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Ultracold gases offer an unprecedented opportunity to engineer disorder and interactions in a
controlled manner. In an effort to understand the interplay between disorder, dipolar interaction
and quantum degeneracy, we study two-dimensional hard-core dipolar lattice bosons in the presence
of on-site bound disorder. Our results are based on large-scale path-integral quantum Monte Carlo
simulations by the Worm algorithm. We study the ground state phase diagram at fixed half-integer
filling factor for which the clean system is either a superfluid at lower dipolar interaction strength
or a checkerboard solid at larger dipolar interaction strength. We find that, even for weak dipolar
interaction, superfluidity is destroyed in favor of a Bose glass at relatively low disorder strength.
Interestingly, in the presence of disorder, superfluidity persists for values of dipolar interaction
strength for which the clean system is a checkerboard solid. At fixed disorder strength, as the
dipolar interaction is increased, superfluidity is destroyed in favor of a Bose glass. As the interaction
is further increased, the system eventually develops extended checkerboard patterns in the density
distribution. Due to the presence of disorder, though, grain boundaries and defects, responsible
for a finite residual compressibility, are present in the density distribution. Finally, we study the

robustness of the superfluid phase against thermal fluctuations.

I. INTRODUCTION

Since their first theoretical investigation three decades
ago [1-4], many-body bosonic systems in the presence
of disorder have attracted a great deal of attention both
experimentally and theoretically [5-26]. While Ander-
son localization [5, 6, 11] and classical trapping of non-
interacting bosons [27] are well understood, the inter-
play between disorder, interaction and quantum degen-
eracy in strongly-correlated bosonic systems may give
rise to new fascinating phenomena. A certain degree
of disorder is ubiquitous in condensed matter systems,
but a thorough understanding of these systems is hin-
dered by poor control over the nature of disorder and
competing interactions. Ultracold gases, on the other
hand, offer an unprecedented level of control over inter-
actions and disorder. Specifically, interactions and dis-
order can be tuned independently. Experimentally, the
most common way to generate disorder is via optical
speckle fields [13, 28, 29]. Other possibilities to engi-
neer disorder include quasi-periodic potentials generated
by non-commensurate bichromatic optical lattices [30] ,
the introduction of impurity atoms to the system [15],
and holographic techniques which produce point-like dis-
order [31].

A paradigmatic example is that of lattice bosons de-
scribed by the Bose-Hubbard model in the presence of
on-site, bound disorder, where it was proven analyti-
cally and confirmed numerically that the gapless Bose
glass (BG) phase, characterized by finite compressibility
and absence of off-diagonal long-range order, always in-
tervenes between the Mott-insulator and superfluid (SF)
state [25, 26]. Moreover, numerical studies at commensu-
rate and incommensurate filling factor have shown that

large enough disorder always destroys superfluidity in fa-
vor of the BG. In the weakly-interacting limit, interac-
tions compete with Anderson localization thus enhanc-
ing superfluidity [26, 32]. This results in sizable disorder
strength needed in order to destroy superfluidity. On the
other hand, in the strongly-interacting limit, interactions
suppress superfluidity and, at integer filling, eventually
completely destroy it, leaving the system either in the
Mott insulator phase at lower disorder strength or in a
BG phase at larger disorder strength [21, 26].

In this paper, we consider dipolar lattice bosons in two-
dimensions, as described by the extended Bose-Hubbard
model, in the presence of on-site bound disorder. Dipolar
lattice systems are now accessible experimentally. They
can be realized with polar molecules [33, 34], atoms with
large magnetc moments [35, 36], and Rydberg atoms [37—
39]. Unlike single-component atomic systems purely in-
teracting via Van-der-Waals interactions, dipolar systems
interacting via the long-ranged and anisotropic dipolar
interaction can realize novel superfluid, solid, and topo-
logical phases [40-46]. While in-depth theoretical studies
of dipolar lattice bosons in presence of disorder are still
lacking, as suggested in [47], many of these phases may
not be robust in presence of disorder.

In this paper we study two-dimensional hard-core dipo-
lar bosons trapped in a square optical lattice and in the
presence of random on-site disorder and use large-scale
quantum Monte Carlo simulations by the Worm algo-
rithm [48] to study the robustness of the equilibrium
phases to disorder. In particular we show that the in-
terplay of the long-range interactions and the on-site dis-
order leads to the suppression of the checkerboard (CB)
order, while enhancing the SF order, and stabilizing a
BG phase.



