since the universal relations hold for any energy eigen-
states, any statistical ensemble of the bosonic eigenstates
satisfies Eqs. (13), (14), and (18), while any statistical
ensemble of the fermionic eigenstates satisfies Eqs. (13),
(17), and (25). This set of the ensembles includes not
only a canonical ensemble in thermal equilibrium but also
a generalized Gibbs ensemble, which is expected to de-
scribe the stationary properties after a quantum quench
in integrable systems [43].

VI. FERMIONS AT UNITARITY

In this section, we study the ground state of a finite
number of spinless fermions in the unitary limit a → ∞.
For simplicity, we consider fermions which correspond to
free bosons with periodic boundary conditions without
an external potential:

ΨF (x1, . . . , xN ) = L−N/2A(x1, . . . , xN ), (26)

where 0 ≤ xi < L. This state has E = Etrap = 0,
C2 = N(N − 1)/L, and C3 = N(N − 1)(N − 2)/L2.

We now compute ρF (k) for the ground state. Because
the wave function in Eq. (26) satisfies periodic (antiperi-
odic) boundary conditions if N is odd (even), k is quan-
tized as k = 2nπ/L [k = (2n + 1)π/L], where n is an
integer. After a lengthy but straightforward calculation,
ρF (k) is exactly obtained for any N ≥ 2:

ρF (k)

L
= δk,0 + (1− δk,0)

⌊N/2⌋
∑

l=1

(−1)l−1N !

(N − 2l)!

(

2

kL

)2l

,

(27)

where the floor function ⌊N/2⌋ equals (N − 1)/2 if N is
odd and N/2 if N is even. By taking the large-k limit,
we have ρF (k) → 4N(N − 1)/(k2L), which is consistent
with Eq. (17). In addition, we confirmed that the energy
relation for a finite-size system holds,

1

L

∑

k

~
2k2

2m

(

ρF (k)−
4C2

k2

)

+
2~2C3

m
= 0, (28)

by using Mathematica at least up to N = 200.
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TABLE I. Comparison of universal relations for 1D bosons and fermions with contact interactions. Here, E, Etrap, C2, C3, and
S(k) are identical between bosons and fermions at the same scattering length a, but ρB(k) and ρF (k) differ.

Bosons Fermions

S(k) −−−−→
|k|→∞

1 + 4C2

Nak2 (13)

ρB(k) −−−−→
|k|→∞

4C2

a2k4 (14) ρF (k) −−−−→
|k|→∞

4C2

k2 (17)

E − Etrap =
∫

dk

2π
~
2
k
2

2m
ρB(k)−

~
2
C2

ma
(18) E − Etrap = limΛ→∞

∫ Λ

−Λ

dk

2π
~
2
k
2

2m

(

ρF (k)−
4C2

k2

)

+ ~
2
C2

ma
+ 2~2C3

m
(25)

VII. CONCLUSION

We studied 1D bosons and fermions with contact in-
teractions which are related to each other through the
Bose-Fermi mapping (4) and derived the power-law tails
of S(k) and ρα(k) at large k and the energy relations,
which are summarized in Table I. We found the following
three facts in these universal relations: S(k) has the iden-
tical tail between bosons and fermions; the Bose-Fermi
correspondence results in two nontrivial connections be-
tween ρB(k) and ρF (k) through their tails and through
the energy relations; and the three-body contact makes
no contribution to the energy relation for bosons, but
it makes an essential contribution to that for fermions.
Furthermore, Eqs. (13), (14), and (17) together with the
Bethe ansatz completely determine the large-k tails of
S(k) and ρα(k) for uniform Bose and Fermi gases at any
temperature. We also computed ρF (k) for the ground
state of N fermions in the unitary limit a → ∞ and con-
firmed Eqs. (17) and (25) in this case.

We can consider some applications and generaliza-
tions of the universal relations presented in this paper.
Our relations can be used as reliable tests on numer-
ical studies of correlation functions [44–48]. One may
compute higher-order corrections to Eqs. (13), (14), and
(17) at large momentum in a similar way to 2D and 3D
cases [17, 49]. It should be interesting to see whether and
how C3 appears in these corrections. One can also gen-
eralize energy relations to 1D bosons and fermions with
finite effective ranges [50–52], where a three-body corre-
lation will make an essential contribution in the fermionic
case as in Eq. (25).
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