II. SYSTEM HAMILTONIAN

The system is comprised of hard-core, dipolar lattice
bosons in a 2d square lattice, with the dipole moments
aligned perpendicular to the lattice by an external static
electric field so that the dipolar interaction is purely re-
pulsive. At half-integer filling and in the absence of dis-
order, the system is either in a SF state at lower dipo-
lar interaction strength or in a checkerboard (CB) solid
phase at larger dipolar interaction strength [41]. In the
presence of on-site disorder, the system is described by
the Hamiltonian:

_ f nin;
H=-J aiajJrVZ 3 —Z(si*u)ni ,
(i3) i<j W i

where the first term is the kinetic energy characterized by
hopping amplitude J. Here (---) denotes nearest neigh-
boring sites, a;r (a;) are the bosonic creation (annihila-
tion) operators satisfying the usual commutation rela-
tions and the hard-core constraint azaj = 0. The second
term is the purely repulsive dipolar interaction charac-
terized by strength V = d?/a?, d is the induced dipole
moment and a is the lattice spacing, r;; is the relative
distance (measured in units of a) between site i and site
7,y = a}ai is the particle number operator. The third
term is the chemical potential term with chemical poten-
tial p shifted by the on site random disorder potential
€i, where ¢; is uniformly distributed within the range
[A, —A]. We set our unit of energy and length to be the
hopping amplitude J and the lattice spacing a, respec-
tively.

III. GROUND STATE PHASE DIAGRAM

In this section, we present our numerical results for the
ground state phase diagram of model 1 at fixed filling fac-
tor n = 0.5, as shown in Fig. 1. The horizontal and ver-
tical axes are the dipole-dipole interaction strength V/J
and the disorder strength A/.J, respectively. Red circles
represent SF-insulator transition points. The red solid
line is a guide to the eye. At zero disorder, the system is
either in the SF phase for V/J < 3.5, or the CB phase
(blue circle) [41]. The SF phase is characterized by fi-
nite superfluid stiffness ps which can be determined from
the statistics of winding numbers in space. Specifically,
ps = (W2)/dL*=23, where W2 = W2 + W2, W, , being
the winding number in spatial directions = and y, d = 2
is the spatial dimension, and [ is the inverse tempera-
ture [49]. The CB solid possesses diagonal long-range
order and is characterized by a finite value of structure
factor S(k) = >_, ., exp [ik(r — r')[(neny) /N, here k is
the reciprocal lattice vector. For CB solid, k = (m, 7).

For V/J < 3.5, the SF is destroyed in favor of a BG
phase for disorder strength 7 < A/J < 8 . This is in
contrast to what was found for the Bose-Hubbard model
at unit filling and in the limit of weak interactions where
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FIG. 1. (Color online) Phase diagram of the system described
by Eq. 1 at filling factor n = 0.5. The horizontal and verti-
cal axes are the dipole-dipole repulsive interaction strength
V/J and the disorder strength A/J, respectively. Solid red
circles represent superfluid to insulator transition points as
determined by standard finite size scaling. The solid line is a
guide to the eye. The blue circle is the interaction strength
at which superfluidity disappears in favor of a checkerboard
solid in the clean system. The inset shows finite size scal-
ing of the superfluid stiffness p;. We plot psL vs. V/J at
A/J =T for system sizes L = 12, 16, 20 and 24 (red circles,
blue squares, green up triangles and purple down triangles,
respectively). The transition point corresponds to the value
of V/J where curves referring to different system sizes cross.
Here V,/J = 3.68 + 0.25. Error bars are within the symbols
if not visible in the plots.

sizable disorder strength A/.J ~ 75 is needed in order to
destroy superfluidity [21]. This can be easily understood
as follows. In the weak interaction limit, interactions
compete with Anderson localization resulting in an en-
hancement of superfluidity. Here, instead, the hard-core
nature of bosons suppresses superfluidity even at weak
dipolar interaction. As a matter of fact, for V/J < 3.5
superfluidity is destroyed in favor of the BG at a nearly
constant value of disorder strength 7 < A/J < 8, that is,
the critical disorder strength is nearly independent of the
dipolar interaction strength. Furthermore, at finite dis-
order strength A/J < 7, the SF phase persists for dipolar
interaction V/J > 3.5, whereas the clean system featured
a CB solid at this point. We attribute this to the com-
petition between dipolar interaction which favors the CB
order and disorder which tends to destroy it, resulting in
a superfluid phase persisting beyond V/J ~ 3.5. Super-
fluidity is eventually completely destroyed for V/J 2 4.6.

With the exception of the transition point correspond-
ing to A/J = 2.0, the SF to insulator transition appears
to be of second order as demonstrated by the finite-size
scaling of the superfluid stiffness p; where we have used



the dynamical critical exponent z = 1 (see inset of Fig. 1).
For each V/J and A/J, we average over 500-1000 realiza-
tions of disorder, with disorder strength uniformly and
randomly distributed within the interval [—A, A]. We
have used system sizes L=12, 16, 20, 24. The transition
point corresponds to the value of V/J where curves re-
ferring to different system sizes cross (V./J = 3.68+0.25
in this example). We note that even for V/J > 3.5 the
SF disappears in favor of the BG phase rather than a
first-order phase transition to the diagonally ordered CB
phase. This is further confirmed by the observation of
finite compressibility x = 3({n?) — (n)?), measuring den-
sity fluctuations, across the transition (see below).

FIG. 2. (Color online) Imaginary-time average of the den-
sity distribution for a given Monte Carlo configuration and a
specific disorder realization at (a) V/J = 4.2, A/J = 2, (b)
V/J=4.0,A/J=T.

The computational cost of our simulations limit us to
system sizes of L = 100. As such, we are unable to per-
form finite size scaling at fixed A/J = 2, and estimate the
transition point to be within the range delimited by the
interaction value where we start seeing finite size effects
and the interaction value at which ps for the largest L
(L=100) goes to zero. Unlike what we observed for larger
values of disorder strength, at A/J = 2 the superfluid
phase is destroyed in favor of an insulating phase where
the CB pattern is stabilized everywhere in the lattice
apart from small superfluid regions. This can be seen in
Figure 2 (a) where we plot the imaginary-time average of
the density distribution for a given Monte Carlo configu-
ration and for a specific disorder realization at V/J = 4.2,
A/J = 2. Here, the radius of each circle is proportional
to the density at that site. For comparison, in Figure 2
(b), we show the density map at V/J = 4.0, A/J =7
where the CB patterns are clearly absent. While we ob-
serve coexistence of the SF and CB phases our present
results do not allow us to determine the nature of the SF-
insulator transition. Figure 2 (a) seems to suggest that
a BG phase no longer intervenes between the SF and the
CB phase but rather the SF phase directly disappears in
favor of a ‘disordered’ CB pattern. Due to computational
limitations though, we are unable to unequivocally deter-
mine the existence of a direct SF-CB phase transition for
disorder strength A/J < 4.

As the dipolar interaction strength is increased at fixed
disorder strength, one expects the BG to eventually dis-
appear in favor of the CB solid, the latter being charac-
terized by diagonal long range order and zero compress-
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FIG. 3. (Color online) Compressibility « as a function of V/J
for system sizes L=12, 16, 20, 24 and 28 (red squares, blue up
triangles, green down triangles, orange diamonds and purple
stars, respectively) at fixed disorder strength A/J =4 (a), 5
(b) and 7 (c¢). Compressibility remains finite beyond the su-
perfluid to insulator transition confirming that the superfluid
phase disappears in favor of a Bose glass. At large enough in-
teraction, k seems to plateau. Upon approaching the plateau,
extended CB patterns appear in the density distribution (see
text for details). Error bars are within the symbols if not
shown in the figures.

ibility. We have performed scans in interaction strength
at fixed A/J. Figure 3 shows compressibility « as a func-
tion of V/J at fixed A/J =4, 5 and 7 (Figure 3 (a), (b),
(c), respectively) for system sizes ranging from L = 12
to 28. We identify the SF to insulator transition points
for A/J =4,5and 7tobeat V/J=456+0.2,4.6+0.2
and 3.68 + 0.25 respectively. Clearly, the compressibility
remains finite beyond the transition confirming that the
SF disappears in favor of a BG, rather than the CB solid.
Notice that at a given interaction strength, « is larger for
larger disorder strength. Indeed, in this region of the pa-
rameter space, disorder competes with interactions which
stabilize the incompressible CB solid. The larger the dis-
order strength, the larger the interaction strength needed
in order to observe extended CB patterns in the density
distribution. As expected, in all cases, compressibility
decreases as interaction increases. At large enough in-
teraction, k seems to plateau. The larger the A/J, the
larger the interaction at which the plateau is observed.
Upon approaching the plateau, extended CB patterns
appear in the density distribution. However, due to the
presence of disorder, defects and grain boundaries persist
even at increasing interaction strengths and contribute to
a small residual compressibility. In Fig. 4 (a) we plot the
imaginary-time average of the density distribution for a
given Monte Carlo configuration and for a specific dis-
order realization at V/J = 10.0, A/J = 7.0. For com-
parison, we show the density maps in the BG phase at
V/J =45, A/J = 7.0 (Fig. 4 (b)) and at V/J = 1.0,
A/J = 9.5 (Fig. 4 (¢)). For V/J > 3.5, a specific dis-
order realization featuring regions that locally mimic a
clean system allows the dipolar interactions to stabilize
the CB phase in those regions. Such islands of CB phase
are observed in Fig. 4 (b), but are absent from Fig. 4 (c)
where the strength of interactions, V/J < 3.5 is below



the critical strength required to stabilize the CB phase
in the clean system. We note that the disappearance of
the BG in favor of a CB solid happens over a range of
increasing V/J values at a fixed A/J. As V/J increases,
islands of CB within the BG phase grow larger and even-
tually the system settles into a CB with localized defects.

FIG. 4. (Color online) Imaginary-time average of the den-
sity distribution for a given Monte Carlo configuration and a
specific disorder realization at (a) V/J = 10.0, A/J = 7.0,
(b) V/J = 4.5, A/J = 7.0 and (c) V/J = 1.0, A/J = 9.5.
The radius of each circle is proportional to the density at that
site. Defects and grain boundaries within the checkerboard
order are present in (a). They contribute to a small residual
compressibility.

IV. FINITE TEMPERATURE RESULTS

In this section we investigate the robustness of the SF
state against thermal fluctuations. Upon increasing the
temperature, thermal fluctuations destroy superfluidity
via a Kosterlitz-Thouless (KT) transition [50]. In the
following, we fix interaction strength to V/J = 2 and
scan over disorder strength to find the critical tempera-
ture at which the SF disappears. Figure 5 (a) shows the
critical temperature T./J as a function of A/J. The
top-right inset shows the ground state compressibility
k as a function of disorder strength A/J for L = 24.
The bottom-left inset shows the ground state superfluid
stiffness ps vs. A/J for L = 24. While compressibility
does not change significantly, ps is suppressed as disor-
der strength is increased. As a result, the corresponding
critical temperature decreases as a function of A/J, as
seen in the main plot. The critical temperature is found
using standard finite size scaling. In the thermodynamic
limit, a universal jump is observed at a critical temper-
ature given by ps(T.) = 2mkgT./mh%. In a finite size
system this jump is smeared out as seen in Figure 5 (b)
which shows p, as a function of T/J at A/J = 4 for
system sizes L = 12, 16, 20, 24, 36 and 60. The dot-
ted line in Figure 5 (b) corresponds to p; = T'/7 and its
intersection points T,(L)/J with each ps-vs.-T/J-curve
are used to find T,/J as shown in Figure 5 (c¢). Here,
we plot T,.(L)/J vs. 1/In*L and find the critical temper-
ature at A/J = 4 to be T./J ~ 0.36. Finally we note
that the critical interactions strengths corresponding to
the stabilization of each equilibrium phase are achievable
in current experiments. However further improvements

will be needed, both in cooling and loading phases, to
achieve the required lattice gas temperatures.
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FIG. 5. (Color online) All plots refer to V/J = 2. (a) Main
plot: critical temperature 7. /J for disappearance of superflu-
idity via a KT transition as a function of A/J. Bottom-left
inset: superfluid stiffness ps as a function of A/J for system
size L=24. Top-right inset: Compressibility x as a function of
A/J for system size L=24. (b) Superfluidity ps as a function
of T'/J for L=12, 16, 20, 24, 36 and 60 (blue squares, green up
triangles, purple down triangles, orange diamonds, pink stars
and yellow asterisks, respectively), at A/J = 4. Dotted line
corresponds to ps = T'/w. Its intersection points with each
ps-curve give ‘critical’ temperatures T.(L)/J for a finite sys-
tem. (c) Tw(L)/J vs. 1/In>L. Error bars are within symbol
size if not visible in the plots.

V. CONCLUSION

We have studied hard-core bosons trapped in a square
lattice, interacting via purely repulsive dipolar interac-
tion and in the presence of on-site bound disorder. Our
results are based on large-scale path-integral quantum
Monte Carlo simulations by the Worm algorithm. We
have presented the ground state phase diagram at fixed
half-integer filling factor for which the clean system is
a superfluid at lower dipolar interaction strength and a
checkerboard solid at larger dipolar interaction strength.
We find that, even for weak dipolar interaction, superflu-
idity is destroyed in favor of a Bose glass at relatively low
disorder strength. This is in contrast to what found for
the Bose-Hubbard model at fixed unity filling and in the
limit of weak interactions where sizable disorder strength
is needed in order to destroy superfluidity. This can be
explained by the hard-core nature of bosons which sup-
presses superfluidity even at weak dipolar interaction. In-
terestingly, in the presence of disorder, superfluidity per-
sists for values of dipolar interaction strength for which
the clean system is a checkerboard solid. At fixed dis-
order strength, as the dipolar interaction is increased,



superfluidity is destroyed in favor of a Bose glass. As the
interaction is further increased, the system eventually de-
velops extended checkerboard patterns in the density dis-
tribution. Due to the presence of disorder, though, grain
boundaries and defects, responsible for a finite residual
compressibility, are present in the density distribution.
Finally, we have studied the robustness of the superfluid
phase against thermal fluctuations where we found that,

at fixed dipolar interaction, the critical temperature at
which superfluidity disappears decreases as the disorder
strength increases.
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